分式全章综合复习测试题含答案

合集下载

人教版八年级上册数学《分式》单元综合检测附答案

人教版八年级上册数学《分式》单元综合检测附答案
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成,那么该工程施工费用是多少?
25.我市计划对某地块的1000m2区域进行绿化,由甲、乙两个工程队合作完成.已知甲队每天能完成绿化的面积是乙队的2倍;若两队分别各完成300m2的绿化时,甲队比乙队少用3天.
9.化简 的结果是
A.- B. C. D.
10.使分式 的值为整数,则整数x可取的个数为( )
A.2个B.3个C.4个D.5个
11.王老师坚持绿色出行,每天先步行到离家500米的公共自行车点取车,然后骑车4.5千米到校.某天王老师从手机获知,骑车平均每小时比步行多10千米,共用时24分钟.设步行的平均速度为每小时x千米,则可列方程 ( ).
A.a<b<c<dB.b<a<d<cC.a<d<c<bD.c<a<d<b
【答案】B
【解析】
a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣ , , ,
∵﹣ ,
∴b<a<d<c.
故选B.
点睛:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
故选A
【点睛】本题考核知识点:分式的定义.解题关键点:理解分式的定义.
2.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为( )
A.当x=2时, 的值为零
B.无论x为何值, 的值总为正数

分式练习题(附答案)

分式练习题(附答案)

