膜分离技术

合集下载

膜分离技术

膜分离技术

膜分离技术简介膜分离技术是一种通过膜进行物质分离和纯化的技术。

它广泛应用于制备纯化工业和生物制药中,其原理是利用特定的膜,通过选择性透过、排除或吸附的方式将混合物中的目标物质与其他组分分离开来。

膜分离技术具有高效、节能、环保等优点,因此在各个领域得到了广泛应用,并成为一个重要的物质分离技术。

原理膜分离技术的基本原理是利用膜的选择性透过性来实现分离。

根据分离机制的不同,膜分离技术可以分为几种不同的类型,包括微滤、超滤、纳滤、反渗透和气体分离等。

每种类型的膜分离技术都有其特定的分离机制和应用范围。

•微滤:微滤膜具有较大的孔径,一般用于分离固体颗粒和大分子物质,如悬浮固体和细菌等。

•超滤:超滤膜的孔径较小,可以分离分子量较大的物质,如蛋白质和胶体等。

•纳滤:纳滤膜的孔径更小,可以分离分子量更小的物质,如盐和有机物等。

•反渗透:反渗透膜是一种半透膜,其孔径非常小,可以有效地分离溶质和溶剂。

这种技术常被用于海水淡化和废水处理等领域。

•气体分离:气体分离膜是一种特殊的膜,可以分离不同气体的混合物。

这种技术在天然气加工和二氧化碳捕获等领域有广泛应用。

应用膜分离技术在许多领域都有广泛的应用。

以下是其中几个应用领域的简要介绍:生物制药在生物制药中,膜分离技术被广泛用于分离和纯化蛋白质、细胞因子和其他生物分子。

通过使用超滤和纳滤等技术,可以将目标蛋白质从细胞培养液中分离出来,并去除其他杂质。

这种技术不仅能够提高产品纯度,还可以减少后续步骤的处理量,提高生产效率。

医药膜分离技术在医药领域有着广泛的应用。

例如,在血液透析和血液净化中,通过使用半透膜将废物和多余的物质从血液中分离出来,达到治疗和净化的目的。

此外,膜分离技术还可以用于药物传递系统中,通过控制药物在膜上的透过性实现持续释放和控制释放。

环境工程膜分离技术在环境工程中的应用也非常广泛。

例如,在水处理中,可以使用反渗透膜将盐和有机物等溶质从海水或废水中分离出来,实现水的淡化和净化。

膜分离技术

膜分离技术

膜分离技术膜分离技术是一种重要的分离技术,通过膜将混合物中不同分子大小、形状、电荷和极性等特性的物质分离出来。

它广泛应用于各种领域,如环境保护、医药制造、食品加工、化学工业和电子行业等。

本文将介绍膜分离技术的工作原理、分类和应用,并探讨其未来的发展前景。

一、膜分离技术的基本原理膜分离技术利用膜作为分离介质,将混合物分离成两个或更多的组分,其中其中至少有一种组分通过膜而另一种组分不直接通过。

根据膜分离的机制可以分为以下三种类型:1、压力驱动膜分离技术压力驱动膜分离技术是指通过施加压力将混合物推动到膜上,以实现分离的技术。

膜的孔径大小、膜的材质和压力差均会影响分离效果。

该技术主要包括超滤、逆渗透和微滤等。

超滤是指利用孔径大小在10-100纳米的超滤膜去除溶液中的高分子物质。

逆渗透是利用高压驱动水通过0.1纳米左右的逆渗透膜,将混合物中的水增量分离出来,这是制取纯水的主要技术之一。

微滤是利用孔径在0.1-10微米的微滤膜去除悬浮物、细菌和微生物等。

2、电力驱动膜分离技术电力驱动膜分离技术是利用电场将混合物推动到膜上,实现分离的技术。

例如电渗析技术是利用电场和离子之间的电荷作用,将含有离子的溶液通过电场驱动到离子交换膜中,使得原来溶液中的阴离子和阳离子在两侧集中,最终通过两个极板分别收集。

3、扩散驱动膜分离技术扩散驱动膜分离技术是指利用分子间的扩散速率的大小差异,将混合物中的混合物分离的技术。

例如气体分离、液体浓缩和溶液析出等。

二、膜分离技术的分类根据膜的性质和分离机制的不同,可以将膜分离技术分为以下几种类型:1、纳滤技术纳滤技术是利用孔径在10-100纳米的纳滤膜,将分子大小在10-100纳米之间的物质分离出来。

