第16章 分式整章同步测试(含答案)
八年级数学下册第16章《分式》综合水平测试题[1]
![八年级数学下册第16章《分式》综合水平测试题[1]](https://img.taocdn.com/s3/m/19dc4d7fdd3383c4ba4cd295.png)
八年级数学下册第16章《分式》综合水平测试一、选择题:(每小题2分,共20分) 1.下列各式:2b a -,x x 3+,πy+5,()1432+x ,ba b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个 2.下列判断中,正确的是( ) A .分式的分子中一定含有字母 B .当B =0时,分式B A无意义 C .当A =0时,分式BA的值为0(A 、B为整式)D .分数一定是分式 3.下列各式正确的是( ) A .11++=++b a x b x a B .22x y x y = C .()0,≠=a mana m n D .am an m n --=4.下列各分式中,最简分式是( ) A .()()y x y x +-8534 B .yx x y +-22 C .2222xy y x y x ++D .()222y x y x +-5.化简2293mmm --的结果是( ) A.3+m m B.3+-m m C.3-m m D.mm-36.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍7.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A .9448448=-++x x B .9448448=-++x x C .9448=+x D .9496496=-++x x8.已知230.5x y z ==,则32x y z x y z +--+的值是( ) A .17 B.7 C.1 D.139.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.47 10.已知226a b ab +=,且0a b >>,则a ba b+-的值为( ) A .2 B .2± C .2 D .2±二、填空题:(每小题3分,共24分)11.分式392--x x 当x 时分式的值为零,当x 时,分式xx2121-+有意义.12.利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 13.分式方程1111112-=+--x x x 去分母时,两边都乘以 . 14.要使2415--x x 与的值相等,则x =. 15.计算:=+-+3932a a a . 16. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为.17.若分式231-+x x 的值为负数,则x 的取值范围是.18. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为. 三、解答题:(共56分) 19.计算:(1)11123x x x++ (2)32÷x y2620. 计算: ()3322232n m n m --⋅21. 计算(1)168422+--x x xx (2)mn nn m m m n n m -+-+--222. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==-23. 解下列分式方程. (1)xx 3121=- (2)1412112-=-++x x x24. 计算: (1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111x x x x ++++++-25.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).27.某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?28.A、B两地相距20 ,甲骑车自A地出发向B地方向行进30分钟后,乙骑车自B地出发,以每小时比甲快2倍的速度向A地驶去,两车在距B地12 的C地相遇,求甲、乙两人的车速.答案 一、选择题1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.A 9.B 10.A二、填空题(每小题3分,共24分)11.=-3、≠1212.26a 、2a - 13.(1)(1)x x +- 14.6 15.3a - 16. 17.-1<x <2318.2(提示:设24y y m +=,原方程变形为211x m x m -=--,方程两边同时乘以(1)(1)x m --,得(1)(1)(2)x m x m -=--,化简得m x +=2,即24y y m ++=2.三、解答题(共56分) 19.(1)原式=632666x x x ++=116x (2)原式=2236x xy y =212x20.原式=243343m n m n -=1712m n -21.(1)原式=2(4)(4)x x x --=4xx - (2)原式=2m n m n m n m n m n -++----=2m n m n m n -++--=mm n-- 22.原式=22222()()[]1()()()a a a a b a a b a b a b a b a b --÷-+--+-- =2222()[]1()()()a ab a a a b a a b a b a b ----÷+-+-=2()()1()ab a b a b a b ab-+-÷+-- =a b a b a b a b +-+--=2aa b- 当2,33a b ==-时,原式=2232(3)3⨯--=43113=411 23.(1)方程两边同时乘以3(2)x x -,得32x x =-,解得x =-1,把x =-1代入3(2)x x -,3(2)x x -≠0,∴原方程的解,∴原方程的解是x =-1.(2)方程两边同乘以最简公分母(1)(1)x x +-,得4)1(2)1(=++-x x ,解这个整式方程得,1=x ,检验:把1=x 代入最简公分母(1)(1)x x +-,(1)(1)x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解.24.(1)原式=1111x x x -⎛⎫+⎪-⎝⎭=1111x x x x -+--=11x x x x--=1(2)原式=241124(1)(1)(1)(1)11x x x x x x x x +-+++-+-+++=224224111x x x++-++=22222242(1)2(1)4(1)(1)(1)(1)1x x x x x x x +-++-++-+=2222422224(1)(1)1x x x x x ++-+-++=444411x x +-+=4444444(1)4(1)(1)(1)(1)(1)x x x x x x +-+-++-=4484(1)4(1)1x x x ++--=881x -25.原式=222218339x x x x +-++--=22(3)2(3)(218)9x x x x --+++- 2269x x +-=2(3)(3)(3)x x x ++-=23x -,∵918232322-++-++x x x x 是整数,∴23x -是整数,∴3x -的值可能是±1或±2,分别解得x =4,x =2,x =5,x =1,符合条件的x 可以是1、2、4、5.26.①241≤x ≤300;②x m 12-,6012+-x m27.设原计划每小时加工x 个零件,根据题意得:1500150052x x-=,解得x =150,经检验,x =150是原方程的根,答:设原计划每小时加工150个零件. 28.设甲速为,乙速为3,则有xx x31260301220=--,解之得8=x ,经检验,x =8是原方程的根,答:甲速为8,乙速为24.。