分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x xxC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233x kx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a b a b a ba bA B a b a b a b a ba b a ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x xx x x C D x x x -=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+-10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x= 2027. 3.1111b a b a a b a b ++---的值是 2()a b ab+ . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34. 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n+)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12. 解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-,时,代数式的值都是12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有( ) A .1个 B .2个 C .3个 D .4个2.分式32+x x 无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a --的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—a b a - 4.计算(2-a a —2+a a )·a a 24-的结果是( ) A . 4 B . -4 C .2a D .-2a5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D .无解6.把分式(0)xy x y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变 7.若分式34922+--x x x 的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x+=+ C .720720548x -= D .72072054848x -=+ 二、填空题(每小题4分,共32分)9.当x= 时,分式22x x --值为零.10.计算.2323()a b a b --÷= .11.用科学记数法表示0.002 014= . 12.分式222439x x x x --与的最简公分母是____ ______. 13.若方程322x m x x-=--无解,则m =__________________. 14.已知a 1-b 1=21,则b a ab -的值为________________. 15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________.三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程 3x x -= 2 + 3a x -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3.(2)当m 为何值时,方程1y y --2m y y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.114.-2 15.R 1=RR RR -22 16.333.123002300=++x x x 三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23. 20.解:方程两边乘y (y-1),得y 2-m=(y-1)2.化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1.所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意.答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天. 根据题意,得415x x x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.人教版八年级上册第十五章分式单元检测(含答案)一、单选题1.在5x ,38a ,2π,1x a -中,属于分式的个数为( ) A .0个B .1个C .2个D .3个 2.下列分式为最简分式的是( )A .11a a --B .235xy y xy -C .22m n n m +-D .22a b a b++ 3.下列各式中,变形不正确的是( )A .2233x x=-- B .66a a b b -=- C .3344x x y y -=- D .5533n n m m --=- 4.计算322b b 1·a a b⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭的值为 ( ) A .222b a B .6ab 2 C .8a D .15.计算:22m-1m -1m m÷的结果是 ( ) A .m m 1+ B .1m C .m-1 D .1m-16.若111u v f+=,则用u 、v 表示f 的式子应该是( ) A .u v uv + B .uv u v + C .v u D .u v7.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13 B .13- C .12 D .12- 8.纳米材料多被应用于建筑、家电等行业,实际上,纳米(nm)是一种长度的度量单位:1纳米=0.000000001米,用科学记数法表示0.12纳米应为( )A.0.12×10-9米B.0.12×10-8米C.1.2×10-10米D.1.2×10-8米 9.计算20140的结果是( )A .1B .0C .2014D .﹣1 10.当m 为何值时,方程会产生增根( ) A.2 B.-1 C.3 D.-311.下列各式中,是分式方程的是( )A.x+y=5B.C.D.12.已知一汽船在顺流中航行46千米和逆流中航行34千米,共用去的时间,正好等于它在静水中航行80千米用去的时间,且水流速度是2千米/时,求汽船在静水中的速度,若设汽船在静水中速度为x 千米/时,则所列方程正确的是( ) A.+= B.+= C.=- D.=+二、填空题13.当x =_________时,分式242x x -+的值为0. 14.当x =__________时,分式3x x-无意义. 15.若a+b=1,且a ∶b=2∶5,则2a-b=____________.16.计算:(12)﹣2+(﹣2)3﹣20110=__________.三、解答题17.解方程:(1)233011x x x +-=--;(2)1433162x x -=--. 18.计算:①()223·14a aa a a ----; ②211a a a ---; ③225611x x x x x+⎛⎫-÷ ⎪--⎝⎭ 19.22322222244(82)25356a b ab b b a b b ab a b ab a ++-÷⋅---+,其中12a =-,14b =. 20.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本. (1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n 折售完剩余的书,结果第二次共盈利100m 元(n 、m 为正整数),求相应的n 、m 的值.答案1.C 2.D 3.D 4.C 5.A 6.B 7.C 8.C 9.A10.C 11.D 12.B 13.2 14.315.-1 716.﹣517.(1)x=0;(2)23 x=.18.