高考数学一轮复习第十二章推理与证明、算法初步、复数第1讲合情推理与演绎推理练习理

合集下载

高三数学一轮复习第十二章复数算法推理与证明第三节合情推理与演绎推理课件理

高三数学一轮复习第十二章复数算法推理与证明第三节合情推理与演绎推理课件理

n
22
2
n (n1)
若{cn}是等比数列,则c1·c2·…·cn=c 1n ·q1+2+…+(n-1)=c 1n ·q 2,
n 1
∴ n c=1cc1·2 ,即cn{ }q为2 等比数n c列1c,故2 选Dcn.
1-2 把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对
3
解析 通过观察已给出等式的特点,可知等式右边的 4 是个固定数4, 后
3
3
面第一个数是等式左边最后一个括号内分数的分子中π的系数的一半,
4 后面第二个数是第一个数的下一个自然数,所以,所求结果为4 ·n·(n+
3
3
1),即 4 n(n+1).
3
命题角度三 与图形变化有关的推理 典例4 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地 看作一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢, 第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n个图 蜂巢总数.
1-1
若数列{an}是等差数列,则数列{bn}
bn也a为1等a2差nan

数列.类比这一性质可知,若正项数列{cn}是等比数列,且{dn}也是等比数
列,则dn的表达式应为 ( )
A.dn= c1 c2 B.dnc=n
n
C.dn= n c1n c2n D.dn=c nn
(2)在平面几何中,△ABC的∠C的平分线CE分AB所成的线段的比为 BA CC = A E (如图1).把这个结论类比到空间,在三棱锥A-BCD中(如图2),面DEC
BE
平分二面角A-CD-B且与AB相交于E,则类比得到的结论是 .