纳滤技术主要应用于制备高分子材料、微电子器件制造和水处理等领域中。

2、超滤技术超滤技术是利用孔径在0.01-0.1微米之间的超滤膜,将分子大小在1000道100万道之间的物质分离出来。

超滤技术主要应用于蛋白质提取、水处理、生物制品制备和废水处理等领域中。

膜分离技术

膜分离技术
生物膜具有 高效的分离 效果,因此 仿生是生物 膜的发展方 向……
膜的新 过程
膜分离技术 与传统分离
集成膜 过程
在解决某一 分离目标时, 综合利用几 个膜过程, 使之各尽所 长……
技术相结合,
发展出一些 崭新对传统化学分离方法的一次革命,在国际上公认
为 21 世纪最有发展前途的一项重大技术革命。目前膜分离技 术已经在医药、环保、海水淡化等众多工业领域得到广泛应用。 膜污染问题是目前的研究热点和难点, 因此选择合适的膜清洗
里膜分离技术不断完
善发展,应用于各大 领域……
2
膜分离技术在废水处 理工业中的应用

3
膜分离技术在生物农 药生产中的应用
应用
1、在中药制剂中的应用 2、在抗生素生产中的应用 3。 、在生物医药制品中的应用 4、在维生素制备中的应用 5、在医药用水制备中的应用 1、在造纸废水中的应用 2、在印染废水中的应用 3、在有害金属废水处理中的应用 。 4、在蓄电池厂废水治理中的应用
膜材料性能比较
PVDF材料与PES等材料相比,其耐受氧化剂清洗的能力更强。 因而便于清洗,污堵后经过清洗可以能够更好的恢复性能并长期 保持通量稳定。 对于常见的酸碱化学试剂的耐受能力依次为 PVDF>PES>PVC>PE>PP>PS。 对于常见的氧化剂的耐受能力依次为 PVDF>PES>PVC>PE>PP~PS。 对于常见的有机溶剂的耐受能力依次为PVDF>PES>>PVC~ PE~PP>PS。
程,主要用于滤除 0.05 ~ 10 μ m 的悬浊物
质颗粒。主要应用于截留颗粒物、液体澄清 以及除菌。 超滤是在压力差作用下进行的筛孔分离过程。 纳滤是从水溶液中分离除去中小分子物质的 过程( 分子量为 300 ~ 500) 。其原理是在超 滤和反渗透间提供了一种选择性媒介, 在浓 缩有机溶质的同时,也可脱盐。

膜分离技术

膜分离技术

膜分离技术应考虑的问题
(一)浓差极化: 浓差极化是指在超滤过程中,由于水透过膜而使 膜表面的溶质浓度增高.在浓度梯度作用下,溶 质与水以相反方向向本体溶液扩散,在达到平衡 状态时,膜表面形成一溶质浓度分布边界层。 它对水的透过起着阻碍作用.所以浓差极化会降 低膜的透水滤。为了减少浓差极化,通常采用错 流操作。这种操作是使悬浮液在过滤介质表面作 切向流动,利用流体的剪切作用将过滤介质表面 的固体移走。当移走固体的数率固体的沉降数率 相等时,过滤速度就近似恒定。
(二)污染
由于溶质与膜的相互作用而在膜表面和孔 内吸附,或因浓差极化,在膜表面溶质浓 匿逼过和浓度而在膜表面产生沉淀或结晶, 形成“凝胶层”引起膜性能变化的现象。 这是一个不可逆约过程。通常它受到膜的 化学特征、蛋白质种类、溶液的PH值、无 机盐浓度、温度等因素的影响。膜的污染 被认为是超滤过程中的主要障碍。
5.2.2 透析 自Thomas Graham 1861年发明透析方法至 今已有一百多年。透析已成为生物化学实验 室最简便最常用的分离纯化技术之一。在生 物大分子的制备过程中,除盐、除少量有机 溶剂、除去生物小分子杂质和浓缩样品等都 要用到透析的技术。 透析只需要使用专用的半透膜即可完成。保 留在透析袋内未透析出的样品溶液称为“保 留液”,袋(膜)外的溶液称为“渗出液” 或“透析液”。截留分子量MwCO通常为1 万左右。 用1% BaCl2检查(NH4)2SO4,用1% AgNO3 检查NaCl、KCl等。
(三)膜的清洗
在任何膜分离技术应用中,都会碰到膜污染 问题,即膜透水量随运行时间增长而下降。 清洗的方法通常可分为物理方法与化学方 法。物理方法一般指用高速流水冲洗。化 学清洗通常是用化学清洗剂(如稀碱、稀 酸、醇、表面活佐剂、络合剂和氧化剂等) 对膜迸行清洗。在某些应用中.温水清洗 即可基本恢复初始透水滤(如多糖)