①11aa-+;②11a-;③-5x19.242a ba b+-+,020.(1)第一次购书的进价为5元/本,且第二次买了2500本;(2)当n=4时,m=4;当n=6时,m=11;当n=8时,m=18人教版八年级上数学第十五章分式单元测试(解析)一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=32.下列等式成立的是( )A.+=B.=C.=D.=-3.下列运算结果为x-1的是( )A.1-B.·C.÷D.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.96.计算÷-的结果为( )A. B. C. D.a7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.10.当x= 时,分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .12.计算:÷= .13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-114.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件.15.计算(x+1)的结果是.16.若a2+5ab-b2=0,则-的值为.三、解答题(共52分)17.(4分)化简:-.18.(5分)计算:÷.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)20.(6分)先化简,再求值:÷·,其中a=-,b=.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么?23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?第十五章分式答案解析满分:100分;限时:60分钟一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=3答案 C 由分式有意义的条件得x-3≠0,解得x≠3.故选C.2.下列等式成立的是( )A.+=B.=C.=D.=-答案 C +=,所以A错误;=不成立,所以B错误;==,所以C正确;=-,所以D错误,故选C.3.下列运算结果为x-1的是( )A.1-B.·C.÷D.答案 B 选项A的运算结果为,选项B的运算结果为x-1,选项C的运算结果是,选项D的运算结果为x+1.故选B.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n答案 A +=-==m+n,故选A.5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.9答案 C ·=·=.当x=6,y=3时,原式==6.6.计算÷-的结果为( )A. B. C. D.a答案 C ÷-=÷-=×-=-=,故选C.7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关答案 B 设从A地到B地的距离为2s,∵甲的速度v保持不变,∴甲所用时间为,∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为+=+,∵s>0,v>0,∴+>,故甲先到达B地.8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3答案D解分式方程,得x=-3-m,∵方程的解为正数,∴-3-m>0,解得m<-3,∵x+1≠0,∴x≠-1,∴-3-m≠-1,解得m≠-2,∴m<-3,故选D.二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.答案 6.9×10-7解析0.000 000 69=6.9×10-7.10.当x= 时,分式的值为0.答案 2解析分式的值为0,则即所以当x=2时,原分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .答案+=11解析根据题意,可列方程为+=11.12.计算:÷= .答案解析原式=a4b2c-2÷=a4b2c-2÷=b6c-2=.13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-1答案解析由题意,得=4,解得x=,经检验,x=是方程=4的解.14.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件. 答案9解析设甲每小时做x个零件,则乙每小时做(x-3)个零件,根据题意可得=,解得x=9.经检验,x=9是方程的解,且符合题意.因此甲每小时做9个零件.15.计算(x+1)的结果是.答案x解析(x+1)=(x+1)=(x+1)=x.16.若a2+5ab-b2=0,则-的值为.答案 5解析由a2+5ab-b2=0,得b2-a2=5ab,∴-===5.三、解答题(共52分)17.(4分)化简:-.解析原式=-=-==1.18.(5分)计算:÷.解析原式=·=·=·=.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)解析设A4薄型纸每页的质量为x克,则厚型纸每页的质量为(x+0.8)克.根据题意,得×=.解得,x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.20.(6分)先化简,再求值:÷·,其中a=-,b=.解析÷·=··=··=.当a=-,b=时,原式==-6.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.解析(1)去分母,得x-3+x-2=-3,移项,得x+x=-3+3+2,合并同类项,得2x=2,系数化为1,得x=1,经检验,x=1为原分式方程的根,∴分式方程的解为x=1.(2)两边同时乘(x+1)(x-1),得3(x-1)=x(x+1)-(x+1)(x-1),解得x=2. 检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴原方程的解为x=2.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么? 解析原式=·=·=.(1)当x=3时,原式=2.(2)不能.理由:如果=-1,那么x+1=-x+1,则x=0,当x=0时,原代数式中的除式=0,矛盾, ∴原代数式的值不能等于-1.23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.解析 原式=÷- =×- =- =,∵a=(3-)0+-=1+3-1=3,∴原式===-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售? 解析 (1)设第一次购入的空调每台进价是x 元,依题意,得=2×,解得x=2 400,经检验,x=2 400是原方程的解.答:第一次购入的空调每台进价为2 400元.(2)第一次购进空调的数量为24 000÷2 400=10台,总收入为3 000×10=30 000元, 第二次购进空调的数量为52 000÷(2 400+200)=20台,不妨设打折售出y 台空调, 则总收入为(3 000+200)·(20-y)+(3 000+200)·0.95y=(64 000-160y)元.两次空调销售的总利润为[30 000+(64 000-160y)]-(24 000+52 000)=(18 000-160y)元, 依题意,得18 000-160y≥(24 000+52 000)×22%,解得y≤8.答:最多可将8台空调打折出售.人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( )A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x=20 10.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)241x -+21x x +-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.。