第16章 分式 四清导航单元检测(含答案)

第16章 分式单元检测内容得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.下列有理式:3a 2π,x 22x ,34a +b ,x +3x -1,-m 2,am ,其中是分式的有( )A .2个B .3个C .4个D .5个 2.分式方程1 x =2x +3的解是( )A .x =-2B .x =1C .x =2D .x =33.下列分式:ab 22a 2b ,x 2-1x +1,x -y x +y ,1-2x2x,其中是最简分式的有( )A .1个B .2个C .3个D .4个 4.在(23)2,(34)-2,(65)2,(67)0四个数中,最小的是( )A .(23)2B .(34)-2C .(65)2D .(67)05.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通运行和转换能力将成倍增长,该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )A .9.3×105万元B .9.3×106万元C .93×104万元D .0.93×106万元 6.下列约分正确的是( )A.-x -y x -y =-1B.2x -y 2x -y =0C.(y -x )2(x -y )3=1x -yD.x +a x +b =a b 7.甲队在m 天内挖水渠a 米,乙队在n 天内挖水渠b 米,两队一起挖水渠s 米,需要的天数为( )A.sm a +sn b 天B.smn an +bm 天C.sab an +bm 天 D .以上均不对 8.化简a +1a 2-2a +1÷(1+2a -1)的结果是( )A.1a -1B.1a +1C.1a 2-1D.1a 2+1 9.若关于x 的分式方程2m +x x -3-1=2x 无解,则m 的值为( )A .-1.5B .1C .-1.5或2D .-0.5或-1.5 10.甲、乙两班进行植树活动,根据提供的信息可知:①甲班共植树90棵,乙班共植树129棵;②乙班的人数比甲班的人数多3人;③甲班每人植树数是乙班每人植树数的34,若设甲班人数为x 人,求两班人数分别是多少?正确的方程是( ) A.90x =34×129x +3 B.90x -3=34×129x C.34×90x -3=129x D.34×90x =129x +3 二、填空题(每小题3分,共24分)11.(1)当x =____时,函数y =3x 2-12x -2的值为零;(2)当x =________-__时,分式2x -1(x -3)(x -1)无意义.12.方程2x +1=1x的解为x =____.13.化简(x 2-1x 2-2x +1+1-x x +1)÷xx -1的结果是____.14.当x =____时,分式1-x x +5的值与x -1x -2的值互为相反数.15.不改变分式的值,把分式0.1x +0.5y0.05x -0.05y的分子、分母各项系数化为整数得____.16.若(3y +1)-1有意义,则y __≠-13__,若(x +2)0=1,则x ____.17.已知x 2+y 2=5,xy =2,则1x +1y=____.18.十一黄金周期间,几名同学包租一辆面包车去旅游,面包车的租价为180元,出发时,又增加了两名同学,结果每个同学比原来少分摊了3元车费,若设参加旅游的学生共有x 人,则所列方程为_____________-__. 三、解答题(共66分) 19.(12分)计算:(1)4+(π-2)0-|-5|+(-1)2012+(13)-2; (2)aa +1+a -1a 2-1;(3)(x 2-4x +4x 2-4-xx +2)÷x -1x +2.20.(10分)解方程:(1)2x -1=1x -2; (2)5+96x 2-16=2x -1x +4-3x -14-x21.(10分)化简,求值:(1)(1x +1-11-x )÷1x 2-1,其中x =12;(2)已知a 2=b3≠0,求代数式5a -2b a 2-4b 2·(a -2b )的值.22.(7分)先化简,再求值:a 2-6ab +9b 2a 2-2ab ÷(5b 2a -2b -a -2b )-1a ,其中a ,b 满足⎩⎪⎨⎪⎧a +b =4,a -b =2.23.(7分)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.24.(9分)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2 000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x.25.(11分)李明到离家2.1千米的学校参加九年级联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行(匀速)回家,在家拿道具用了1分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度是多少?(单位:米/分)(2)李明能否在联欢会开始前赶到学校?参考答案一、选择题(每小题3分,共30分)1.下列有理式:3a 2π,x 22x ,34a +b ,x +3x -1,-m 2,am ,其中是分式的有( B )A .2个B .3个C .4个D .5个 2.分式方程1 x =2x +3的解是( D )A .x =-2B .x =1C .x =2D .x =33.下列分式:ab 22a 2b ,x 2-1x +1,x -y x +y ,1-2x2x,其中是最简分式的有( B )A .1个B .2个C .3个D .4个 4.在(23)2,(34)-2,(65)2,(67)0四个数中,最小的是( A )A .(23)2B .(34)-2C .(65)2D .(67)05.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通运行和转换能力将成倍增长,该工程投资预算约为930 000万元,这一数据用科学记数法表示为( A )A .9.3×105万元B .9.3×106万元C .93×104万元D .0.93×106万元 6.下列约分正确的是( C )A.-x -y x -y =-1B.2x -y 2x -y =0C.(y -x )2(x -y )3=1x -yD.x +a x +b =a b 7.甲队在m 天内挖水渠a 米,乙队在n 天内挖水渠b 米,两队一起挖水渠s 米,需要的天数为( B )A.sm a +sn b 天B.smn an +bm 天C.sab an +bm 天 D .以上均不对 8.化简a +1a 2-2a +1÷(1+2a -1)的结果是( A )A.1a -1B.1a +1C.1a 2-1D.1a 2+1 9.若关于x 的分式方程2m +x x -3-1=2x 无解,则m 的值为( D )A .-1.5B .1C .-1.5或2D .-0.5或-1.5 10.甲、乙两班进行植树活动,根据提供的信息可知:①甲班共植树90棵,乙班共植树129棵;②乙班的人数比甲班的人数多3人;③甲班每人植树数是乙班每人植树数的34,若设甲班人数为x 人,求两班人数分别是多少?