高三数学一轮复习 第十二章 复数、算法、推理与证明 第三节 合情推理与演绎推理夯基提能作业本 理

高三数学一轮复习 第十二章 复数、算法、推理与证明 第三节 合情推理与演绎推理夯基提能作业本 理

第三节合情推理与演绎推理A组基础题组1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理( )A.结论正确B.大前提不正确C.小前提不正确D.全不正确2.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“=”类比得到“=”.以上的式子中,类比得到的结论正确的个数是( )A.1B.2C.3D.43.观察(x2)'=2x,(x4)'=4x3,(cos x)'=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )A.f(x)B.-f(x)C.g(x)D.-g(x)4.在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则=,推广到空间可以得到类似结论,已知正四面体P-ABC的内切球体积为V1,外接球体积为V2,则=( )A. B. C. D.5.如图所示,椭圆中心在坐标原点,F为左焦点,当⊥时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于( )A. B. C.-1 D.+16.(2015陕西文,16,5分)观察下列等式1-=,1-+-=+,1-+-+-=++,……据此规律,第n个等式可为.7.设函数f(x)=(x>0),观察:f1(x)=f(x)= , f2(x)=f[f1(x)]=,f3(x)=f[f2(x)]=, f4(x)=f[f3(x)]=,……根据以上事实,由归纳推理可得:当n∈N*且n≥2时, f n(x)=f[f n-1(x)]= .8.在△ABC中,不等式++≥成立,在凸四边形ABC D中,不等式+++≥成立,在凸五边形ABCDE中,不等式++++≥成立,……,依此类推,在凸n边形A1A2…A n中,不等式++…+≥成立.9.我们将具有下列性质的所有函数组成集合M:函数y=f(x)(x∈D),对任意x,y,∈D均满足f≥[f(x)+f(y)],当且仅当x=y时等号成立.(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)的大小;(2)设函数g(x)=-x2,求证:g(x)∈M.10.已知O是△ABC内任意一点,连接AO,BO,CO并延长,分别交对边于A',B',C',则++=1,这是一道平面几何题,其证明常采用“面积法”:++=++==1.请运用类比思想猜想,对于空间中的四面体V-BCD,存在什么类似的结论,并用“体积法”证明.B组提升题组11.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,……,则a10+b10等于( )A.28B.76C.123D.19912.如图所示,面积为S的平面凸四边形的第i条边的边长记为a i(i=1,2,3,4),此四边形内任一点P到第i条边的距离为h i(i=1,2,3,4),若====k,则1×h1+2×h2+3×h3+4×h4=.类比以上性质,体积为V 的三棱锥的第i个面的面积记为S i(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为H i(i=1,2,3,4),若====k,则H1+2H2+3H3+4H4的值为( )A. B. C. D.13.在平面上,我们如果用一条直线去截正方形的一个角,那么截下一个直角三角形,按图1所标边长,由勾股定理有:c2=a2+b2.如图2,设想正方形换成正方体,把截线换成截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,如果用S1,S2,S3表示三个侧面面积,S4表示底面(截面)面积,那么类比得到的结论是.14.仔细观察下面○和●的排列规律:○●○○●○○○●○○○○●○○○○○●○○○○○○●……,若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是.15.