分式及方程综合测试卷(带答案)

分式及方程综合测试卷(带答案)

初分式及方程综合测试卷(带答案)(满分100分60分钟完成)学生姓名:____________ 分数:____________一.选择题(共8小题,每题3分,共24分)1.(2014•广州)下列运算正确的是()A.5ab﹣ab=4 B.C.a6÷a2=a4D.(a2b)3=a5b3+=2.(2014•贺州)使分式有意义,则x的取值范围是()A.x≠1B.x=1 C.x≤1D.x≥13.(2014•毕节地区)若分式的值为零,则x的值为()A.0B.1C.﹣1 D.±14.(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x5.(2014•河东区一模)当x=1时,(x﹣2﹣)÷=()A.4B.3C.2D.16.(2014•台州)将分式方程1﹣=去分母,得到正确的整式方程是()A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=37.(2014•安次区一模)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣8.(2014•龙东地区)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2C.m≥2且m≠3D.m>2且m≠3二.填空题(共4小题,每题3分,共12分)9.(2014•白银)化简:=_________.10.(2014•台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=_________(用含字母x和n的代数式表示).11.(2014•泰州)已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于_________.12.(2014•凉山州)关于x的方程=﹣1的解是正数,则a的取值范围是_________.三.解答题(共9小题,13-14每题4分,15-16每题5分,17-18每题8分,19-21每题10分,共64分)13.(2014•滨州)计算:•.14.(2014•泸州)计算(﹣)÷.15.(2014•仙桃)解方程:.16.(2014•宿迁)解方程:.17.(2014•大庆)已知非零实数a满足a2+1=3a,求的值.18.(2014•安顺)先化简,再求值:(x+1﹣)÷,其中x=2.19.(2014•云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?20.(2014•徐州)几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.21.甲、乙两名采购员同去一家饲料公司购买两次饲料.两次饲料的价格分别为m元/千克和n元/千克(m、n 都为正数,且m≠n),两名采购员的购货方式不同,其中甲每次购买800千克;乙每次用去800元,而不管购买多少饲料.(1)用含m、n的代数式表示甲、乙两名采购员两次购买饲料的平均单价各是多少?(2)若规定:谁两次购买饲料的平均单价低,谁的购货方式合算,请你判断甲、乙两名采购员购货方式哪个更合算?说明理由.分式方程的章末综合测试卷参考答案与试题解析一.选择题(共8小题)1.(2014•广州)下列运算正确的是()C.a6÷a2=a4D.(a2b)3=a5b3 A.5ab﹣ab=4 B.+=解答:解:A、原式=4ab,故A选项错误;B、原式=,故B选项错误;C、原式=a4,故C选项正确;D、原式=a6b3,故D选项错误.故选:C.2.(2014•贺州)使分式有意义,则x的取值范围是()A.x≠1B.x=1 C.x≤1D.x≥1解答:解:根据题意得:x﹣1≠0,解得:x≠1.故选:A.3.(2014•毕节地区)若分式的值为零,则x的值为()A.0B.1C.﹣1 D.±1解答:解:由x2﹣1=0,得x=±1.①当x=1时,x﹣1=0,∴x=1不合题意;②当x=﹣1时,x﹣1=﹣2≠0,∴x=﹣1时分式的值为0.故选:C.4.(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x解答:解:=﹣===x,故选:D.5.(2014•河东区一模)当x=1时,(x﹣2﹣)÷=()A.4B.3C.2D.1解答:解:(x﹣2﹣)÷=,当x=1时,原式==2.6.(2014•台州)将分式方程1﹣=去分母,得到正确的整式方程是()A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=3解答:解:分式方程去分母得:x﹣1﹣2x=3,故选:B.7.(2014•安次区一模)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣解答:解:根据题意得:2⊗(2x﹣1)=﹣=1,去分母得:2﹣(2x﹣1)=4x﹣2,去括号得:2﹣2x+1=4x﹣2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选A.8.(2014•龙东地区)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2C.m≥2且m≠3D.m>2且m≠3解答:解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m=2且m≠3.故选:C二.填空题(共4小题)9.(2014•白银)化简:=x+2.解答:解:+=﹣==x+2.故答案为:x+2.10.(2014•台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=(用含字母x和n的代数式表示).解答:解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果y n=.故答案为:.11.(2014•泰州)已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.解答:解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.12.(2014•凉山州)关于x的方程=﹣1的解是正数,则a的取值范围是a>﹣1且a≠﹣.解答:解:=﹣1,解得x=,∵=﹣1的解是正数,∴x>0且x≠2,即0且≠2,解得a>﹣1且a≠﹣.故答案为:a>﹣1且a≠﹣.三.解答题(共9小题)13.(2014•滨州)计算:•.解答:解:•=•=x14.(2014•泸州)计算(﹣)÷.解答:解:原式=(﹣)•=(﹣)•(﹣),=﹣•,=﹣.15.(2014•仙桃)解方程:.解答:解:方程两边都乘3(x+1),得:3x﹣2x=3(x+1),解得:x=﹣,经检验x=﹣是方程的解,∴原方程的解为x=﹣.16.(2014•宿迁)解方程:.解答:解:方程两边同乘以x﹣2得:1=x﹣1﹣3(x﹣2)整理得出:2x=4,解得:x=2,检验:当x=2时,x﹣2=0,故x=2不是原方程的根,故此方程无解.17.(2014•大庆)已知非零实数a满足a2+1=3a,求的值.解答:解:∵a2+1=3a,即a+=3,∴两边平方得:(a+)2=a2++2=9,则a2+=7.18.(2014•安顺)先化简,再求值:(x+1﹣)÷,其中x=2.解答:解:原式=[﹣]•=•=•=﹣,当x=2时,原式=﹣=3.19.(2014•云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.20.(2014•徐州)几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.解答:解:设票价为x元,由题意得,=+2,解得:x=60,则小伙伴的人数为:=8.答:小伙伴们的人数为8人.21.甲、乙两名采购员同去一家饲料公司购买两次饲料.两次饲料的价格分别为m元/千克和n元/千克(m、n都为正数,且m≠n),两名采购员的购货方式不同,其中甲每次购买800千克;乙每次用去800元,而不管购买多少饲料.(1)用含m、n的代数式表示甲、乙两名采购员两次购买饲料的平均单价各是多少?(2)若规定:谁两次购买饲料的平均单价低,谁的购货方式合算,请你判断甲、乙两名采购员购货方式哪个更合算?说明理由.解答:解:(1)根据题意列得:甲采购员两次购买饲料的平均单价为=元/千克;乙采购员两次购买饲料的平均单价为=元/千克;(2)﹣==,∵(m﹣n)2≥0,2(m+n)>0,∴﹣≥0,即≥,则乙的购货方式合算.。