正确的方程是( A ) A.90x =34×129x +3 B.90x -3=34×129x C.34×90x -3=129x D.34×90x =129x +3 二、填空题(每小题3分,共24分)11.(1)当x =__-2__时,函数y =3x 2-12x -2的值为零;(2)当x =__3或1__时,分式2x -1(x -3)(x -1)无意义.12.方程2x +1=1x的解为x =__1__.13.化简(x 2-1x 2-2x +1+1-x x +1)÷x x -1的结果是__4x +1__.14.当x =__1__时,分式1-x x +5的值与x -1x -2的值互为相反数.15.不改变分式的值,把分式0.1x +0.5y0.05x -0.05y的分子、分母各项系数化为整数得__2x +10y x -y __.16.若(3y +1)-1有意义,则y __≠-13__,若(x +2)0=1,则x __≠-2__.17.已知x 2+y 2=5,xy =2,则1x +1y =__±32__.18.十一黄金周期间,几名同学包租一辆面包车去旅游,面包车的租价为180元,出发时,又增加了两名同学,结果每个同学比原来少分摊了3元车费,若设参加旅游的学生共有x 人,则所列方程为__180x -2-180x =3__.三、解答题(共66分) 19.(12分)计算:(1)4+(π-2)0-|-5|+(-1)2012+(13)-2;解:8(2)aa +1+a -1a 2-1;解:1(3)(x 2-4x +4x 2-4-x x +2)÷x -1x +2.解:-2x -120.(10分)解方程: (1)2x -1=1x -2; 解:x =3(2)5+96x 2-16=2x -1x +4-3x -14-x解:x =8.21.(10分)化简,求值:(1)(1x +1-11-x )÷1x 2-1,其中x =12;解:原式=2x =1(2)已知a 2=b3≠0,求代数式5a -2b a 2-4b 2·(a -2b )的值.解:原式=5a -2b a +2b ,设a =2k ,b =3k (k≠0),得原式=10k -6k 2k +6k =1222.(7分)先化简,再求值:a 2-6ab +9b 2a 2-2ab ÷(5b 2a -2b -a -2b )-1a ,其中a ,b 满足⎩⎪⎨⎪⎧a +b =4,a -b =2.解:原式=-2a +3b .∵⎩⎪⎨⎪⎧a +b =4,a -b =2,∴⎩⎪⎨⎪⎧a =3,b =1,∴当a =3,b =1时,原式=-1323.(7分)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.解:设第一组有x 人,根据题意,得24x =271.5x +1,解得x =6,经检验,x =6是原方程的解,且符合题意.答:第一组有6人24.(9分)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2 000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x 元,请你用含x 的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x .解:(1)4 000+25x (元) (2)设购买每副乒乓球拍用去了x 元,则购买每副羽毛球拍用去了(x +20)元.由题意得2 000x =2 000+25xx +20,解得x 1=40,x 2=-40,经检验,x 1,x 2都是原方程的根.但x >0,∴x =40.即每副乒乓球拍为40元25.(11分)李明到离家2.1千米的学校参加九年级联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行(匀速)回家,在家拿道具用了1分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度是多少?(单位:米/分) (2)李明能否在联欢会开始前赶到学校?解:(1)设步行速度为x 米/分,则骑自行车的速度为3x 米/分.根据题意得2 100x =2 1003x +20,解得x =70.经检验x =70是原方程的解.即李明步行的速度是70米/分 (2)根据题意得2 10070+2 1003×70+1=41<42.∴李明能在联欢会开始前赶到学校。
(2021年整理)第16章《分式》单元测试题(含答案及评分标准)

第16章《分式》单元测试题(含答案及评分标准)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(第16章《分式》单元测试题(含答案及评分标准))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为第16章《分式》单元测试题(含答案及评分标准)的全部内容。
第16章《分式》单元测试题班级: 学号: 姓名: 成绩:说明:本试题分为A 卷和B 卷两部分,其中A 卷六个大题100分,B 卷两个大题20分,总分120分。
A 卷(100分)一、选择题(每小题2分,共20分)1、下列各式中,分式的个数为:( )3y x -,12-x a ,1+πx ,b a3-,y x +21,y x +21,3122+=-x x ;A 、5个B 、4个C 、3个D 、2个2、下列各式正确的是( )A 、b a cb ac -=-- B 、b a cb ac +-=--C 、b a c b a c +-=+-D 、b a cb ac --=--3、人体中成熟的红细胞的平均直径为0000077.0米,用科学记数法表示为( )A 、5107.7-⨯米B 、6107.7-⨯米C 、51077-⨯米;D 、61077-⨯米4、下列分式是最简分式的是( )A 、m m --11B 、xy yxy 3- C 、22y x y x +- D 、m m3261-5、将分式y x x +2中的x 、y 的值同时扩大2倍,则扩大后分式的值( )A 、扩大2倍B 、缩小2倍C 、保持不变D 、无法确定6、不改变分式yx yx +-32252的值,把分子、分母中各项系数化为整数,结果是() A 、y x y x +-4152 B 、y x yx 3254+- C 、y x y x 24156+- D 、y x yx 641512+-7、若分式23x x -的值为负数,则x 的取值范围是( )A 、3 xB 、3 x ;C 、3 x 且0≠xD 、3- x 且0≠x8、若2:3:=y x ,则分式yx y x +-的值为( ) A 、51- B 、51 C 、1 D 、无法确定 9、若68682-=-x x x x 成立,则x 应满足( ) A 、0 x B 、0≠x 且6≠x C 、0 x D 、6≠x10、甲从A 地到B 地要走m 小时,乙从B 地到A 要走n 小时,若甲、乙二人同时从A 、B 两地出发,经过多长时间两人相遇( )A 、()n m +小时B 、2n m +小时C 、mn n m +小时D 、nm mn +小时 二、填空题(每小题3分,共30分)11、若分式33||--x x 的值为零,则___________=x 。
华师大版八年级数学下册 第十六章《分式》整章水平测试

