余数同余技巧

合集下载

同余法解题完整版

同余法解题完整版

同余法解题集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]五年级奥数培训资料第六讲同余法解题一、同余这个概念最初是由德国数学家高斯发明的。

同余的定义是这样的:两个整数,a,b,如果他们同时除以一个自然数m,所得的余数相同,则称a,b对于模m同余。

记作a≡b(mod.m)。

读作:a同余于b模m。

同余的性质也比较多,主要有以下一些:1..对于同一个除数,两个数的乘积与它们余数的乘积同余。

例如201×95的乘积对于除数7,与201÷7的余数5和95÷7的余数4的乘积20对于7同余。

2..对于同一个除数,如果有两个整数同余,那么它们的差就一定能被这个除数整除。

例如519和399对于一个除数同余,那么这个除数一定是519与399的差的因数,即519与399的差一定能被这个除数整除。

3..对于同一个除数,如果两个数同余,那么他们的乘方仍然同余。

例如20和29对于一个除数同余,那么20的任何次方都和29的相同次方对于这个除数同余,当然余数大小随次方变化。

4.对于同一个除数,若三个数a≡b(mod m),b≡c(mod m),那么a,b,c三个数对于除数m都同余(传递性)例如60和76同余于模8,76和204同余于模8,那么60,76,204都同余于模8。

5. 对于同一个除数,若四个数a≡b(mod m),c≡d(mod m),那么a±c≡c±d (mod m),(可加减性)6. 对于同一个除数,若四个数a≡b(mod m),c≡d(mod m),那么ac≡cd(mod m),(可乘性)二、中国剩余定理解法一个数被3除余1,被4除余2,被5除余4,这个数最小是几?解法:求3个数:第一个:能同时被3和4整除,但除以5余4,即12X2=24第二个:能同时被4和5整除,但除以3余1,即20X2=40第三个:能同时被3和5整除,但除以4余2,即15x2=30这3个数的最小公倍数为60,所以满足条件的最小数字为24+40+30-60=3412X2=24 20X2=40 15x2=30中2的来历。

余数问题的解题方法

余数问题的解题方法

余数问题的解题方法
解题方法:
1. 除法互换律:将被除数和除数互换,得到的结果是余数。

例如:1÷3=0...1,则3÷1=3...0,即余数为零。

2. 同余定理:如果a÷b=c...d(c为商,d为余数),则a-d÷b=c...0,即余数为零。

例如:7÷3=2...1,则7-1÷3=2...0,余数为零。

3. 分解质因数法:将被除数和除数分解质因数,列出所有的可能组合,直到得到能够整除的结果则余数为零。

例如:6÷3=2...0,则2×3=6,余数为零。

4. 模运算:使用模运算,即a mod b=d,其中d为余数。

5. 对于除法不可整除的情况,可以使用乘除法,即a×b=c+d(c大于等于a,d为余数),其中d为余数。

例如:7×3=21,则21-7=14,余数为7。

6. 开平方法:将被除数平方,或者除数平方,直到得到整除的结果则余数为零。

例如:64÷8=8...0,则8×8=64,余数为零。

7. 拆分成多项式:将被除数和除数拆分成多项式,例如
a=a_1x_1+a_2x_2+…+a_nx_n,b=b_1x_1+b_2x_2+…+b_nx_n,则a÷b=c...d(其中d为余数)。