人教版 八年级数学上册 第15章 分式 综合复习(含答案)

人教版 八年级数学上册 第15章 分式 综合复习(含答案)

人教版 八年级数学上册 第15章 分式 综合复习一、选择题(本大题共10道小题)1. 计算x +1x -1x 的结果为( )A. 1B. xC. 1xD. x +2x2. 已知分式 (x -1)(x +2)x2-1的值为0,那么x 的值是( )A. -1B. -2C. 1D. 1 或-23.甲志愿者计划用若干个工作日完成社区的某项工作.从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( ) A. 8 B. 7 C. 6 D. 54. 要使分式有意义,则x 的取值范围应满足 ( )A .x ≠-1B .x ≠2C .x=-1D .x=25. 化简a2-b2ab -ab -b2ab -a2等于( ) A. b a B. a b C. -b a D. -a b6. 下列分式中,最简分式是 ( )A .B .C .D .7. A ,B 两地相距m 米,通信员原计划用t 小时从A 地到达B 地,现因有事需提前n 小时到达,则每小时应多走( )A .米B .米C .米D .米8. 把通分后,各分式的分子之和为( ) A .2a 2+7a+11B .a 2+8a+10C .2a 2+4a+4D .4a 2+11a+139. 若关于x 的方程x +m x -3+3m3-x =3的解为正数,则m 的取值范围是( )A. m <92B. m <92且m ≠32C. m >-94D. m >-94且m ≠-3410. 若m+n-p=0,则m -+n --p +的值是 .二、填空题(本大题共5道小题)11. 方程 12x =2x -3的解是________.12. 化简:(a2a -3+93-a )÷a +3a =________.13. 化简:x +3x2-4x +4÷x2+3x(x -2)2=________.14. 化简:-= .15. 若m -3m -1·|m |=m -3m -1,则m =________.三、解答题(本大题共6道小题) 16. x -3x -2+1=32-x .17.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校.乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的12,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?18. 分式的定义告诉我们:“一般地,用A,B表示两个整式,A÷B可以表示成的形式,如果B中含有字母,那么称为分式.”我们还知道“两数相除,同号得正”.请运用这些知识解决问题:(1)如果分式的值是整数,求整数x的值;(2)如果分式的值为正数,求x的取值范围.19. 先化简,再求值:(xx2+x -1)÷x2-1x2+2x+1,其中x的值从不等式组⎩⎨⎧-x≤12x-1<4的整数解中选取.20. 我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质.小学时,把分子比分母小的分数叫做真分数.类似地,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如==+=1+.(1)下列分式中,属于真分式的是()A .B .C .-D .(2)将假分式化成整式与真分式的和的形式.21. 化简:(x -5+16x +3)÷x -1x2-9.人教版 八年级数学上册 第15章 分式 综合复习-答案一、选择题(本大题共10道小题)1. 【答案】A 【解析】x +1x -1x =x +1-1x =xx =1.2.【答案】B 【解析】分式(x -1)(x +2)x2-1的值为0,须满足:⎩⎪⎨⎪⎧(x -1)(x +2)=0x2-1≠0,解得x =-2 .3. 