八年级数学下册第十六章《分式》整章水平测试(总分:100分,时间:40分钟)一、 试试你的身手(每小题4分,共28分)1.若分式11x x -+的值为零,则x 的值为 . 2.不改变分式的值,把分式10.720.3a b a b-+的分子与分母的各项系数化为整数为: . 3.当a 时,分式2521a a -+的值不小于0. 4.化简:3222222232a b a b a ab ab a ab b a b +--÷++-= . 5.生物学家发现一种病毒的长度约为0.000043㎜,用科学记数法表示0.000043的结果为㎜.6.若方程56x x a x x -=--有增根,则a 的值可能是 . 7.把题目补充完整:轮船在顺流中航行64km 与逆流中航行34km 一共用去的时间等于该船在静水中航行180km 所用的时间,已知水流的速度是每小时3km ,求该船 . 设 ,依题意列方程 .二、相信你的选择(每小题4分,共32分)1.在有理式21121,,(),,,,(15)321x x x m n m n R x a m n yππ-+--+中,分式有( ). (A )1个 (B )2个 (C )3个 (D )4个2.如果226x x x ---=0,则x 等于( ). (A )±2 (B )-2 (C )2 (D )33.分式2232x x y-中的,x y 同时扩大2倍,则分式的值( ).(A )不变 (B )是原来的2倍 (C )是原来的4倍 (D )是原来的21 4.下列各式从左到右的变形正确的是( ). (A )122122x y x y x yx y --=++(B )0.220.22a b a b a b a b ++=++(C )11x x x y x y +--=-- (D )a b a b a b a b +-=-+ 5.已知111,11ab M a b ==+++,11a b N a b =+++,则M 与N 的大小关系为( ). (A )M>N (B )M=N (C )M<N (D )不确定6.关于x 的方程(1)43a x x +=+的解是负数,则a 的取值范围是( ).(A )a =3 (B )a <3且a ≠-1 (C )a ≥3 (D )a ≤3且a ≠-17.在正数范围内定义一种运算“※”,其规则为a ※b =11a b+,根据这个规则方程x ※(1x +)=0的解为( ).(A )1 (B )0 (C )无解 (D )12- 8.学生有m 个,若每n 个人分配1间宿舍,则还有一人没有地方住,问宿舍的间数为( ).(A )1m n + (B )1m n - (C )1m n - (D )1m n + 三、挑战你的技能(本大题共37分)1.(本题8分)解方程:214 1.11x x x +-=--2.(本题10分)先化简代数式222222()()()a b a b aba b a b a b a b+--÷-+-+,然后请选择一组你喜欢的,a b的值代入求值.3.(本题12分)同一条高速公路沿途有三座城市A、B、C,C市在A市与B市之间,A、C两市的距离为540千米,B、C两市的距离为600千米.现有甲、乙两辆汽车同时分别从A、B两市出发驶向C 市,已知甲车比乙车的速度慢10千米/时,结果两辆车同时到达C市.求两车的速度.四、拓广探索(本大题共12分)请阅读某同学解下面分式方程的具体过程. 解方程1423.4132x x x x +=+---- 解:13244231x x x x -=-----, ① 222102106843x x x x x x -+-+=-+-+, ② 22116843x x x x =-+-+, ③ ∴22684 3.x x x x -+=-+ ④ ∴5.2x =把52x =代入原方程检验知52x =是原方程的解. 请你回答:(1)得到①式的做法是 ;得到②式的具体做法是 ;得到③式的具体做法是 ;得到④式的根据是 .(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答: .错误的原因是 .(3)给出正确答案(不要求重新解答,只需把你认为应改正的加上即可).参考答案:一、1.1 2.57310a b a b -+ 3.a ≤524.2ab 5.54.310-⨯6.6 7.在静水中的速度,船在静水中的速度为x km/h ,64348033x x x +=+-.。
人教版初中数学第16章 分式整章水平测试(二)及答案

第十六章《分式》整章水平测试一、精心选一选。
(每题3分,共30分)1.代数式-32x ,4x y -,x+y ,22x π+,273y y ,55b a ,98,中是分式的有( ) A .1个 B .2个 C .3个 D .4个2.当x≠-1时,对于分式11x -总有( ) A .11x -=21x + B .11x -=211x x +- C .11x -=211x x -- D .11x -=13x -- 3.下列变形正确的是( )A .a b a b c c -++=-; B .a a b c b c-=--- C .a b a b a b a b -++=--- D .a b a b a b a b--+=-+- 4.学完分式运算后,老师出了一道题“化简:23224x x x x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的5.若分式6922-+-x x x 的值为0,则x 的值为( ) A.3 B.-3或2 C .3 D.-36.若分式2112(4)x x --的值为正数,则x 的值为( ) A .x<2 B .2<x<4 C .x>2 D .x>2且x≠47.若关于x 的分式方程2344m x x=+--有增根,则m 的值为( ) A .-2 B .2 C .±2 D .48.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80•棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,•则根据题意列出方程是( )A .80705x x =-B .80705x x =+C .80705x x =+D .80705x x =- 9.一个人从A 地到B 地,去时速度为xkm/h ,回时速度为ykm/h ,•则这个人往返的平均速度为( )km/h .A .2x y +B .2xy x y +C .xy x y +D .2()x y xy+ 10.实数a ,b 满足ab=1,记M=11a ++11b +,N=1a a ++1b b+,则M 、N 的大小关系为( ) A .M>N B .M=N C .M<N D .不确定二、细心填一填。
2021-2022学年度华东师大版八年级数学下册第十六章分式章节测评试题(含详细解析)

