余数与同余问题

合集下载

余数与同余解析

余数与同余解析

六余数和同余1.有余数的除法各部分之间的关系:被除数=除数×商+余数被除数-余数﹦商×除法2.除法算式的特征:余数<除数3.有关余数问题的性质:性质1:如果两个整数a,b除以同一个数m,而余数相同,那么a和b的差能被m整除。

性质2:对于同一个除数,如果两个整数同余,那么他们的差就一定能被这个数整除。

性质3:对于同一个除数,如果两个整数同余,那么他们的乘方仍然同余。

解答同余类型题目的关键是灵活运用性质,把求一个比较大的数字除以某数的余数问题转化为求一个较小数除以这个数的余数,使复杂的问题变得简单化。

1.把题目转化为算式就是:□÷7﹦□……□余数要比除数7小,商和余数相同,题中商和余数可能是0、1、2、3、4、5、6,带入原式。

根据被除数﹦商×除法+余数,算得:0×7+0﹦0;1×7+1﹦8;2×7+2﹦16;3×7+3﹦24;4×7+4﹦32;5×7+5﹦40;6×7+6﹦48。

所求被除数可能是:0、8、16、24、32、40、48。

一个三位数被37除余17,被36除余3,那么这个三位数是多少?有啥好方法吗?这道题可采取经典的余数处理方法------凑。

这个凑,可不是漫无目的的凑。

而是有理有据才行。

1、找一个最小的自然数,满足除以37余17,当然17即可满足。

2、很显然,这个数除以36并不余3,作适当调整。

3、为了不改变37的那个余数,每次可加上一个37.4、每加一次37,除以36的那个余数就增加1(记住,不要计算被除数是多少,而采取的是余数的性质。

被除数扩大一倍,余数也扩大一倍,被除数增加几,余数也会增加几(或者除以除数的余数))5、因为我们要求的数除以36要余3,现在只是余17,即达到36后再多出3,即余39(注意,这里用的是扩展余数),还差39-17=22.所以要增加22个37.6、结果是17+22×37即为答案。

余数问题的解题方法

余数问题的解题方法

余数问题的解题方法
解题方法:
1. 除法互换律:将被除数和除数互换,得到的结果是余数。

例如:1÷3=0...1,则3÷1=3...0,即余数为零。

2. 同余定理:如果a÷b=c...d(c为商,d为余数),则a-d÷b=c...0,即余数为零。

例如:7÷3=2...1,则7-1÷3=2...0,余数为零。

3. 分解质因数法:将被除数和除数分解质因数,列出所有的可能组合,直到得到能够整除的结果则余数为零。

例如:6÷3=2...0,则2×3=6,余数为零。

4. 模运算:使用模运算,即a mod b=d,其中d为余数。

5. 对于除法不可整除的情况,可以使用乘除法,即a×b=c+d(c大于等于a,d为余数),其中d为余数。

例如:7×3=21,则21-7=14,余数为7。

6. 开平方法:将被除数平方,或者除数平方,直到得到整除的结果则余数为零。

例如:64÷8=8...0,则8×8=64,余数为零。

7. 拆分成多项式:将被除数和除数拆分成多项式,例如
a=a_1x_1+a_2x_2+…+a_nx_n,b=b_1x_1+b_2x_2+…+b_nx_n,则a÷b=c...d(其中d为余数)。

余数和同余

余数和同余

余数和同余问题1、474除以一个两位数的余数是6,求符合条件的所有两位数。

想:因为被除数=商×除数+余数,所以商×除数=被除数-余数。

因此,所求两位数与商的积是474-6=468,把468分解质因数是468=2×2×3×3×13,又因为要求的除数是两位数,只要将468的质因数进行配对试算就行。

解:468=2×2×3×3×13,2×13=26,3×13=39,2×2×3=12,2×3×3=18,2×2×13=52,2×3×13=78,2×2×3×3=36.答:符合条件的两位数有:13,26,39,12,18,52,78和36共8个。