【答案】A【解析】设甲志愿者计划完成此项工作的天数为x 天,依题意得1x×2+(1x +1x )(x -2-3)=1, 解得x =8.4. 【答案】B[解析] 分式的分母不为0时,分式有意义.若分式有意义,则x-2≠0,即x ≠2.5.【答案】B 【解析】原式=(a +b )(a -b )ab -b (a -b )a (b -a )=(a +b )(a -b )ab +b a =(a +b )(a -b )+b2ab =a2-b2+b2ab =a2ab=ab ,故答案为B.6. 【答案】B[解析] ==,=,只有选项B 是最简分式.7. 【答案】D[解析] 由题意得-===.8. 【答案】A[解析] ==,=,=,所以把通分后,各分式的分子之和为-(a+1)2+6(a+2)+3a (a+1)= 2a 2+7a+11.9.【答案】B 【解析】由x +m x -3+3m 3-x =3,得x +m x -3-3mx -3=3,解得x =9-2m 2,解方程组⎩⎪⎨⎪⎧9-2m 2>09-2m 2≠3,得m <92且m ≠32,故选B.10. 【答案】-3[解析] 原式=-+---=+-.∵m+n-p=0,∴m-p=-n ,n-p=-m ,m+n=p. ∴原式=-1-1-1=-3.二、填空题(本大题共5道小题)11.【答案】x =-1 【解析】化简12x =2x -3得x -3=4x ,则-3x =3,所以x =-1,经检验x =-1是原方程的根.12. 【答案】a 【解析】原式=(a2a -3-9a -3)÷a +3a =a2-9a -3÷a +3a =(a +3)·aa +3=a.13. 【答案】1x 【解析】原式=x +3(x -2)2·(x -2)2x (x +3)=1x .14. 【答案】[解析] -=-===.15. 【答案】m =-1或m =3 【解析】m -3m -1·|m|=m -3m -1,去分母得(m -3)·|m|=m -3,即(m -3)(|m|-1)=0,所以m =3或m =±1,经检验m =1是方程的增根,所以m =3或m =-1.三、解答题(本大题共6道小题)16. 【答案】解:去分母得x -3+x -2=-3,(2分) 解得x =1,(4分)检验:x =1时,x -2=-1≠0,2-x =2-1=1≠0,(6分) ∴原方程的解为x =1.(8分)17. 【答案】解:(1)设乙骑自行车的速度为2x 米/分,则甲步行的速度为x 米/分,公交车的速度为4x 米/分.(1分)由题意列方程为:600x +3000-6004x+2=30002x ,(4分)解得: x =150,(5分)经检验得:当x =150时,等式成立, ∴2x =2×150=300 ,(6分)答:乙骑自行车的速度为300米/分.(2)甲到达学校的时间为600x +3000-6004x =600150+3000-6004×150=8(分),(7分)∴乙8分钟内骑车的路程为:300×8=2400(米),(8分) ∴乙离学校还有3000-2400=600(米).(9分)答:当甲到达学校时,乙同学离学校还有600米.18. 【答案】解:(1)∵分式的值是整数,∴x+1=±1,解得x=0或x=-2.(2)∵分式的值为正数, ∴或解得x>0或x<-1.∴x 的取值范围是x>0或x<-1.19. 【答案】解:原式=x -x2-x x2+x ÷(x +1)(x -1)(x +1)2(2分)=-x2x (x +1)·(x +1)2(x +1)(x -1)=-xx -1.(4分)解不等式组⎩⎪⎨⎪⎧-x≤12x -1<4,得-1≤x <52,∴不等式组的整数解为-1,0,1,2,(5分)∵要使分式有意义,则x 只能取2,∴原式=-22-1=-2.(6分)20. 【答案】解:(1)C(2)==+=m-1+.21. 【答案】解:原式=(x -5)(x +3)+16x +3÷x -1x2-9(1分) =x2-2x +1x +3·x2-9x -1(2分)=(x -1)2x +3·(x +3)(x -3)x -1(3分)=(x -1)(x -3)(4分) =x 2-4x +3.(5分)。