华东师大版八年级数学下册第十六章分式章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果关于x 的不等式组45253m x x x ->⎧⎨+≥+⎩所有整数解中非负整数解有且仅有三个,且关于y 的分式方程2301322my y y --=--有正整数解,则符合条件的整数m 有( )个 A .1 B .2 C .3 D .42、若关于x 的一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-,且关于x 的分式方程32222ax x x x +=+--有非负整数解,则所有满足条件的整数a 的值之和是( )A .14-B .5-C .9-D .6- 3、要使式子5a b a b -+值为0,则( ) A .a ≠0 B .b ≠0 C .5a =bD .5a =b 且b ≠0 4、根据分式的基本性质,分式22m -可以变形为( ) A .11m - B .22m -- C .22m -+ D .21m-5、下列关于x 的方程,是分式方程的是( )A .325xx -= B .11523x y -= C .32xx x π=+ D .1212x x=-+ 6、已知分式2ab a b +的值为25,如果把分式2ab a b+中的,a b 同时扩大为原来的3倍,那么新得到的分式的值为( )A .25 B .45 C .65 D .4257、下列运算正确的是( )A .22352a b a b -=-B .()22448a b a b -= C .()224--= D .()22224a b a b -=- 8、已知5a b +=,3ab =,则b a a b+的值为( ) A .6 B .193 C .223 D .89、若关于x 的一元一次不等式组()21122x x x m ⎧+-<+⎨-≤⎩的解集为1x <;关于x 的分式方程2422x m m x x ++=--的解为非负整数.则满足条件的整数m 的值之和是( )A .13B .12C .14D .1510、一辆汽车以60千米/时的速度行驶,从A 城到B 城需t 小时,如果该车的速度每小时增加v 千米,那么从A 城到B 城需要( )小时.A .60t v B .6060t v + C .60vt v + D .60vt 第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、计算下列各题:(1)|3﹣4|﹣1=_____;(2=_____;(3)30=_____;(4)32y xy x+=_____. 2、计算:24133--+=--m m m m _________. 3、如果分式2356x x x --+的值为零,那么x =____. 4、将0.000927用科学计数法表示为______.5、当x ≠4时,(x ﹣4)0=___.6、计算:1322x x x -+=++________. 7、已知ab =﹣4,a +b =3,则11a b +=_____. 8、若分式21x +无意义,则x 的值为__. 9、化简:1111x x x ⎛⎫+÷= ⎪--⎝⎭______. 10、计算:02202211122-⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭______. 三、解答题(5小题,每小题6分,共计30分)1、如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①11x x -+;②222a b a b --;③22x y x y +-,其中是“和谐分式”的是 (填写序号即可); (2)若a 为整数,且214x x ax --++为“和谐分式”,写出满足条件的a 的值为 ; (3)在化简22344a ab ab b b -÷-时,小明和小娟分别进行了如下三步变形:小明:原式22222323232232444444()()a a a a a b a ab b ab b b b ab b b ab b b --=-⋅=-=---, 小娟:原式22223222444444()()()a a a a a a ab ab b b b b a b b b a b --=-⋅=-=---, 你比较欣赏谁的做法?先进行选择,再根据你的选择完成化简过程,并说明你选择的理由.2、计算(1)()()()223a b a b a a b -+-+ (2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭3、计算:()03.14π-4、计算:1111x y x y ----+-. 5、计算:(1)()()()23123a a a a -+--(2)()254111x x x x x --⋅++---参考答案-一、单选题1、B【解析】【分析】解不等式组和分式方程得出关于x 的范围,根据不等式组有且仅有非负整数解和分式方程的解为正整数解得出m 的范围,继而可得整数m 的个数.解:解不等式45m x ->,得:54m x -<, 解不等式253x x +≥+,得:2x ≥-,不等式组有且仅有三个非负整数解,4234m -∴<≤, 解得:1216m <≤,解关于y 的分式方程2301322my y y --=--, 23013(2)my y --=-,(13)58m y -=, 得:1358y m =-, 分式方程有正整数解, ∴58013m >-,且58213m ≠-,即42m ≠, 解得:13m >且42m ≠,综上,1316m <≤,所以所有满足条件的整数m 的值为14,15,一共2个.故选:B .【点睛】本题主要考查分式方程的解和一元一次不等式组的解,解题的关键是熟练掌握解分式方程和不等式组的能力,并根据题意得到关于m 的范围.2、B【解析】先解不等式组根据解集x a ≤-,求出得a 的范围,再解分式方程,根据非负整数解,求出a 的值即可求解.【详解】 解一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩得5x x a ≤⎧⎨≤-⎩ ∵元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-∴5a ≥-,即5a ≥-解关于x 的分式方程32222ax x x x +=+--得61x a =-+ ∵分式方程32222ax x x x+=+--有非负整数解, ∴11a +=-或12a +=-或13a +=-或16a +=-,解得2a =-或3a =-或4a =-或7a =-, ∵621x a =-≠+ ∴4a ≠-∵5a ≥-∴2a =-或3a =-∴2(3)5-+-=-或3a =-故选:B【点睛】本题考查分式方程、一元一次不等式组,熟练掌握分式方程、一元一次不等式组的解法,注意分式方程增根的情况是解题的关键.3、D【解析】【分析】根据分式有意义的条件,即可求解.【详解】解:根据题意得:50a b -= 且0a b +≠ ,∴5a b = 且0b ≠ .故选:D【点睛】本题主要考查了,熟练掌握分式有意义的条件是分式的分子等于0且分母不等于0是解题的关键.4、B【解析】【分析】根据分式的基本性质即可求出答案.【详解】 解:原式2222m m =---, 故选B .【点睛】本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5、D【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】解:A.方程分母中不含未知数,故不是分式方程,不符合题意;B.方程分母中不含未知数,故不是分式方程,不符合题意;C.方程分母中不含表示未知数的字母,π是常数,故不是分式方程,不符合题意;D.方程分母中含未知数x,故是分式方程,符合题意.故选:D.【点睛】本题主要考查了分式方程的定义,解题的关键是掌握判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).6、C【解析】【分析】直接利用分式的基本性质进而化简得出答案.【详解】解:把分式2aba b+中的,a b都扩大为原来的3倍,则分式223392263333()55ab a b aba b a b a b===⨯=+++,故选:C.【点睛】本题主要考查了分式的基本性质,解题的关键是正确化简分式.7、B【解析】【分析】由题意依据合并同类项和积、幂的乘方以及负指数幂和完全平方差公式逐项进行运算判断即可.