试一试:1、1309除以一个质数,余数是21,求这个质数。

2、389除以一个两位数,余数是5,求符合条件的所有两位数。

问题2、求2006×2007除以7的余数。

解:2006÷7=286……4 ,2007÷7=286……5 ,4×5÷7=2……6.答:2006×2007除以7的余数是6。

试一试:1、求2007×2008除以13的余数。

2、求123×345+234×456除以11的余数。

3、求2004×2005×2006除以13的余数。

问题3、一个大于1的整数,它除967,1000,2001得到相同的余数,那么这个整数是多少?想:因为967,1000,2001除以这个整数的余数相同,967,1000,2001这三个数两两相减的差,都是所求整数的因数。

解:1000-967=33=3×11,2001-1000=1001=7×11×13,2001-967=1034=2×11×47,这些差的公因数就是所求的整数。

余数性质及同余定理答案

余数性质及同余定理答案

知识框架一、带余除法的定义及性质1. 定义:一般地,如果a是整数,b是整数(b工0若有a4)=q••…r,也就是a= b X q+ r,0奇v b ;我们称上面的除法算式为一个带余除法算式。

这里:(1)当r 0时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当r 0时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图屈这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

2. 余数的性质⑴ 被除数除数商余数;除数(被除数余数)商;商(被除数余数)除数;⑵余数小于除数.二、余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23, 16除以5的余数分别是3和1 ,所以23+16 = 39除以5的余数等于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23, 19除以5的余数分别是3和4,所以23+19 = 42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a与b的差除以c的余数,等于a,b分别除以c的余数之差。

例如:23, 16除以5的余数分别是3和1,所以23 —16= 7除以5的余数等于2,两个余数差3- 1当余数的差不够减时时,补上除数再减。

例如:23, 14除以5的余数分别是3和4 , 23- 14= 9除以5的余数等于4,两个余数差为3 + 5-4 =43.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23, 16除以5的余数分别是3和1,所以23X 16除以5的余数等于3X1= 3。

奥数五六年级知识点总结第五讲 余数与同余

奥数五六年级知识点总结第五讲 余数与同余

第五讲余数与同余一、问题引入上一讲我们已经学习了如何判断一个数能否被另一个数整除(主要总结除数为20以内整数的情况),这一讲中我们将会在此基础上,继续探讨如果一个数不能被另一个数整除,那么余数是多少,这是本讲将要讨论的第一个问题——余数问题。

我们知道,自然数(0和所有正整数),按能否被2整除可以分为偶数和奇数两类,即能被2整除(除以2余0)的数为偶数,不被2整除(除以2余1)的数为奇数,奇数和偶数各自有其特征,它们之间又有相互联系。

同理,如果我们以除以3的余数为标准,就可以将自然数分成三类,余0、余1、余2;如果我们以除以4的余数为标准,就可以将自然数分成四类,余0、余1、余2、余3;以除以n为标准,就可以将自然数划分为n类。