浅谈初等数论中同余式的解法

浅谈初等数论中同余式的解法

浅谈初等数论中同余式的解法
初等数论是数学的一个分支,主要探讨整数、有理数和代数式等基础概念。

“同余”是初等
数论中概念的一个重要部分,它引用数学定义可以写为:若两个有理数或者有理函数在一
个事件上有相同的值,则它们称为“同余”。

也就是说,两个有理数或者有理函数的值不同,但它们的值是相等的。

同余的解法首先应该把同余方程写成有理函数的形式,然后进行求解。

一般可以使用图像法、合并法或者二分法来求解。

图形法是一种直观清晰的求解方法,它通过在坐标系中绘制图像来求解同余方程,从而得到所求解的值。

这是最简单也是最容
易理解的求解方法。

合并法是一种基于数学运算技巧的求解方法。

它通过合并两个同余方程来求解同余方程,得到所求的值。

二分法是运用有理数的属性来求解的方法,用二分的方法对有理数的值进行查找,来获得有理数的值。

以上就是同余的几种常用方法,虽然每种方法都有其优势和缺点,但它们都是多元素的有理函数。

使用正确的方法,可以对同余
方程进行快速准确的求解,以解决初等数论中的多元素有理函数问题。

奥数讲义数论专题:余数及同余

奥数讲义数论专题:余数及同余

华杯赛数论专题:余数及同余一、带余除法的定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q…r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式.这里:(1)当时:我们称a可以被b整除,记作b|a,q称为a除以b的商或完全商(2)当时:我们称a不可以被b整除,记作,q称为a除以b的商或不完全商二、同余的概念两个整数被同一个大于1的整数m除,所得的余数相同,就说这两个整数对于除数m来说是同余的.也可以换句话来说这个概念,如果两个整数的差能被大于1的整数m整除,那么这两个整数对于除数m来说是同余的.同余的概念和符号都是德国伟大数学家高斯引进的.一般地,两个整数a和b,除以大于1的正整数m,如果所得的余数相同,就说a、b对于模m同余,记作a≡b(mod m).由于一个整数被m除的余数只能是0、1、2、3、…、m-1这m个数,所以全体整数可按被m除的余数分类,凡是余数相同的归为一类,全体整数就被划分成了m类,同一类中的任何两数被m除的余数都相等,即同一类中任何两数的差都能被m整除,不同类的任何两数被m除的余数都不相等.三、同余的性质1.如果a≡b(mod m),那么m|(a-b);如果整数a和b对于模m是同余的,那么a 与b的差能被m整除.2.a≡a(mod m),即任何整数都与自身同余.3.若a≡b(mod m),则b≡a(mod m).4.若a≡b(mod m),b≡c(mod m),则a≡c(mod m).5.若a≡b(mod m),c≡d(mod m),则a+c≡b+d (mod m),a-c≡b-d (mod m),a×c≡b×d (mod m).6.若a≡b(mod m),则an≡bn(mod m)。

(其中n为正整数).例1.用一个两位数除708,余数为43,求这个两位数.【答案】95【解答】根据被除数-余数=商×除数,可知,所求两位数一定是707-43=665的大于43的约数,所以所求的两位数是95.例2.数713、1103、830、947被一个数除所得余数相同(余数不为0),求这个除数.【答案】39,13或3.【解答】1103-713=390=3×13×2×5,947-830=117=3×13×3,1103-947=156=2×13×3×2,除数为39,13或3.例3.从1、2、…100中最多能选出多少个数,使选出的数中每两个的和都不能被3整除?【答案】35【解答】1、2、…100中,除以3余1的数共34个,即1、4、7、10、…、100.除以3余2的数共33个,选出的数中,如果有除以3余1的,就一定不能有除以3余2的;如果有除以3余2的,也就不能有除以3余1的。

同余问题的口诀“最小公倍加,余同取余,和同加和,差同减差”

同余问题的口诀“最小公倍加,余同取余,和同加和,差同减差”

同余问题的口诀“最小公倍加,余同取余,和同加和,差同减差”同余问题的口诀“最小公倍加,余同取余,和同加和,差同减
差”
所谓同余问题,就是给出“一个数除以几个不同的数”的余数,反求这个数,称作同余问题。

首先要对这几个不同的数的最小公倍数心中有数,下面以4、5、6为例,请记住它们的最小公倍
数是60。

1、最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、
2、3中的60n)
都满足条件,
称为:“最小公倍加”,也称为:“公倍数作周期”。

2、余同取余:用一个数除以几个不同的数,得到的余数相同,
此时反求的这个数,可以选除数的最小公倍数,加上这个相同的余数,称为:“余同取余”。

例:“一个数除以4余1,除以5余1,除以6余1”,因为余数都是1,所以取+1,表示为60n+1。

3、和同加和:用一个数除以几个不同的数,得到的余数,与除数的和相同,
此时反求的这个数,可以选除数的最小公倍数,加上这个相同的和数,称为:“和同加和”。

例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为
60n+7。

4、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,
此时反求的这个数,可以选除数的最小公倍数,减去这个相同的差数,称为:“差同减差”。

例:“一个数除以4余1,除以5余2,除以6余3”,因为4-1=5-2=6-3=3,所以取-3,表示为60n-
3。

同余问题

同余问题

同余问题(一)差同减差,和同加和,余同取余,最小公倍加”这是同余问题的口诀。

所谓同余问题,就是给出“一个数除以几个不同的数”的余数,反求这个数,称作同余问题。

首先要对这几个不同的数的最小公倍数心中有数,下面以4、5、6为例,请记住它们的最小公倍数是60。

1、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,此时反求的这个数,可以选除数的最小公倍数,减去这个相同的差数,称为:“差同减差”。