【详解】解:A. 222352a b a b a b -=-,本选项运算错误;B. ()22448a b a b -=,本选项运算正确; C. ()2124--=,本选项运算错误; D. ()222244a b a ab b -=-+,本选项运算错误.故选:B.【点睛】本题考查整式的混合运算以及完全平方差公式,熟练掌握合并同类项和积、幂的乘方以及负指数幂运算是解题的关键.8、B【解析】【分析】 将原式同分,再将分子变形为2()2a b ab ab+-后代入数值计算即可. 【详解】解:∵5a b +=,3ab =, ∴2222()25231933b a a b a b ab a b ab ab ++--⨯+====, 故选:B .【点睛】此题考查了分式的化简求值,正确掌握完全平方公式的变形计算是解题的关键.9、B【解析】【分析】由关于x 的一元一次不等式组可得m ≥-1,关于x 的分式方程的解为83m x -=,根据题意得出所有满足条件的整数m 的值,求和即可.【详解】解:解不等式组2(1)122x x x m +-<+⎧⎨-≤⎩得,12x x m <⎧⎨≤+⎩, 因为不等式组的解集为1x <;所以21m +≥,解得,1m ≥-; 解分式方程2422x m m x x ++=--得,83m x -=, 因为关于x 的分式方程2422x m m x x ++=--的解为非负数. 所以,803m -≥且823m -≠, 解得,8m ≤且2m ≠,又因为方程的解是非负整数,则整数m 的值为-1,5,8;它们的和为:-1+5+8=12;故选:B【点睛】本题主要考查了分式方程的解,一元一次不等式组的解集,有理数的混合运算.考虑解分式方程可能产生增根是解题的关键.10、B【解析】【分析】根据题意求出全程,及后来行驶的速度,相除即可得到时间.【详解】解:一辆汽车以60千米/时的速度行驶,从A城到B城需t小时,故全程为60t千米,该车的速度每小时增加v千米后的速度为每小时(60+v)千米,则从A城到B城需要6060tv+小时,故选:B.【点睛】此题考查了分式的实际应用,正确理解题意是解题的关键.二、填空题1、 0 3 1 5 x【解析】【分析】(1)先化简绝对值,再计算减法运算即可得;(2)先计算有理数的乘方,再计算算术平方根即可得;(3)计算零指数幂即可得;(4)根据分式的加法运算法则即可得.【详解】解:(1)原式11110=--=-=,故答案为:0;(2)原式3==,故答案为:3;(3)原式1=,故答案为:1;(4)原式325x x x+==, 故答案为:5x .【点睛】本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键.2、-1【解析】【分析】根据同分母分式的加法法则计算即可.【详解】 解:241241313333m m m m m m m m m---+--+===-----. 故答案为:-1.【点睛】本题考查了同分母分式的加减运算,同分母分式的加减法则:分母不变,分子相加减.3、3-【解析】【分析】根据分时的值为0的条件,可得30x -= 且2560x x -+≠ ,即可求解.【详解】 解:根据题意得:30x -= 且2560x x -+≠ ,即3x =± 且()()230x x --≠ ,∴3x =± 且2x ≠ 且3x ≠ ,∴3x =- .故答案为:3-【点睛】本题主要考查了分时的值为0的条件,熟练掌握当分式的分子等于0,且分母不等于0时,分时的值为0是解题的关键.4、9.27×10-4【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000927=9.27×10-4,故答案为:9.27×10-4.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5、1【解析】【分析】根据零指数幂的定义:a0=1(a≠0),求解即可.【详解】解:∵x≠4,∴x-4≠0,∴(x-4)0=1.故答案是:1.【点睛】本题考查了零指数幂,掌握运算法则是解答本题的关键.6、1【解析】【分析】根据b c b ca a a++=计算即可.【详解】∵1322 xx x-+++=13222 x xx x-++=++=1,故答案为:1.【点睛】本题考查了同分母分式的加法,熟练掌握同分母分式的加减法的法则是解题的关键.7、3 4 -【解析】先通分:11a ba b ab++=,然后再代入数据即可求解.【详解】解:由题意可知:113344a ba b ab++===--,故答案为:34 -.【点睛】本题考查了分式的加减运算及求值,属于基础题,计算过程中细心即可.8、-1【解析】【分析】根据使分式无意义的条件“分母为0”,计算即可.【详解】根据题意有10x+=,解得:1x=-.故答案为:-1.【点睛】本题考查使分式无意义的条件.掌握使分式无意义的条件是分母为0是解答本题的关键.9、1【解析】【分析】根据分式的加减运算法则以及乘除运算法则即可求出答案.解:原式=1111x xx x +--⨯-=11x xx x-⨯-=1故答案为:1.【点睛】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.10、-4【解析】【分析】先运用乘方、零次幂、负整数次幂化简,然后计算即可.【详解】解:02 202211122-⎛⎫⎛⎫-+--⎪ ⎪⎝⎭⎝⎭=114-+-=-4.故答案为-4.【点睛】本题主要考查了乘方、零次幂、负整数次幂等知识点,灵活运用相关运算法则成为解答本题的关键.三、解答题1、(1)②(3)我欣赏小娟的做法,见解析【解析】【分析】(1)根据和谐分式的定义判断即可得出答案;(2)根据完全平方公式和十字相乘法即可得出答案;(3)小娟利用了和谐分式,通分时找到了最简公分母,完成化简即可.(1)解:①分子或分母都不可以因式分解,不符合题意;②分母可以因式分解,且这个分式不可约分,符合题意;③这个分式可以约分,不符合题意;故答案为:②;(2)解:将分母变成完全平方公式得:244x x ±+,此时4a =±;将分母变形成(1)(4)x x ++,此时5a =;故答案为:4±或5;(3)我欣赏小娟的做法, 原式222444()a a ab b a b -+=- 24()ab b a b =- 4()a b a b =-, 理由:小娟利用了和谐分式,通分时找到了最简公分母.解:我欣赏小娟的做法, 原式222444()a a ab b a b -+=- 24()ab b a b =- 4()a b a b =-, 理由:小娟利用了和谐分式,通分时找到了最简公分母.【点睛】本题考查了分式的混合运算,解题的关键是掌握在分式的混合运算中,能因式分解的多项式要分解因式,便于约分.2、 (1)243b ab -- (2)21x x -- 【解析】【分析】(1)根据单项式乘多项式和平方差公式可以解答本题;(2)先因式分解,再根据分式的减法和除法解答本题.(1)解:(1)()()()223a b a b a a b -+-+()22243a b a ab =--+22243a b a ab =---243b ab =--(2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭()()()()222212111x x x x x x x x -+-⎡⎤+=÷-⎢⎥---⎣⎦ ()()()()222211x x x x x -+-+⎡⎤=÷⎢⎥--⎣⎦()()()()()222121x x x x x ⎡⎤-+-=⎢⎥-+-⎢⎥⎣⎦ 21x x -=- 【点睛】本题考查整式的混合计算,分式的混合运算、单项式乘多项式、平方差公式,熟悉相关性质是解答本题的关键.3、6【解析】【分析】先运用零次幂、算术平方根的性质、立方根的知识化简,然后计算即可.