那么除以n余数相同的一类数有何共同的性质呢?除以n余数不同的数之间又有何联系呢?这是本讲将要讨论的第二个问题——同余问题。

二、知识总结1、首先根据上一讲的整除特征,做简单推导,即可得到下列求余方法。

【注】下列方法大家以理解为主,不必死记。

着重掌握除以3、4、8、9、16的余数求法即可。

①求除以2的余数:奇数余1,偶数余0;②求除以3的余数:等于该数的各位数字之和除以3的余数;③求除以4的余数:等于该数末两位组成的数除以4的余数;④求除以5的余数:等于该数个位数除以5的余数;⑤求除以6的余数:该数的各个数字之和除以3得余数a,若该余数与原数同奇同偶,则原数除以6的余数为a,若该余数与原数一奇一偶,则原数除以6的余数为a+3;⑥求除以7的余数:等于该数的末三位与末三位以前的数字组成的数之差除以7的余数,如果数字仍然太大不能直接观察出来,就重复此过程;⑦求除以8的余数:等于该数的末三位除以8的余数;⑧求除以9的余数:等于该数的各位数字之和除以9的余数;⑨求除以10的余数:等于该数的个位数;⑩求除以11的余数:(a)等于该数的奇数位上的数字之和与偶数的数字之和的差除以11的余数(b)等于该数的末三位与末三位之前的数字组成的数之差除以11的余数,如果数字仍然太大不能直接观察出来,就重复此过程;⑪求除以13的余数:等于该数的末三位与末三位之前的数字组成的数之差除以13的余数,如果数字仍然太大不能直接观察出来,就重复此过程;⑫求除以16的余数:等于该数的后四位除以16的余数;⑬求除以17的余数:等于把该数的个位数字去掉,再从余下的数中,减去个位数的5倍,所得到的数字除以17的余数,如果数字仍然太大不能直接观察出来,就重复此过程;⑭求除以18的余数:该数的各个数字之和除以9得余数a,若该余数与原数同奇同偶,则原数除以18的余数为a,若该余数与原数一奇一偶,则原数除以18的余数为a+3;⑮求除以19的余数:等于把该数的个位数字去掉,再从余下的数中,加上个位数的2倍,所得数字除以19的余数。

小学奥数精讲:余数与同余问题

小学奥数精讲:余数与同余问题
例 3:同余的性质 求 437×309×1993 被 7 除的余数
【分析】 437 除以 7 余数为 3,即 473≡ 3(mod7) 309 除以 7 余数为 1,即 309≡ 1(mod7) 1993 除以 7 余数为 5,即 1993≡ 5(mod7) 由同余的性质(4)可知 472×309×1993≡ 3×1×5(mod7)≡ 1
2、 同余不同余的性质:
两个整数 a,b,若它们除以整数 m 所得的余数相等,则称 a,b 对于模 m 同余。一般记为 a≡ b(mod m)。
同余有以下常用的性质:
(1) 如果 a ≡ b (mod m),则 a、b 之差(大数减小数)能被 m 整除。
(2) 传递性 如果 a ≡ b (mod m),b ≡ c (mod m),那么 a ≡ c (mod m);
⑦ 求除以 8 的余数:等于该数的末三位除以 8 的余数; ⑧ 求除以 9 的余数:等于该数的各位数字之和除以 9 的余数;
1
⑨ 求除以 10 的余数:等于该数的个位数;
⑩ 求除以 11 的余数:(a)等于该数的奇数位上的数字之和不偶数的数字 之和的差除以 11 的余数 (b)等于该数的末三位不末三位之前的数字组成的 数之差除以 11 的余数,如果数字仍然太大丌能直接 观察出来,就重复此过程;
小学奥数精讲:余数与同余问题
一、问题引入
我们知道,自然数(0 和所有正整数),按能否被 2 整除可以分为偶数和奇 数两类,即能被 2 整除(除以 2 余 0)的数为偶数,丌被 2 整除(除以 2 余 1) 的数为奇数,奇数和偶数各自有其特征,它们之间又有相互联系。同理,如果我 们以除以 3 的余数为标准,就可以将自然数分成三类,余 0、余 1、余 2;如果 我们以除以 4 的余数为标准,就可以将自然数分成四类,余 0、余 1、余 2、余 3;以除以 n 为标准,就可以将自然数划分为 n 类。那么除以 n 余数相同的一类 数有何共同的性质呢?除以 n 余数丌同的数之间又有何联系呢?这是本讲将要 讨论的第二首先根据上一讲的整除特征,做简单推导,即可得到下列求余方法。