第十六章《分式》整章参考答案

第十六章《分式》整章参考答案

第十六章《分式》整章参考答案第十六童分式16.1.1从分数到分式16.2.2分式的加减〔―〕1. ±- m + n Ww)、曲、。

44 4. _3 为任意实数 6. C 7. C 8. C 9. D 10. (1) -<x<2; (2) 4⑶ x=2: 16.1.2 分式的差不多性质h-a 1. ------- 2a-ba-2b 2a-b 2. 4x+20 5x-10 3. 12(G -1)2(°-2)2 4. A 5. D 6. (1)— n (2) 兀+ 2 2 ;⑶-8(x —y)4:⑷ -----------4厂 x + 77. (1) 5ac 2b 2「…:⑵芈,卑:⑶ \0crb c 10“T c 6x^y 6A "y 时'梟:⑷y+1 T12c 16.2.1 分式的乘除〔一〕 1 jy 2.一丛 2 3・ 4. 9.v 5. C 6. C A 9.1 10・⑴•严+严+・・・ + x+l (2) 2咖—1 16.2.1 分式的乘除〔二〕 1. A 2・ B 1 3-D 4•乔 5. 4 —6. 4x4-6 7. 4-2/7? 8・不正确, 原式=%•—- x — 2 x — 2 1 X (X —2)2 9. 10.(吟 X+1 2加 2 X 5$ 1.⑴ ——:(2) v-y2.⑴ —:(2) a+b3.——4. 正5. a X x-l7. A 8. C 9. (1) X :(2) 1 10. 1211. 3 12.- x + 2 1+G 36, 3尸一/1•⑴ 0, (2) m+n 2. 9. 1 AM (2)-=——+------------- n 77 + 1 n{n +1) 16.2.2分式的加减〔二〕 ] 2x + 6 3. 10.二―,-1 a + b a+b 4・ 2 5・ D 6. A 7. ——!— x + 2 11.— 11 12・(1) □ , O 分不表示6和30, 16.2.3整数指数幕2•⑴一右’⑵W 3- 16.2.3整数指数幕 〔一〕 D 4- 5. 12" 6. %10 匚〕 1. (1) 9xl0"5, (2) 5.6X10-4 2. 0. 0002 3. 0. 0000000302 4. D 5. (1) 1.2x10二 ⑵ 9 6・ 2.667xlO 23〔个),1.675x10® (千克) 16.3分式方程〔一〕3. — 14. 5 5・ 1 6. A 7. C 8. D 9. A 10.⑴ x = 2\ (2)无解 11 •⑴ ⑴:⑵无解12. 31 B. m< — 2 16.3分式方程〔二〕 £ 1- (l4)xl 4 120 4. C 5・ B 6. B (1) 60 天,(2) 24 天 8.科普书7. 5元/本.文学书5元/本;(2)科普书2本.文学书3本 9•此 商品进价是500元, 第二个月共销售128件. 10. (1) 12 间,(2) 8000 元.8500 元 16.3分式方程[三〕 15 15 11.—— ----- =—x 1.2% 2 2. C 3. 5千米/时 4・甲速度24千米/时,乙速度60千米/时 5. 2元/米' 6. (1)优待率为32・5%: (2)标价750元 7.乙先到达第16童《分式》童节复习22. (1)丄•丄=丄一丄;⑵ n 〃 +1 n n +11 n n + \ n(n +1) n(n +1) n(n + l)元/吨・第十六章《分式》童节测试一、 选择题1-5 DDCBC 6-10 CDCBA 11-12 DD二、 填空题 13・ U 2 3.5, 2 14.—— 15. (v + 1)316. xv? I? (斗-3 18. 1 “一一 R a-h a 2 -ZZL 、 解答题4 a 4 \ + m y 19. (1)心±3: (2) x<2. 20. (1) 7 n : (2) : (3) ——:(4) 一 J 21.原9x 2y 2 4b 1-/7? x+ y 式=兀+1,取值时注意xH±l,—2・ 22.不可能,原式等于丄时,x = -\,现在分式无意4义. 23. (1) x = —3;⑵ 无解. 24. (1) 60天;⑵24天. 25.甲每分钟输入22 名,乙每分钟输入11名・ 26. (1)移项,方程两边分不通分,方程两边同除以-2x+10,分式 值相等,分子相等,那么分母相等:(2)有错误.从第③步显现错误,缘故:-2x + 10可能为零;(3)当-2x+10 = 0时,一2工=一10,尤=5,经检验知x = 5也是原方程的解,故原方程的解为1-5 13. 19.选择题BACCD 填空题 4.3x10-解答题 (1) 4:⑵ 6-10 DABDA lOOx-6 14. ------------ -500x-25 x+\ 11-12 AD 15・ 2ab 16. 24 17. 24 18. 5 20.化简结果为a+b, (取值要求:同工问)・21. (1) x = 2:23.有错,当a<2 时,分母有可能为零:改正:因为XH2,因 n 2 — a此——H2, oH-4,因此结果为a<2且3 24. 9 元. 25・12个月. 26. 2 (2)。