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.答案全解全析A组基础题组1.C 因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.2.B ①②正确,③④⑤⑥错误.3.D 由已知归纳得,偶函数的导函数为奇函数,又由题意知f(x)是偶函数,所以其导函数应为奇函数,故g(-x)=-g(x),选D.4.C 正四面体的内切球与外接球的半径之比为1∶3,故=.5.A 设“黄金双曲线”的方程为-=1(a>0,b>0),则B(0,b),F(-c,0),A(a,0).在“黄金双曲线”中,因为⊥,所以·=0.又=(c,b),=(-a,b),所以b2=ac.而b2=c2-a2,所以c2-a2=ac.在等号两边同除以a2,得e2-1=e,解得e=.6.答案1-+-+…+-=++…+解析规律为等式左边共有2n项且等式左边分母分别为1,2,…,2n,分子为1,奇数项为正、偶数项为负,即为1-+-+…+-;等式右边共有n项且分母分别为n+1,n+2,…,2n,分子为1,即为++…+.所以第n个等式可为1-+-+…+-=++…+.7.答案解析 f1(x)=f(x)=,f2(x)=f[f1(x)]==,f3(x)=f[f2(x)]==,f4(x)=f[f3(x)]==,……∴当n≥2且n∈N*时, f n(x)=f[f n-1(x)]=.8.答案解析∵在△ABC中,++≥=,在凸四边形ABCD中,+++≥=,在凸五边形ABCDE中,++++≥=,……,∴在凸n边形A1A2…A n中,++…+≥.9.解析(1)f≥[f(x)+f(y)],当且仅当x=y时等号成立,令x=3,y=5,得f(3)+f(5)<2f(4).(2)证明:g-[g(x1)+g(x2)]=-+=≥0,当且仅当x1=x2时等号成立,所以g≥[g(x1)+g(x2)],所以g(x)∈M.10.解析结论:在四面体V-BCD中,任取一点O,连接VO,DO,BO,CO并延长,分别交四个面于E,F,G,H点.则+++=1.证明:在四面体O-BCD与V-BCD中,设其高分别为h1,h,则===.同理,=;=;=,∴+++===1.B组提升题组11.C 观察给出的式子特点可推知,等式右端的值,从第三个式子开始,后一个式子的右端值等于它前面两个式子的右端值的和,照此规律,则a10+b10=123.12.B 在平面凸四边形中,连接P点与各个顶点,将其分成四个小三角形,根据三角形面积公式,可得S=(a1h1+a2h2+a3h3+a4h4)=(kh1+2kh2+3kh3+4kh4)=(h1+2h2+3h3+4h4).所以h1+2h2+3h3+4h4=.类似地,连接Q点与三棱锥的四个顶点,将其分成四个小三棱锥,则有V=(S1H1+S2H2+S3H3+S4H4)=(kH1+2kH2+3kH3+4kH4)=(H1+2H2+3H3+4H4),所以H1+2H2+3H3+4H4=.13.答案++=解析将侧面面积类比为直角三角形的直角边,底面面积类比为直角三角形的斜边,可得++=.14.答案14解析进行分组○●|○○●|○○○●|○○○○●|○○○○○●|……,则前n组中○和●的总数是f(n)=2+3+4+…+(n+1)=,易知f(14)=119, f(15)=135,故所求数为14.15.解析(1)选择②式,计算如下:sin215°+cos215°-sin 15°cos 15°=1-sin 30°=1-=.(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=.证法一:sin2α+cos2(30°-α)-sin αcos(30°-α)=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin2α+cos2α+sin αcos α+sin2α-sin αcos α-sin2α=sin2α+cos2α=.证法二:sin2α+cos2(30°-α)-sin αcos(30°-α)=+-sin α·(cos 30°cos α+sin 30°sin α)=-cos 2α++(cos 60°cos 2α+sin 60°sin 2α)-·sin αcos α-sin2α=-cos 2α++cos 2α+·sin 2α-sin 2α-(1-cos 2α)=1-cos 2α-+cos 2α=.。