《余数及同余(一)》配套练习题

《余数及同余(一)》配套练习题
10、已知 3 个连续自然数依次是 11、9、7 的倍数,而且都在 500 和 1500 之间,那么这 3 个数的和是多少?
答案部分 一、解答题 1、 【正确答案】: 63 【答案解析】:这个两位数肯定是 949-4=945 的约数, 而 945=33×5×7,它最大的两位数约数是 32×7= 63.
3
【答疑编号 10256047】
4、 【正确答案】: 4 【答案解析】: 2 的 n 次方的个位数字按 2,4,8,6 循环; 3 的 n 次方的个位数字按 3,9,7,1 循环; 7 的 n 次方的个位数字按 7,9,3,1 循环; 8 的 n 次方的个位数字按 8,4,2,6 循环; 而 2012 整除 4,由 6+1+1+6=14, 于是,所求末位数字为 4。
所以 5999疑编号 10256046】
3、 【正确答案】: 31 【答案解析】: 7 的 n 次方除以 4 的余数按照 3,1 循环;所以这个和除以 4 余 3; 7 的 n 次方除以 25 的余数按照 7,24,18,1 循环;所以这个和除以 25 余 6。 除以 4 余 3,除以 25 余 6 最小的数是 31。 所以算式计算结果的末两位数字是 31。
《余数及同余(一)》配套练习题 一、解答题 1、949 除以一个两位数所得的余数是 4,则这个两位数最大是多少? 2、 5999+ 231000的个位数字是几?它除以 7 的余数是几? 3、算式 7+72+…+ 71990 计算结果的末两位数字是多少? 4、算式 2 + 2012 3 + 2012 72012+82012 得数的末位数字是多少? 5、
6、2001×2002×2003×…× 2011×2012 的积的末三位数是多少? 7、用某个自然数去除 73、101、143 所得到的余数相同,那么这个数最大 是多少?

余数与同余练习

余数与同余练习

余数与同余(一)知识要点:1.被除数=除数×商+余数2.余数<除数3.余数的性质性质1:如果两个整数a,b除以同一个数m,而余数相同,那么a和b的差能被m 整除。

性质2:如果被除数扩大(或缩小)若干倍,除数不变,那么余数也扩大(或缩小)同样的倍数。

性质3:如果被除数增加(或减少)除数的若干倍,除数不变,那么余数也不变。

例1:两数相除,商是499,余数是3,被除数最小是几?练习1:下面算式中的两个括号内应该填什么数,才能使这道整数除法题的余数最大?()÷85=99……()()÷24=56……()例2:两个数相除的商是21,余数是3.如果把被除数、除数、商和余数相加,它们的和是225。

被除数、除数各是多少?练习2:两个数相除,商是4,余数是6,被除数、除数、商和余数的和是121,求被除数。

练习3:两个整数相除商是12,余数是8,并且被除数与除数的差是822,求这两个整数。

例3. 有一个整数,除300,262,205得到的余数相同,问这个整数是几?例4. 692,608,1126三个数分别除以同一个自然数,得到的余数相同,那么这个自然数是多少?练习4:346,304,563三个数分别除以同一个自然数,得到的余数相同,那么这个自然数是多少?练习5:数713,1103,830,947被某一个数除,所得余数相同(不为0),求除数。

余数与同余(二)例5. 学生在操场上列队做操,只知道人数是在90至110之间,如果排成3列不多也不少;如果排成5列则少2人;如果排成7列则少4人。

问共有学生多少人?练习1:今有物不知其数,凡三三数之剩二,五五数之剩三,七七数之剩二,问物几何?练习2:某市举行大型体操表演,小学生队的人数在2000到2150之间,排成3列则刚好,排成5列则少2人,排成7列则少4人。

这队小学生共有多少人?练习3:一筐梨,三三数之余1,四四数之余3,五五数之差1。

这筐梨最少有几个?练习4:红旗小学表演团体操的同学在操场排队,如果每排12人,最后一排少1人;如果每排15人,最后一排少4人;如果每排18人,最后一排少7人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余数同余问题
1、用一个自然数去除另一个自然数,不完全商是8,余数是16,被除数、除数、商、余数
这四个数的和为463,那么除数为:
2、57、96、148被某自然数整除,余数相同,且不为零,那么284被这个自然数除后余:
3、150、232、396被某个两位数除后都有余数,且余数都是同一个奇数,那么所得的余数
是:
4、有一个自然数,用它分别去除81、127、232都有余数,且3个余数的和是33,那么这
个自然数是:
5、一个两位数去除251,得到的余数是41,这个两位数是:
6、两个小于100的不同自然数去除440,余数都是35,这两个数的差为:
7、一个两位数除以8,商与余数相同,那么这样的数总和为:
8、有一个除法算式,被除数、除数和商都是整数,且没有余数,被除数、除数、商相加的
和是79,被除数和除数相差56,这个算式是:
9、一个整数,减去它除以5后所得余数的4倍,差是234,这个自然数是:
10、2010除以一个两位数ab=(),使所得余数最大。