【详解】解:()03.14π-=1+2-(-3)=1+2+3=6.【点睛】本题主要考查了零次幂、算术平方根、立方根等知识点,灵活运用相关知识是解答本题的关键.4、y x y x+-. 【解析】【分析】根据负整数指数幂、分式的加减法与除法法则即可得.【详解】 解:原式1111x y x y+=-y x xy xy y x xy xy+=- y xxy y xxy+=- y x y x+=-. 【点睛】本题考查了负整数指数幂、分式的加减法与除法,熟练掌握分式的运算法则是解题关键.5、 (1)3a + (2)11x - 【解析】【分析】(1)先利用单项式乘多项式和多项式乘多项式运算法则计算,然后再合并即可;(2)运用分式的四则混合运算法则计算即可.(1)解:()()()23123a a a a -+--=2262253a a a a -+-+=3a +.(2) 解:()254111x x x x x --⋅++-- =()()()541111x x x x x x --⋅+++-- =5411x x x x --+-- =541x x x -+-- =11x -. 【点睛】本题主要考查整式乘法混合运算、分式四则混合运算等知识点,灵活运用相关知识点成为解答本题的关键.。
第十六章《分式》整章参考答案

第十六章《分式》整章参考答案第十六童分式16.1.1从分数到分式16.2.2分式的加减〔―〕1. ±- m + n Ww)、曲、。
44 4. _3 为任意实数 6. C 7. C 8. C 9. D 10. (1) -<x<2; (2) 4⑶ x=2: 16.1.2 分式的差不多性质h-a 1. ------- 2a-ba-2b 2a-b 2. 4x+20 5x-10 3. 12(G -1)2(°-2)2 4. A 5. D 6. (1)— n (2) 兀+ 2 2 ;⑶-8(x —y)4:⑷ -----------4厂 x + 77. (1) 5ac 2b 2「…:⑵芈,卑:⑶ \0crb c 10“T c 6x^y 6A "y 时'梟:⑷y+1 T12c 16.2.1 分式的乘除〔一〕 1 jy 2.一丛 2 3・ 4. 9.v 5. C 6. C A 9.1 10・⑴•严+严+・・・ + x+l (2) 2咖—1 16.2.1 分式的乘除〔二〕 1. A 2・ B 1 3-D 4•乔 5. 4 —6. 4x4-6 7. 4-2/7? 8・不正确, 原式=%•—- x — 2 x — 2 1 X (X —2)2 9. 10.(吟 X+1 2加 2 X 5$ 1.⑴ ——:(2) v-y2.⑴ —:(2) a+b3.——4. 正5. a X x-l7. A 8. C 9. (1) X :(2) 1 10. 1211. 3 12.- x + 2 1+G 36, 3尸一/1•⑴ 0, (2) m+n 2. 9. 1 AM (2)-=——+------------- n 77 + 1 n{n +1) 16.2.2分式的加减〔二〕 ] 2x + 6 3. 10.二―,-1 a + b a+b 4・ 2 5・ D 6. A 7. ——!— x + 2 11.— 11 12・(1) □ , O 分不表示6和30, 16.2.3整数指数幕2•⑴一右’⑵W 3- 16.2.3整数指数幕 〔一〕 D 4- 5. 12" 6. %10 匚〕 1. (1) 9xl0"5, (2) 5.6X10-4 2. 0. 0002 3. 0. 0000000302 4. D 5. (1) 1.2x10二 ⑵ 9 6・ 2.667xlO 23〔个),1.675x10® (千克) 16.3分式方程〔一〕3. — 14. 5 5・ 1 6. A 7. C 8. D 9. A 10.⑴ x = 2\ (2)无解 11 •⑴ ⑴:⑵无解12. 31 B. m< — 2 16.3分式方程〔二〕 £ 1- (l4)xl 4 120 4. C 5・ B 6. B (1) 60 天,(2) 24 天 8.科普书7. 5元/本.文学书5元/本;(2)科普书2本.文学书3本 9•此 商品进价是500元, 第二个月共销售128件. 10. (1) 12 间,(2) 8000 元.8500 元 16.3分式方程[三〕 15 15 11.—— ----- =—x 1.2% 2 2. C 3. 5千米/时 4・甲速度24千米/时,乙速度60千米/时 5. 2元/米' 6. (1)优待率为32・5%: (2)标价750元 7.乙先到达第16童《分式》童节复习22. (1)丄•丄=丄一丄;⑵ n 〃 +1 n n +11 n n + \ n(n +1) n(n +1) n(n + l)元/吨・第十六章《分式》童节测试一、 选择题1-5 DDCBC 6-10 CDCBA 11-12 DD二、 填空题 13・ U 2 3.5, 2 14.—— 15. (v + 1)316. xv? I? (斗-3 18. 1 “一一 R a-h a 2 -ZZL 、 解答题4 a 4 \ + m y 19. (1)心±3: (2) x<2. 20. (1) 7 n : (2) : (3) ——:(4) 一 J 21.原9x 2y 2 4b 1-/7? x+ y 式=兀+1,取值时注意xH±l,—2・ 22.不可能,原式等于丄时,x = -\,现在分式无意4义. 23. (1) x = —3;⑵ 无解. 24. (1) 60天;⑵24天. 25.甲每分钟输入22 名,乙每分钟输入11名・ 26. (1)移项,方程两边分不通分,方程两边同除以-2x+10,分式 值相等,分子相等,那么分母相等:(2)有错误.从第③步显现错误,缘故:-2x + 10可能为零;(3)当-2x+10 = 0时,一2工=一10,尤=5,经检验知x = 5也是原方程的解,故原方程的解为1-5 13. 19.选择题BACCD 填空题 4.3x10-解答题 (1) 4:⑵ 6-10 DABDA lOOx-6 14. ------------ -500x-25 x+\ 11-12 AD 15・ 2ab 16. 24 17. 24 18. 5 20.化简结果为a+b, (取值要求:同工问)・21. (1) x = 2:23.有错,当a<2 时,分母有可能为零:改正:因为XH2,因 n 2 — a此——H2, oH-4,因此结果为a<2且3 24. 9 元. 25・12个月. 26. 2 (2)。
(完整版)新人教版八年级下数学第十六章分式单元检测题及答案

八年级(下)数学单元检测题(第十六章 分式)一、选择题(每小题3分,共30分)1.下列式子是分式的是( B )A .2xB .x 2C .πx D .2y x + 2.下列各式计算正确的是(C )A .11--=b a b aB .ab b a b 2=C .()0,≠=a ma na m nD .am a n m n ++= 3.下列各分式中,最简分式是( A )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222yxy x y x +-- 4.化简2293m m m --的结果是( B ) A.3+m m B.3+-m m C 。
3-m m D 。
m m -3 5.若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( C ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍6.若分式方程xa x a x +-=+-321有增根,则a 的值是( D ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则cb a +的值是( D ) A .54 B. 47 C.1 D 。