高三数学一轮复习第十二篇复数、算法、推理与证明第3节合情推理与演绎推理基础对点练理

高三数学一轮复习第十二篇复数、算法、推理与证明第3节合情推理与演绎推理基础对点练理

第3节合情推理与演绎推理知识点、方法题号归纳推理3,7,8,10,11,13,15类比推理2,4,6,9,14演绎推理1,5,12基础对点练(时间:30分钟)1.(2016烟台模拟)命题“有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( C )(A)使用了归纳推理(B)使用了类比推理(C)使用了“三段论”,但大前提错误(D)使用了“三段论”,但小前提错误解析:由题目可知满足“三段论”形式,但是大前提表述不正确而使结论错误.2.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b=c+d⇒a=c,b=d”;③若“a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”.其中类比结论正确的个数是( C )(A)0 (B)1 (C)2 (D)3解析:①②正确,③错误,因为两个复数如果不是实数,不能比较大小.故选C.3.(2016长沙校级二模)已知21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,…,以此类推,第5个等式为( D )(A)24×1×3×5×7=5×6×7×8(B)25×1×3×5×7×9=5×6×7×8×9(C)24×1×3×5×7×9=6×7×8×9×10(D)25×1×3×5×7×9=6×7×8×9×10解析:因为21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,…,所以第5个等式为25×1×3×5×7×9=6×7×8×9×10.故选D.4.(2016济南一模)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论( D )①垂直于同一个平面的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;③垂直于同一个平面的两个平面互相平行;④垂直于同一条直线的两个平面互相平行.(A)①②(B)②③(C)③④(D)①④解析:①垂直于同一个平面的两条直线互相平行,正确.②垂直于同一条直线的两条直线不一定平行,也可能是相交直线、异面直线,故不正确.③垂直于同一个平面的两个平面不一定平行,也可能是相交平面,如墙角,故不正确.④垂直于同一条直线的两个平面互相平行,正确.5.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.例如原信息为111,则传输信息为01 111,信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( C )(A)11 010 (B)01 100 (C)10 111 (D)00 011解析:对于选项C,传输信息是10 111,对应的原信息是011,由题目中运算规则知h0=0⊕1=1,而h1=h0⊕a2=1⊕1=0,故传输信息应是10 110.故选C.6.已知等差数列{a n}中,有=,则在等比数列{b n}中,会有类似的结论: .解析:由等比数列的性质可知b1b30=b2b29=…=b11b20,所以=.答案:=7.(2016渭南模拟)观察下列不等式:①<1;②+<;③++<;…则第5个不等式为.解析:由①<1;②+<;③++<;归纳可知第4个不等式应为+++<2;第5个不等式应为++++<.答案:++++<8.在平面内有n(n∈N*,n≥3)条直线,其中任何两条不平行,任何三条不过同一点,若这n条直线把平面分成f(n)个平面区域,则f(5)的值是,f(n)的表达式是.解析:由题意知,n条直线将平面分成+1个平面区域,故f(5)=16,f(n)=.答案:16 f(n)=9.在圆中有结论:如图所示,“AB是圆O的直径,直线AC,BD分别是圆O过A,B的切线,P是圆O上任意一点,CD是过P的切线,则有PO2=PC·PD”.类比到椭圆:“AB是椭圆的长轴,直线AC,BD分别是椭圆过A,B的切线,P是椭圆上任意一点,CD是过P的切线,则有.”解析:椭圆中的焦半径类比圆中的半径.答案:PF1·PF2=PC·PD10.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解:(1)选择②式,sin2 15°+cos2 15°-sin 15°cos 15°=1-sin 30°=.(2)推广的三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=.证明:sin2α+cos2(30°-α)-sin αcos(30°-α)=+-sin α(cos 30°cos α+ sin 30°sin α)=-cos 2α++(cos 60°cos 2α+sin 60°sin 2α)-sin αcos α-sin2α=1-cos 2α+cos 2α+sin 2α-sin 2α-(1-cos 2α)=1-cos 2α-+cos 2α=.能力提升练(时间:15分钟)11.从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为( C )(A)2 097 (B)1 553 (C)1 517 (D)2 111解析:根据如题图所示的规则排列,设最上层的一个数为a,则第二层的三个数为a+7,a+8,a+9,第三层的五个数为a+14,a+15,a+16,a+17,a+18,这9个数之和为a+3a+24+5a+80=9a+104.由9a+104=1 517,得a=157,是自然数.