11、1)一个两位数被它的各位数字之和去除,能得到的最大余数是:
2)一个三位数被它的各位数字之和去除,能得到的最大余数是:
12、在大于2010的自然数中,逐个找出“被49除后,商与余数相等的数”,这些数的和是:
13、用一个自然数A去除333,商得4,用所得余数去除自然数B,所得商和余数相加恰好为A,那么B最小为:
14、两个数字之和为10、8的三位数乘积是一个五位数,且这个五位数的后四位是1031,那么这两位三位数之和是:
15、一个自然数除以9的余数和除以8的商的和等于13,那么这个数除以8的余数是:
16、一个自然数除以7的余数和除以8的商的和等于15,则满足条件的所有自然数的和是:
17、10个自然数的和为100,分别除以3,若用去尾法,10个商的和为30,若用四舍五入法,10个商的和为34,那么10个数中被3除余1的数有:
18、一个三位数分别被63、95、143除之后所得的余数之和为19,那这个三位数是:
19、在小于1000的正整数中,被12、15和18除得余数相同的数共有:
20、若M=3x+x3,当x取1、2、3、……、2010时,能被7整除的M共有:
21、当X取1、2、3、……2010时,有()个整数X使2x与X2被7除余数相同。

22、已知“2n-N”是一个9的倍数,那么N在1000以内的自然数中有()种取值。

23、已知N是从1到100的自然数,那么
1)有()个N的值满足N2-1能被7整除;
2)有()个N的值满足2n-1能被7整除。

24、甲、乙、丙三数分别为526、539、705,某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数与A除丙数所得余数的比是2:3,那么A是:()
25、用一个大于1的自然数去除963582、714所得的余数依次成等差数列,那么除数可以是:
26、有一个三位数,它除以19所得到的商与余数之和,恰好等于它除以17所得到的商与余
数的和,那么这样的三位数最大可能是:
27、一个数除以3余2,除以5余3,除以7余4,符合此条件的最小数为:
28、一个数除以5余3,除以6余4,除以7余1,符合此条件的最小数为:
29、1000以内有()个数除以8余3,除以9余4,除以12余7,其中最大的是()
30、有些自然数,它加1后是3的倍数,它的3倍加1后是5的倍数,它的5倍加1后是7的倍数,那么这样的自然数中,最小的一个是()
31、三个连续的两位数除以5的余数之和是7,除以7的余数之和是9,除以9的余数之和是15,则这三个数除以11的余数之和是:
32、一个自然数除以7、8、9后分别余3、5、7,而所得三个决的和是758,这个数是:
33、一个自然数除以3、6、9后所得3个余数之和是15,那么这个数除以18的余数是:
34、一个五位数,各位数字互不相同,被2、3、5、11除分别余1、2、3、7,那么这个数最小是:
35、“12345+67890”的个位数字是(),除以7的余数是(),除以70的余数是()
36、算式“13579×2468+246813579”的结果除以9余(),除以11余(),除以
99的余数是()。

37、一批货物,如果用小车运,每次运8袋余3袋,每次运6袋余1袋,每次运5袋余2袋,如果改用大卡车,每车可以运120袋,则4次运完(每次尽量装满),那么这批货物共有()袋。

38、一个布袋中装有小球近1000个,如果每次取9个,最后剩7个,如果每次取7个,最后剩5个,每次取5个最后剩3个,每次取3个最后剩1个。

那么如果每次取13个,最后剩下()个。

39、有四个互不相同的两位数,其中任意两数之和都是2的倍数,任意三数之和都是3的倍数,那么这四个数之和最大为(),最小为()
40、三个连续自然数,其中最小的能被5整除,中间的能被7整除,最大的能被9整除,那么这三个自然数最小为()
41、N是一个小于3000的四位数,将它除以11所得的余数为5,除以13所得的余数为6,除以17所得的余数为8,那么N的值是()。