膜分离技术

膜分离技术

• 为了改善膜的性能,主要是稳定性和机械强度 以及增大膜的极性,另一些膜材料也为丁业上 所常用,例如用于制造MF膜的聚偏二氟乙烯 (PVDF)、聚四氟乙烯(PTFE)、聚丙烯、聚氯乙 烯、聚碳酸酯;用于制造UF膜的聚丙烯腈、再 生纤维素、聚醚砜;用于制造RO膜的芳香聚酰 胺(使用pH范围为4-11,但氯含量应低于0.1mg /L)等。
• 早在19世纪中叶,己用人 工方法制得半透膜,但由 于透过速度低、选择性差 和易阻塞等原因,未能应 用在工业上。 • 1960年Loeb和Sourirajan 获得一种透过速度较大的 膜,具有不对称结构.
这种不对称结构是膜制造的一种 突破,因为活性层很薄,流体阻 力较小。且不易使孔道阻塞,颗 粒被截留在膜的表面。此后膜过 滤法逐渐走向工业化,20世纪 70年代以后发展比较迅速.应 用范围涉及到海水淡化、纯水制 造、食品和乳品工业、污水处理 和生物工程等领域。在此期间, 世界膜销售额迅速增长。
以分离应用领域过程分类 微滤(micro-filtration, MF) 超滤(untra-filtration, UF) 反渗透(reverse osmosis, RO) 透析(Dialysis, DS) 电透析(electro-dialysis, ED) 纳米膜分离(NF) 亲和过滤(affinity filtration, AF) 渗透气化(pervaporation, PV
7 膜组件
膜组件 由膜、固定膜的支撑体、间隔物以及容纳 这些部件的容器构成的一个单元称为膜组件。 膜组件的种类
管式膜组件 中空纤维式 平板膜组件 卷式膜组件
管式膜组件
特点:
结构简单、适应性强、 压力损失小、透过量大,清洗、 安装方便、可耐高压,适宜处 理高粘度及稠厚液体。但比表 面积小。适于微滤和超滤。

膜分离技术

膜分离技术

膜分离技术
膜分离技术是一种工业分离技术,它采用膜作为储存屏障,通过使用渗透压差净化原料中的有机或无机多相混合物,可以有效地模糊、拆分和重组溶解物。

它可以被广泛应用于食品加工、生物制药、水处理、化学和石油等多个领域。

膜分离技术是利用膜分离系统把有机或无机质流通过不同宽度的膜。

通过对溶解物浓度、压力差、分子大小等变量进行调节来调节该系统,让它们沿一个特定的方向通过膜,使其中一种或多种化合物转移到另一边。

1. 水处理:膜分离技术可以用于净化水,使其去除有机污染物、含盐水和重金属污染物,同时可以调节水的性质,以满足各种生产和生活的需求。

2. 生物制药:膜分离技术可以用于从生物材料中提取蛋白质、核酸和活性成分,纯化有效成分,获取高品质的生物制剂。

3. 家用膜分离:家用膜分离器可以用来过滤家里供水系统,去除杂质,比如水垢、硬水、有机污染物等,得到净化后的清洁饮用水。

4. 食品加工:膜分离技术可以用来分离、纯化油脂物质,提取及重组营养素和香料,净化乳制品中的杂质,同时保留有益成分。

三、特点
1. 精度高:膜分离技术的精度比其他类型的分离和提取技术更高,可以有效地清除杂质,比如细菌、细菌毒素等;
2. 无毒无害:膜是一种完全无毒无害的材料,无论是清洗过程还是使用过程都不会对人体产生任何不良影响;
3. 成本低廉:膜分离技术的成本比其他类型的分离和提取技术更低;
4. 操作方便:膜分离技术的操作简单,在不影响其性能的情况下,可调节宽度和厚度以适应不同的分离需求。