例:“一个数除以4余1,除以5余2,除以6余3”,因为4-1=5-2=6-3=3,所以取-3,表示为60n-3。

【60后面的“n”请见4、,下同】2、和同加和:用一个数除以几个不同的数,得到的余数,与除数的和相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的和数,称为:“和同加和”。

例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。

3、余同取余:用一个数除以几个不同的数,得到的余数相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的余数,称为:“余同取余”。

例:“一个数除以4余1,除以5余1,除以6余1”,因为余数都是1,所以取+1,表示为60n+1。

4、最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n)都满足条件,称为:“最小公倍加”,也称为:“公倍数作周期”。

在平时解题中,我们经常会遇到把着眼点放在余数上的问题。

如:现在时刻是7时30分,再过52小时是几时几分?我们知道一天是24小时,,也就是说52小时里包含两个整天再加上4小时,这样就在7时30分的基础上加上4小时,就是11时30分。

很明显这个问题的着眼点是放在余数上了。

1. 同余的表达式和特殊符号37和44同除以7,余数都是2,把除数7称作“模7”,37、44对于模7同余。

记作:(mod7)“”读作同余。

一般地,两个整数a和b,除以大于1的自然数m所得的余数相同,就称a、b对于模m同余,记作:2. 同余的性质(1)(每个整数都与自身同余,称为同余的反身性。

余数性质及同余定理(B级)

余数性质及同余定理(B级)

余数性质及同余定理知识框架一、余除法的定及性1.定:一般地,若是 a 是整数, b 是整数( b≠0) ,若有 a÷b=q⋯⋯ r ,也就是 a=b×q+ r ,0≤r< b;我称上面的除法算式一个余除法算式。

里:(1)当 r 0 :我称 a 可以被 b 整除, q 称 a 除以 b 的商或完好商(2)当 r 0 :我称 a 不可以被 b 整除, q 称 a 除以 b 的商或不完好商一个圆满的余除法解模型 : 如是一堆,共有 a 本,个 a 就可以理解被除数,在要求依照 b 本一捆打包,那么 b 就是除数的角色,打包后共打包了 c 捆,那么个 c 就是商,最后节余 d 本,个 d 就是余数。

个能学生清楚的理解余除法算式中 4 个量的关系。

并且可以看出余数必然要比除数小。

2.余数的性⑴ 被除数除数商余数;除数(被除数余数)商;商(被除数余数)除数;⑵ 余数小于除数.二、余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a,b 分除以 c 的余数之和,或个和除以 c 的余数。

比方: 23,16 除以 5 的余数分是 3 和 1,所以 23+16= 39 除以 5 的余数等于4,即两个余数的和3+1.当余数的和比除数大,所求的余数等于余数之和再除以 c 的余数。

比方: 23,19 除以 5 的余数分是 3 和 4,所以 23+19= 42 除以 5 的余数等于3+4=7 除以 5 的余数22.余数的加法定理a 与b 的差除以c 的余数,等于a,b 分除以 c 的余数之差。

比方: 23, 16 除以 5 的余数分是 3 和 1,所以 23- 16=7 除以 5 的余数等于2,两个余数差3- 1=2.当余数的差不减,上除数再减。

比方: 23,14 除以 5 的余数分是 3 和 4, 23- 14= 9 除以 5 的余数等于4,两个余数差3+ 5-4= 43.余数的乘法定理a 与b 的乘除以c 的余数,等于a,b 分除以 c 的余数的,也许个除以 c 所得的余数。

同余问题知识点讲解

同余问题知识点讲解

同余问题知识点讲解数论中的同余问题同余问题是数论中的一个重要知识点,也是各大数学竞赛和小升初考试必考的奥数知识点。

因此,学好同余问题对学生来说非常重要。

许多孩子都接触过同余问题,但也有不少孩子说“遇到同余问题就基本晕菜了!”。

同余问题主要包括带余除法的定义,三大余数定理(加法余数定理、乘法余数定理和同余定理),以及中国剩余定理和弃九法原理的应用。

带余除法的定义及性质一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,且0≤r<b,我们称上面的除法算式为一个带余除法算式。

其中,当r=0时,我们称a可以被b整除,q称为a除以b的商或完全商;当r≠0时,我们称a不可以被b整除,q称为a除以b的商或不完全商。

一个完美的带余除法讲解模型可以将带余除法的概念用一个图形化的模型来解释。

假设有一堆书,共有a本,这个a可以理解为被除数。

现在要求按照b本一捆打包,那么b就是除数的角色。

经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系,并且可以看出余数一定要比除数小。

三大余数定理1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3.当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在公务员考试的数量关系模块中,余数相关问题是考查的传统重点,也是令很多考生犯难的一种题型。