42、把一个两位数的两个数字颠倒过来得到一个新两位数,发现新两位数除以7的余数比原两位数除以7的余数大1,那这样的两位数共有()个。

43、已知“□”代表一个正整数,并且“75+□”和“48+□”都不是120的倍数,但是这两个数的乘积能被120整除,那么“□”所代表的数字最小可能是:()
44、20102009除以2008的余数为:
45、90029002除以2009的余数是:
46、20112011……2011除以105余(),除以99余(),除以1001余()
2011个2011
47、一个圆圈上有200多个小孔,小明用一枚棋子像玩跳棋那样从A孔出发沿着顺时针方向跳,希望跳一圈能回到A孔;如果每隔6孔跳一步,结果能跳到C孔,如果每隔4孔跳一步,结果能跳到B孔,如果每隔2孔跳一步,结果能跳向A孔,那么这个圆圈上共有()个孔。

48、小明的妈妈买了葡萄、苹果、雪梨和芒果的果脯各若干袋(每种至少一袋),用了340元。

葡萄、苹果、雪梨和芒果果脯每袋售价分别为14元、22元、28元、42元。

小明的妈妈至少买了( )袋果脯,此时苹果果脯是( )袋。

49、设A=1+2+3+……+2009+2010,那么A 除以7的余数是( ),A 除以77的余数是( )。

50、从1写到50,组成一个多位数123456……484950,该数除以9、11、99的余数分别是( )、( )、( )。

51、444444的数字之和为A ,A 的数字之和为B ,B 的数字之和C ,那么C 是( )
52、20092009
的末两位数字是( )( ) 53、算式“1×3×5×7×……×2009×2011”计算结果的末三位数字依次是( )( )( )。

54、三位数□37、8□4、21□,分别在百位、十位、个位被“□”盖住,现已知:
1)同一个三位数的3个数互不相同;
2)“□”盖住的数字互不相同,且不全是奇数;
3)三个三位数除以12余3个互不相同的质数,那么,这三个三位数的和为:( )
55、下图中的7张卡片里有3张上面的数是未知整数,这3个未知整数都是3的倍数,3张的和是180,有3个学生,每人抽2张卡片,各自的2张卡片上的灵敏的和都彼此相同,那么剩下的1张卡片上写的数是( )
56、圆周上有N 个点,固定其中一点写上数1,按顺时针方向隔1个点,在下一个点处写上数2,按顺时针方向隔2个点,在下一个点处写上数3, ……以此类推,多次后有些点上会被写有多个数,已知第6个点处写有26,在写有6的点上还写有62,那么N 最大为( )。

57、将数字1~9各用一次组成3个三位数,使得三个灵敏被9除分别余1、3、5,那么其中最大的数与最小的数相差最小为( )。

58、A 、B 、C 这三个人都常去电影院,A 每隔2天去一次,B 每隔6天去一次,C 每隔10天去一次,今天他们三人都去了电影院,将来会有连续4天恰好每天有一个人去,如果今天算第一天,那么最早出现具有上述性质的连续4天是第( )( )( )( )。

59、小明每隔2天上一次英语课,每隔3天上一次数字课,每隔4天上一次写作课,如果小明是在7月1日、2日、3日依次上了这3门课,那么此后他将在( )月( )日第一次同时上这3门课。

60、在算式“○+119=□,□+143=△”中,已知“□、○、△”依次能被7、9、11整除的自然数,那么△的最小值为( )
61、有些三位数除以2、3、4、5、6所得到的余数互不相同,那么这样的三位数最小的三个为( )( )( )
62、一个两位数,用它分别除以3、5、7得到三个余数、这三个余数的和是11,那么这样的两位数是( )
63、正整数N 满足:N/2是一个整数的平方,N/3是一个整数的立方,N/5是一个整数的5次方,那么N 的最小值是( )可以用次方表示
64、自然数N 满足:5n +N 是9的倍数,9n
+N 是5的倍数,那么这样的N 中最小值是( )。

相关文档
最新文档