总之,膜分离技术具有精度高、无毒无害、成本低廉、操作方便等诸多优点,因此,它会被广泛应用于食品加工、生物制药、水处理、化学和石油等多个领域。

常用的膜分离方法

常用的膜分离方法

常用的膜分离方法
常用的膜分离方法包括以下六种:
1. 微滤(Microfiltration,简称MF):微滤是一种以机械筛网为基础的膜分离技术,其孔径大小为0.1-10微米。

微滤适用于去除悬浮物、细菌、真菌、酵母等微生物,同时也可以用于分离和浓缩溶液中的大分子物质。

2. 超滤(Ultrafiltration,简称UF):超滤是一种以半透膜为基础的膜分离技术,其孔径大小为0.001-0.01微米。

超滤适用于分离和浓缩溶液中的小分子物质,如水、氨基酸、葡萄糖等。

3. 纳滤(Nanofiltration,简称NF):纳滤是一种以半透膜为基础的膜分离技术,其孔径大小为0.001-0.01微米。

纳滤适用于分离和浓缩溶液中的小分子物质,如水、氨基酸、葡萄糖等。

4. 反渗透(Reverse Osmosis,简称RO):反渗透是一种以高压为推动力的膜分离技术,其孔径大小为0.0001-0.001微米。

反渗透适用于分离和浓缩溶液中的小分子物质,如水、氨基酸、葡萄糖等。

5. 正渗透(Forward Osmosis,简称FO):正渗透是一种以渗透压差为推动力的膜分离技术,其半透膜具有高渗透性能。

正渗透适用于分离和浓缩溶液中的小分子物质,如水、
氨基酸、葡萄糖等。

6. 膜渗析(Permeation):膜渗析是一种以半透膜为基础的膜分离技术,其孔径大小为0.0001-0.001微米。

膜渗析适用于分离和浓缩溶液中的小分子物质,如水、氨基酸、葡萄糖等。

膜分离技术

膜分离技术

膜分离技术膜分离技术是一种新型高效、精密分离技术,它是材料科学与介质分离技术的交叉结合,具有高效分离、设备简单、节能、常温操作、无污染等优点,广泛应用于工业领域,尤其在食品、医药、生化领域发展迅猛。

据统计,膜销售每年以10%~20%的速度增长,而最大的市场为生物医药市场。

一膜分离技术1.1原理膜分离技术是一种使用半透膜的分离方法,在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。

膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。

现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术,其中在食品、药学工业中常用的有微滤、超滤和反渗透种。

1.2特点膜分离技术具有如下特点, (1)膜分离过程不发生相变化,因此膜分离技术是一种节能技术;2)膜分离过程是在压力驱动下,在常温下进行分离,特别适合于对热敏感物质,如酶、果汁、某些药品的分离、浓缩、精制等。

(3)膜分离技术适用分离的范围极广,从微粒级到微生物菌体,甚至离子级都有其用武之地,关键在于选择不同的膜类型;(4)膜分离技术以压力差作为驱动力,因此采用装置简单,操作方便。

1.3分类超滤的截留相对分子质量在1000~10000之间,选择某一截留相对分子质量的膜可以将杂质与目标产物分离。

超滤技术在生化产品分离中应用最早、最为成熟,已广泛应用于各种生物制品的分离、浓缩。

纳滤膜具有纳米级孔径,截留相对分子质量为200~1000,能使溶剂、有机小分子和无机盐通过。

纳滤可以采用两种方式提取抗生素,一是用溶剂萃取抗生素后,萃取液用纳滤浓缩,可改善操作环境;二是对未经萃取的抗生素发酵液进行纳滤浓缩,除去水和无机盐,再用萃取剂萃取,可减少萃取剂用量。