且a为表中第20行第5个数,符合,若9a+104=2 097,a≈221.4不合题意;若9a+104=1 553,a=161,a为表中第21行第一个数不合题意;若9a+104=2 111,a=223,a为表中第28行第7个数,不合题意.12.设f为实系数三次多项式函数.已知五个方程式的相异实根个数如下表所述:f(x)-20=0 1 f(x)+10=0 1f(x)-10=0 3 f(x)+20=0 1f(x)=0 3关于f的极小值α,试问下列选项中正确的是( C )(A)0<α<10 (B)-20<α<-10(C)-10<α<0 (D)α不存在解析:f(x)分别向上向下平移10个单位和20个单位分别得到f(x)+10,f(x)+20,f(x)-10,f (x)-20,由题意可近似画出f(x)的草图,由图可以看出f(x)极小值α∈(-10,0).13.从装有(n+1)个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有种取法.在这种取法中,可以分成两类:一类是取出的m个球全部为白球,另一类是取出(m-1)个白球,1个黑球,有·+·=,即有等式:+=成立.试根据上述思想化简下列式子:·+·+·+…+·= .(1≤k<m≤n,k,m,n∈N).解析:在·+·+·+…+·中,从第一项到最后一项分别表示:从装有n个白球,k个黑球的袋子里,取出m个球的所有情况取法总数的和,故答案应为从装有(n+k)个球的袋子中取出m个球的不同取法数为.答案:14.在Rt△ABC中,AB⊥AC,AD⊥BC于D,求证:=+.在四面体ABCD中,类比上述结论,你能得到怎样的猜想?并说明理由.证明:如图所示,由射影定理AD2=BD·DC,AB2=BD·BC,AC2=BC·DC,所以===.又BC2=AB2+AC2,所以==+.猜想,在四面体ABCD中,AB,AC,AD两两垂直,AE⊥平面BCD,则=++.证明:如图,连接BE并延长交CD于F,连接AF.因为AB⊥AC,AB⊥AD,AD∩AC=A,所以AB⊥平面ACD.所以AB⊥AF.在Rt△ABF中,AE⊥BF,所以=+.因为AB⊥平面ACD,所以AB⊥CD;因为AE⊥平面BCD,所以AE⊥CD,又AB与AE交于点A,所以CD⊥平面ABF,所以CD⊥AF.所以在Rt△ACD中=+,所以=++.15.(2016聊城模拟)下面四个图案,都是由小正三角形构成,设第n个图形中所有小正三角形边上黑点的总数为f(n).(1)求出f(2),f(3),f(4),f(5);(2)找出f(n)与f(n+1)的关系,并求出f(n)的表达式.解:(1)由题意有f(1)=3,f(2)=f(1)+3+3×2=12.f(3)=f(2)+3+3×4=27.f(4)=f(3)+3+3×6=48.f(5)=f(4)+3+3×8=75.(2)由题意及(1)知,f(n+1)=f(n)+3+3×2n=f(n)+6n+3,即f(n+1)-f(n)=6n+3,所以f(2)-f(1)=6×1+3,f(3)-f(2)=6×2+3,f(4)-f(3)=6×3+3,f(n)-f(n-1)=6(n-1)+3,将上面(n-1)个式子相加,得f(n)-f(1)=6[1+2+3+…+(n-1)]+3(n-1)=6×+3(n-1)=3n2-3.又f(1)=3,所以f(n)=3n2.精彩5分钟1.(2016安阳模拟)我们知道,在边长为a的正三角形内任一点到三边的距离之和为定值a,类比上述结论,在边长为a的正四面体内任一点到其四个面的距离之和为定值( A )(A) a (B) a (C) a (D) a解题关键:在正四面体内任取一点,将四面体分割成四个三棱锥.解析:正四面体内任一点与四个面组成四个三棱锥,它们的体积之和为正四面体的体积,设点到四个面的距离分别为h1,h2,h3,h4,每个面的面积为a2,正四面体的体积为a3,则有×a 2(h 1+h 2+h 3+h 4)=a 3,得h 1+h 2+h 3+h 4= a.故选A.2.(2016揭阳模拟)对任意的a,b ∈R,定义:min{a,b}=max{a,b}=则下列各式中恒成立的个数为( B )①min{a,b}+max{a,b}=a+b; ②min{a,b}-max{a,b}=a-b;③(min{a,b})·(max{a,b})=a ·b; ④(min{a,b})÷(max{a,b})=a ÷b. (A)1 (B)2 (C)3 (D)4解题关键:按照新定义对各式是否恒成立作出判断. 解析:因为对任意的a,b ∈R,定义:min{a,b}=max{a,b}=所以min{a,b}取a,b 中的最小值,max{a,b}取a,b 中的最大值. 所以min{a,b},max{a,b}分别取出a,b 中的一个最大值与一个 最小值,所以min{a,b}+max{a,b}=a+b, (min{a,b})·(max{a,b})=a ·b, 故①③成立;若a ≤b,则有min{a,b}-max{a,b}=a-b, 若a>b,则min{a,b}-max{a,b}=b-a ≠a-b, 故②不一定成立;若a ≤b,且b ≠0,则有(min{a,b})÷(max{a,b})=a ÷b, 若a>b,且a ≠0,(min{a,b})÷(max{a,b})=b ÷a ≠a ÷b. 故④不一定成立.故选B.3.(2016铜川模拟)观察以下等式:1=1 1+2=3 1+2+3=6 1+2+3+4=10 1+2+3+4+5=15=131 =93+231 =363+33+231 =1003+43+33+231 =2253+53+43+33+231 可以推测13+23+33+…+n 3= .(用含有n 的式子表示,其中n 为自然数)解题关键:将左、右两列等式作对比,找出数字变化规律. 解析:由已知中的等式13=12;13+23=(1+2)2;13+23+33= (1+2+3)2;13+23+33+43=(1+2+3+4)2;13+23+33+43+53=(1+2+3+4+5)2;…;13+23+33+…+n3=(1+2+…+n)2;即13+23+33+…+n3=[]2=.答案:。