45 8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( A )A .x x -=+306030100B .306030100-=+x x C .x x +=-306030100 D .306030100+=-x x 9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。
设原计划行军的速度为xkm/h ,,则可列方程( D )A .1%206060++=x x B. 1%206060-+=x x C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16章 分式整章同步测试
度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
班级 _____________ 学号 姓名 ________ 得分____
一、填空题(每小题3分,共24分)
1.下列各式:()222
1451, , , 532x x y x x x
π---其中分式共有( )
A .1个
B .2个
C .3个
D .4个 2.下列计算正确的是( ) A .m m
m
x x
x 2=+ B .22=-n n x x C .3332x x x =⋅ D .264x x x -÷=
3.下列约分正确的是( ) A .
313m m m +=+ B .212y x y x -=-+ C .
1
23369+=
+a b
a b D .()()y x a b y b a x =-- 4.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )
A .y x 23
B .223y x
C .y x 232
D .2
3
23y
x 5.计算
x
x -+
+11
11的正确结果是( ) A .0 B .212x x - C .212x - D .1
2
2-x
6.在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千
米,则他在这段路上、下坡的平均速度是每小时( ) A .
2
2
1v v +千米 B .2121v v v v +千米 C .21212v v v v +千米 D .无法确定
7.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为( ) A .x
+48720
─548720= B .x +=+48720548720 C .
572048720=-x
D .-48720x +48720=5
8.若0≠-=y x xy ,则分式
=-x
y 1
1( ) A .
xy
1
B .x y -
C .1
D .-1 二、填空题(每小题3分,共30分)
9.分式12x ,212y ,1
5xy
-的最简公分母为 .
10.约分:(1)=b
a ab
2
205__________,(2)=+--96922x x x __________. 11.方程
x
x 5
27=-的解是 . 12.利用分式的基本性质填空: (1)
())0(,10 53≠=a axy xy a (2)()
1
422=-+a a 13.分式方程
11
11112
-=+--x x x 去分母时,两边都乘以 . 14.要使2
4
15--x x 与
的值相等,则x =__________. 15.计算:
=+-+3
9
32a a a __________. 16.若关于x 的分式方程3
232
-=--x m x x 无解,则m 的值为__________. 17.若分式
2
31
-+x x 的值为负数,则x 的取值范围是__________.
18.已知2242141
x y y x y y +-=-+-,则的2
4y y x ++值为______. 三、解答题:(共56分) 19.(4分)计算:
(1)111
23x x x
++ (2)3xy 2÷
x y 26
20.(4分)计算: ()3
32
2232n m
n m --⋅
21.(4分)计算
(1)16
8422+--x x x x (2)m n n
n m m m n n m -+
-+--2
22.(6分)先化简,后求值:
222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33
a b ==-
23.(6分)解下列分式方程.
(1)
x
x 3121=- (2)14
12112
-=-++x x x
24.(6分)计算: (1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4
214
121111x
x x x ++++++-
25.(6分)已知x 为整数,且
9
18232322-++-++x x x x 为整数,求所有符合条件的x 的值.
26.(6分)先阅读下面一段文字,然后解答问题:
一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,
如果给初三年级学生每人买1支,则只能按零售价付款,需用(
)
12
-m 元,(m 为正整
数,且12
-m >100)如果多买60支,则可按批发价付款,同样需用(
)
12
-m 元.设初
三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).
27.(6分)从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km
的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km /h ,由高
速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.
28.(8分)问题探索:
(1)已知一个正分数
m
n
(m >n >0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论. (2)若正分数
m
n
(m >n >0)中分子和分母同时增加2,3…k (整数k >0),情况如何?
(3)请你用上面的结论解释下面的问题:
建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.
参考答案
一、选择题
1.A 2.D 3.C 4.A 5.C 6.C 7.D 8.C 二、填空题
9.2
10xy 10.(1)
14a (2)33
x x +- 11.x =-5 12.26a 、2a - 13.(1)(1)x x +- 14.6 15.3a - 16
. 17.-1<x <2
3
18.2
三、解答题
19.(1)
116x ;(2)212x 20.17
12m n - 21.(1)4x x -;(2)m m n -- 22.2a a b -,411
23.(1)x =-1;(2)原方程无解. 24.(1)1;(2)8
8
1x - 25.1、2、4、5. 26.①
241≤x ≤300;②x m 12-,60
12+-x m 27.8小时 28.(1)增大;(2)增大;(3)采光条
件变好了,理由略
可以编辑的试卷(可以删除)。