微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05~10um 之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水的深度处理工艺综述人类对膜的认识是从自然界中存在的膜开始的,到现在,各种人工合成膜已成为了我们生活中不可或缺的一部分。

其种类繁多,作用也千差万别,但他们具有一个共同的特点-选择透过性。

水的膜技术的应用开始于20世纪60年代,最早使用反渗透膜进行海水淡化。

其后膜技术得到了迅速发展,并被众多领域应用。

自用于反渗透脱盐后,又开发出纳滤、超滤和微滤技术,这些不同的膜都有其独特的性能,可满足不同的处理要求。

1定义膜从广义上可以定义为两相之间的一个具有选择透过性的薄层屏障。

膜分离是指在某种推动力作用下,利用膜的选择透过性能,达到分类混合物(如溶液)中离子、分子以及某些微粒的过程。

与传统过滤器的最大不同是,膜可以在离子或分子范围内进行分离,并且该过程是一种物理过程,不需发生相变化和添加助剂。

在某种推动力的作用下,利用某种隔膜特定的透过性能,使溶质或溶剂分离的方法,称为膜分离。

膜分离是用天然或人工合成膜,以外界能量或化学位差作推动力,对双组份或多组分溶质和溶剂进行分离、分级、提纯和富集的方法。

膜分离可以用于液相和气相分离,可以用于水溶液体系、非水溶液体系、水溶胶体系以及含有其他微粒的水溶液体系等。

分离溶质时一般叫渗析,分离溶剂时一般叫渗透。

2分类与特点膜可以是固态的,也可以是液体甚至是气态的。

膜可以是均相的或非均相的,对称的或非对称的,可以是带电的或中性的,而带电膜又可以是带正电或带负电的,或二者兼而有之。

膜可以是具有渗透性的,也可以是具有半渗透性的,但不能是完全不透过性的。

目前使用的分离膜绝大多数是固相膜。

由于膜材料的种类非常丰富,制备条件也多种多样,一般来说膜的分类有以下几种:(1)按分离机理:反应膜、离子交换膜、渗透膜等;(2)按膜的形态:均质膜和非对称膜;均质膜:由一种膜材料制成、截面均匀一致的膜。

均质膜有致密均质膜、微孔均质膜和离子交换膜。

各项性质相同致密膜或多孔膜,通量一般较小,主要用于电渗析和气体分离。

非对称膜:非对称膜有相转化膜及复合膜两类。

前者表皮层与支撑层为同一种材料,通过相转化过程形成非对称结构;后者表皮层与支撑层由不同材料组成,通过在支撑层上进行复合浇铸、界面聚合、等离子聚合等方法形成超薄表皮层。

一般由两层组成,表层非常薄,从几十纳米到几十微米,起分离作用,可以是致密的,也可以是多孔的,下面一层较厚,约100um,起支撑作用,是多孔的。

非对称膜是最广泛的一种分离膜。

(3)按膜结构形式:平板型、管型、螺旋型及中空纤维型等;(4)按膜的材料性质分:主要有生物膜(天然的)和合成膜(有机膜和无机膜)。

生物膜(原生质、细胞膜)是地球上不可缺少的天然膜,然而不仅在结构和功能方面,而且在传质机理方面,生物膜都与可用于工程技术目的的合成固体膜有很大的差别。

合成膜又可分为气态膜、液态膜和固态膜,其中固态膜可以由有机质和无机的材料构成。

目前,有机合成膜的应用比无机合成膜的应用要广泛的多。

(5)按孔径不同分:微滤膜、超滤膜、纳滤膜和反渗透膜。

3膜材料多种多样,无机、有机等3.1聚砜膜聚砜膜具有机械强度高、耐热性好、耐酸碱范围宽、耐细菌腐蚀等优点,是被广泛采用的膜材料之一。

但这种材料亲水性较差,特别是在制备截留分子量1000或以下的超滤膜时,透水速度太低,影响分离效率;聚砜的疏水性能及亲油性能使得聚砜膜用于含油污水处理时,会造成膜通量低和易污染等问题。