(完整版)分式章节测试(附答案)

(完整版)分式章节测试(附答案)

分式章节测试
一、选择题(每题3分, 共30分)
1.若分式/的值为零, 则/的值为()
A. /
B. /
C. /
D. /
2.要使分式/有意义, 则x的取/值范围是()
A. x≠1
B.x>1
C. x<1
D.x≠-1
3.已知//, 则//的值为()
A. //
B. //
C. //
D. //
4、若分式/的值为0, 则/等于()
A.-1
B.1
C.-1或1
D.1或2
5.分式/可变形为()
A. /
B. /
C. /
D. /
二、填空题(每空5分, 共30分)
6.下列各式: /其中分式共有_______ 个。

7、若分式/的值为0, 则x的值为 .
8、当分式/的值为零时, x的值为 .
9、若分式/的值为负数, 则x的取值范围是__________。

10、如果分式/的值为零, 则a的值为____________
三、计算题(17题、18题各8分, 19题、20题各10分, 21题、22题各12分, 共计60分)
11.约分: /.
12.先化简, 再求值: /, 其中/.
13.先化简, 再求值;
14.请你先将分式/化简, 再求出当a=9999时, 该代数式的值.。

分式测试题及答案

分式测试题及答案

分式测试题及答案第三章分式综合测试题一、选择题(每题3分,共30分)1.代数式4-x是( C )。

A。

单项式 B。

多项式 C。

分式 D。

不能确定2.有理式x/3(x+y)。

π-3/(a-x)。

4/2(a+b)。

a+b中分式有( B )个。

A。

1 B。

2 C。

3 D。

43.若分式(x+x-2)/x的值为0,则x的值是( A )。

A。

1或-1 B。

1 C。

-1 D。

-24.下列分式12a/(b-a)。

(y-x)^2/xy。

2(a+b)。

b-a中最简分式的个数是( C )。

A。

1 B。

2 C。

3 D。

45.如果x=a-b,y=a+b,计算-2b/(a-b)的值为(B)。

A。

(a-b)/2b B。

-2/a-b C。

-2a+b/4b^2 D。

|a-b|6.将(a-b)约分,正确的结果是( A )。

A。

1 B。

2 C。

±1 D。

无法确定7.下列运算正确的个数是( B )。

1.m÷n·n=m÷1=m2.x·y÷x·y=xy÷xy=13.(2x+y)/(x+y) ÷ (4x+2y)/(2a) = (2x+y)/(x+y) * (2a)/(4x+2y)4.|2-3x|/2 = (2-3x)/2 或 -(2-3x)/2A。

2 B。

1 C。

3 D。

48.如果x<3,那么3x-2的值是( A )。

A。

-1 B。

0 C。

1 D。

29.若a-b=2ab,则ab的值为( B )。

A。

2 B。

-2 C。

-1/2 D。

1/210.若a+a=4,则(a-a)的值是( C )。

A。

16 B。

9 C。

15 D。

12二、填空题(每题3分,共30分)1.已知代数式:3,x,3+x,x^2+1,1/(x+y),y/(z+x),x+1.2x,x+2x+3.整式有:3,x,3+x,x^2+1,x+1.2x,x+2x+3.分式有:1/(x+y),y/(z+x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档