针对常见的几类题目给予分析,帮助考生轻松解决余数同余问题。

按照常考的题型,余数问题可以分为以下几类:
一、代入排除类型
【例1】(江西2009)学生在操场上列队做操,只知人数在90-110之间。

如果排成3排则不多不少;排成5排则少2人;排成7排则少4人;则学生人数是多少?( )
A.102
B.98
C.104
D.108
【解析】像这样的题目直接代入选项,看看哪个符合题目所给的条件,哪个就是正确的答案,毫无疑问,选项108满足条件,选择D。

二、余数关系式和恒等式的应用
余数的关系式和恒等式比较简单,因为这一部分的知识点在小学时候就已经学过了,余数基本关系式:被除数÷除数=商…余数(0≤余数<除数),但是在这里需要强调两点:
1、余数是有范围的(0≤余数<除数),这需要引起大家足够的重视,因为这是某些题目的突破口。

2、由关系式转变的余数基本恒等式也需要掌握:被除数=除数×商+余数。

【例2】两个整数相除,商是5,余数是11,被除数、除数、商及余数的和是99,求被除数是多少?
A.12
B.41
C.67
D.71
【解析】余数是11,因此,根据余数的范围(0≤余数<除数),我们能够确定除数>11。

除数为整数,所以除数≥12,根据余数的基本恒等式:被除数=除数×商+余数≥12×商+余数=12×5+11=71,因此被除数最小为71,答案选择D选项。

【例3】有四个自然数A、B、C、D,它们的和不超过400,并且A除以B商是5余5,A除以C商是6余6,A除以D商是7余7。

那么,这四个自然数的和是?
A. 216
B. 108
C. 314
D. 348
【解析】利用余数基本恒等式:被除数=除数×商+余数,有A=B×5+5= (B+1)×5。

由于A、B均是自然数,于是A可以被5整除,同理,A还可以被6、7整除,因此,A可以表示为5、6、7的公倍数,即210n。

由于A、B、C、D的和不超过400,所以A只能等于210,从而可以求出B=41、C=34、D=29,得到A+B+C+D=314,选C。

像上面这两个题目,就是活用这两个知识点来解题的,所以在对这类问题的练习过程中,一定要牢牢地把握这两点。

三、同余问题
这类问题在考试中比较常见,主要是从除数与余数的关系入手,来求得最终答案。

通过总结我们得出解决同余问题的核心口诀,如下表所示:
同余问题核心口诀“最小公倍数作周期,余同取余,和同加和,差同减差”余同取余:“一个数除以4余1,除以5余1,除以6余1”,这个数是 60n+1 和同加和:“一个数除以4余3,除以5余2,除以6余1”,这个数是 60n+7 差同减差:“一个数除以4余3,除以5余4,除以6余5”,这个数是 60n-1 说明:在这里,n的取值范围为整数,可以为正数也可以取负数。

【例4】一个数除以4余1,除以5余1,除以6余1,请问这个数如何表示?
【解析】设这个数为A,则A除以4余1,除以5余1,除以6余1,那么A-1就可以被4、5、6整除。

4、5、6的最小公倍数为60,所以A-1就可以表示为60n,因此,A=60n+1。

【例5】一个数除以4余3,除以5余2,除以6余1,请问这个数如何表示?
【解析】设这个数为A,如果A除以4余3,除以5余2,除以6余1,我们知道除数与对应余数的和相同,对应的为“和同加和”,满足这三个条件的数可以表示为:A= 60n+7。

【例6】一个数除以4余1,除以5余2,除以6余3,请问这个数如何表示?
【解析】除以除以4余1,除以5余2,除以6余3,我们知道除数与对应余数的差相同,对应的为“差同减差”,满足这三个条件的数可以表示为:60n-1。

根据以上三道例题的结论,我们还可以举一反三地解决其他相关问题。

如:
【例7】一个三位数除以9余7,除以5余2,除以4余3,这样的三位数共有多少个?
A. 5个
B. 6个
C. 7个
D. 8个
解析:除以5余2,除以4余3,我们知道除数与对应余数的和相同,对应的为“和同加和”,满足这两个条件的数可以表示为,P=20n+7,表示除以20余7;再配上之前的条件除以9余7,对应的为“余同取余”,我们得到这个数可以表示为180n+7,由于这个数为三位数,所以n可以取1、2、3、4、5,所以共5个。

认为针对行测考试中出现的此类问题,只要大家掌握余数的基本点,包括关系式和恒等式等,牢记同余问题的解决口诀,清楚对公倍数(或最小公倍数)的求法,再遇到类似的余数同余问题,就能轻松、快速地解决掉。

相关文档
最新文档