3.2聚偏氟乙烯聚偏氟乙烯是一种结晶型聚合物,相对密度为1.75∽1.78,玻璃化温度约39℃,结晶熔点为170℃,热分解温度在316℃以上,机械性能良好,具有良好的耐冲击性,耐磨性,耐气候性。

3.3聚丙烯腈膜聚丙烯腈是一种聚合高分子材料,具有强度高、弹性好、耐化学腐蚀和化学稳定性好等优点,是良好的制膜材料。

它来源广泛,价格便宜,且具有良好的亲水性和耐污染性,耐霉菌性,可用于食品、医药、发酵工业、油水分离、乳化浓缩等方面。

3.4聚醚砜膜聚醚砜膜具有很高的玻璃化温度(230℃),其适用理论温度可达98℃,且聚醚砜膜在50%的甲醇、70%的乙醇和异丙醇溶液中膜性能都不发生变化。

废水处理中对膜材料的选择主要依据是:废水性质(如酸碱性等);膜本身性质(如膜孔径、膜通量、抗污染性、亲水性等)4膜组件:为了便于工业化生产和安装,提高膜的工作效率,在单位体积内实现最大的膜面积,通常将膜以某种形式组装在一个基本单元设备内,在一定的驱动力的作用下,完成混合液中各组分的分离,这类装置称为膜组件或简称组件(Module)。

工业上常用的膜组件形式主要有板框式、螺旋卷式、圆管式、毛细管式和中空纤维式五种。

前两种使用平板膜,后三者均使用管式膜。

一般来说,在设计和实际运行过程中要求膜组件具备以下条件:①对膜组可以提供足够的机械支撑,流道通畅,无流动死角或静水区,进水与透过液分开;②能耗较小,其流态设计应尽量减少浓差极化,提高分离效果;③具有尽可能高的装填密度,膜安装和更换方便;④组件装置牢固可靠,造价低,易维护;⑤具有良好的机械、化学和热稳定性。

4.1多优性板框式这种设计起源于常规的过滤概念,是膜分离中最早出现的一种膜组件形式,外形类似于普通的板框式压滤机。

它是按隔板、膜、支撑板、膜的顺序多层交替重叠压紧,组装在一起制成的。

板框式组件的膜填充密度较低,板框式组件有各种不同的结构,好多可以整“膜块”的形式组装和更换。

板框式膜组件的优点是:制造组装简单,操作方便,膜的维护、清洗、更换比较容易。

缺点是:密封较复杂,压力损失较大,装填密度较小(<400m2/m3)。

这种组件与管式组件相比控制浓差极化较困难,特别是溶液中含有大量悬浮固体时,可能会使液料流道堵塞,在板框式组件中通常要拆开或机械清洗膜,而且比管式组件需要更多的次数,但是板框式组件的投资费用和运行费用都比管式组件低。

目前,板框式膜组件应用的领域为超滤、微滤、反渗透、渗透蒸发、电渗析。

4.2螺旋卷式螺旋卷式膜组件是使用平板膜密封成信封状膜袋,在两个膜袋之间衬以网状间隔材料,然后紧密地卷饶在一根多孔管上而形成膜卷,再装入圆柱状压力容器中,构成膜组件,见图。

料液从一端进入组件,沿轴向流动,在驱动力的作用下,透过物沿径向渗透通过膜由中心管导出。

为了减少透过侧的阻力降,膜袋不宜太长。

当需增加组件的膜面积时,可将多个膜袋同时卷在中心上,这样形成的单元可多个串联装于一压力容器内。

目前,其应用的领域为反渗透、渗透蒸发、纳滤、气体分离。

4.3 管式管式膜组件是由圆管式的膜和膜的支撑体构成。

管式膜组件有内压型和外压型两种运行方式。

实际中多采用内压型,即进水从管内流入,透过液从管外流出。

管式膜直径在6∽24mm之间。

湍流:sh=0.04×Re3/4×Sc2/3或sh=0.023×Re7/8×Sc3/4层流: sh=(3.663÷1.633Re×Sc×)3=(25.42Re×Sc×)3管式组件摩擦阻力的计算,可用光滑管的摩擦系数计算方法。

λ=0.316Re3/45×103<Re<2×105λ=64/Re Re<2×103管式组件明显的优势是可以控制浓差极化和结垢。

但是投资和运行费用都高,故在反渗透系统中其已在很大程度上被中空纤维式所取代。

但在超滤系统中管式组件一直在使用,这是由于管式系统对料液中的悬浮物具有一定的承受能力,很容易用海绵球清洗而无需拆开设备。

管式膜的适用领域为微滤、超滤、反渗透。

4.4毛细管式毛细管式膜组件系统由具有直径0.5~1.5mm的大量毛细管膜组成,具有一定的承压性能,所以不用支撑管。

膜管一般平行排列并在两端用环氧树脂等材料封装起来。

毛细管式膜组件的运行方式有两种;料液流经管外,透过液从毛细管内流出和料液流经毛细管内,透过液从管外排走。

由于这种膜是用纤维纺纱工艺,毛细管没有支撑材料,因此其投资费用较低。

该系统也提供了良好的供料控制条件,且单位面积中膜的比表面积较大,但是操作压力受到限制,而且系统对操作出现的错误比较敏感,当毛细管的内径非常小时,毛细管易堵塞。

总之,料液必须经过有效的预过滤处理。

毛细管式膜组件的应用领域为超滤、气体分离、渗透蒸发。

4.5中空纤维膜组件中空纤维膜组件与毛细管式膜组件的形式相同,只是中空纤维的外径较细,其耐压强度很高,再高压下不发生形变。

中空纤维膜组件常把几十万根或更多根中空纤维弯成U形,纤维束的一端或两端用环氧树脂封头,再装入耐压容器内而成。

再污水处理中,很多情况下中空纤维不装入耐压容器,组件直接放入反应器中,构成内置式膜生物反应器。

中空纤维膜组件一般为外压式,但是也有一些场合采用内压式膜组件。

外压式可在轴流(入流与中空纤维膜丝平行)或穿流(入流与中空纤维膜丝垂直)的条件下操作。

前者如加拿大Zenon公司的中空纤维膜组件在轴流条件下操作,后者如日本Mitsubishi Rayon公司的中空膜组件。

影响中空纤维膜的设计和操作条件包括如下因素:气泡的数量和特性;采用的膜通量;膜丝的放置方向(横向或轴向于气泡流);膜丝直径、长度、装填密度和松紧度;污泥浓度等。

试验得出如下结论(外压式中空膜):①膜丝间气-液两相流时的膜过滤,曝气能显著提高膜通量,膜丝轴向放置优于横向放置。

②膜丝放置方向的影响表明,没有曝气时细膜丝(内径/外径=0.39mm/0.6mm)横向放置由于轴向放置,且运行对错流很敏感,在中等错流速率下,粗膜丝(内径/外径=1.8mm/2.7mm)轴向放置优于横向放置。

有曝气时膜丝轴向放置优于横向放置,如加拿大Zenon膜生物反应器。

③考察膜丝直径的影响表明,再错流系统中,无论是否曝气,细膜丝优于粗膜丝。

④膜污染取决于采用的膜通量和轴向的分布。

当采用的膜通量小于临界通量,膜运行稳定,当膜丝疏松而不是紧绷时,细膜的运行更好。

⑤通过模式计算表明,当膜丝长度为0.5~3.0m时,适宜的膜丝内径是0.2~0.35mm。

对内压式中空纤维膜组件来说(目前常用的中空纤维膜内径3mm),为了在膜丝内形成活塞流,可采用大孔径的中空纤维(内径为8.5mm、9.5mm、和10mm),研究结果显示,活塞流可有效提高膜通量。

中空纤维膜组件已经广泛应用于微滤、超滤、气体分离、反渗透领域。

各种构型膜组件的优缺点比较如表所列各种构型膜组件的优缺点膜分离分类根据推动力的不同,膜分离有下列几种:(1)浓度差-扩散渗析;(2)电位差-电渗析;(3)压力差。

电渗析原理在直流电场作用下,利用阴、阳离子交换膜对溶液中的阴、阳离子的选择透过性,分离溶质和水,阴膜只让阴离子通过,阳膜只让阳离子通过。

阳极室溶液呈酸性,具有腐蚀性,只能将电解质从溶液中分离出去,不能去除有机物等。

相关文档
最新文档