2021届高考数学一轮温习 推理与证明、算法初步、复数专题训练(1)

2021届高考数学一轮温习 推理与证明、算法初步、复数专题训练(1)

推理与证明、算法初步、复数一、基础知识要记牢 (1)复数的模: 复数z =a +b i 的模|z |=a 2+b 2.(2)复数相等的充要条件:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ).专门地,a +b i =0⇔a =0且b =0(a ,b ∈R ).(3)复数的除法一样是将分母实数化,即分子、分母同乘以分母的共轭复数再进一步化简. 二、经典例题领会好[例1] (1)(2021·安徽高考)设i 是虚数单位,假设复数a -103-i (a ∈R )是纯虚数,那么a 的值为( )A .-3B .-1C .1D .3(2)(2021·陕西高考)设z 1,z 2是复数,那么以下命题中的假命题是( ) A .假设|z 1-z 2|=0,那么z 1=z 2 B .假设z 1=z 2,那么z 1=z 2 C .假设|z 1|=|z 2|,那么z 1·z 1=z 2·z 2D .假设|z 1|=|z 2|,那么z 21=z 22[解析] (1)因为a -103-i =a -103+i3-i 3+i =a -103+i10=(a -3)-i ,由纯虚数的概念,知a -3=0,因此a =3.(2)A ,|z 1-z 2|=0⇒z 1-z 2=0⇒z 1=z 2⇒z 1=z 2,真命题;B ,z 1=z 2⇒z 1=z 2=z 2,真命题;C ,|z 1|=|z 2|⇒|z 1|2=|z 2|2⇒z 1·z 1=z 2·z 2,真命题;D ,当|z 1|=|z 2|时,可取z 1=1,z 2=i ,显然z 21=1,z 22=-1,即z 21≠z 22,假命题.[答案] (1)D (2)D1与复数z 有关的复杂式子为纯虚数,可设为m i m ≠0,利用复数相等去运算较简便.2在有关复数z 的等式中,可设出z =a +b i a ,b ∈R ,用待定系数法求解.3熟记一些常见的运算结果可提高运算速度:1±i2=±2i,1+i 1-i =i ,1-i1+i=-i ,设ω=-12+32i ,则ω3=1,|ω|=1,ω2=ω,1+ω+ω2=0.三、预测押题不能少1.(1)设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,那么|(1-z )·z |=( ) B .2D .1解析:选A 依题意得(1-z )·z =(2+i)(-1+i)=-3+i ,|(1-z )·z |=|-3+i|=-32+12=10.(2)已知i 是虚数单位,z =1+i ,z 为z 的共轭复数,那么复数z 2z在复平面上对应的点的坐标为________. 解析:z =1+i ,那么z 2z=1+i 21-i=2i 1-i=2i 1+i 1-i1+i=-1+i ,那么复数z 2z在复平面上对应的点的坐标为(-1,1). 答案:(-1,1)合情推理一、基础知识要记牢 (1)类比推理的一样步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质推测另一类事物的性质,得出一个明确的结论.(2)归纳推理的一样步骤:①通过观看个别事物发觉某些相同的性质;②从已知的相同性质中推出一个明确表述的一样性命题.一样情形下,归纳的个别事物越多,越具有代表性,推行的一样性结论也就越靠得住.二、经典例题领会好[例2] (2021·陕西高考)观看以劣等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,……照此规律,第n个等式可为________.[解析] 12=1,12-22=-(1+2),12-22+32=1+2+3,12-22+32-42=-(1+2+3+4),……12-22+32-42+…+(-1)n+1n2=(-1)n+1(1+2+…+n)=(-1)n+1n n+12.[答案] 12-22+32-42+…+(-1)n+1n2=(-1)n+1n n+12合情推理的解题思路(1)在进行归纳推理时,要先依照已知的部份个体,把它们适当变形,找出它们之间的联系,从而归纳出一样结论.(2)在进行类比推理时,要充分考虑已知对象性质的推理进程,然后通过类比,推导出类比对象的性质.(3)归纳推理关键是找规律,类比推理关键是看共性. 三、预测押题不能少2.(1)21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,24×1×3×5×7=5×6×7×8,….依此类推,第n 个等式为__________________________.解析:由归纳推理可知,第n 个等式为2n ×1×3×...×(2n -1)=(n +1)×(n +2)×...×2n . 答案:2n ×1×3×...×(2n -1)=(n +1)×(n +2)× (2)(2)关于命题:假设O 是线段AB 上一点,那么有|OB |·OA +|OA |·OB =0. 将它类比到平面的情形是:若O 是△ABC 内一点,那么有S △OBC ·OA +S △O CA ·OB +S △OBA ·OC =0,将它类比到空间的情形应该是:假设O 是四面体ABCD 内一点,那么有________.解析:将平面中的相关结论类比到空间,一般是将平面中的图形的面积类比为空间中的几何体的体积,因此依题意可知:假设O 为四面体ABCD 内一点,那么有V O -BCD ·OA +V O -ACD ·OB +V O -ABD ·OC +V O -ABC ·OD =0.答案:V O -BCD ·OA +V O -ACD ·OB +V O -ABD ·OC +V O -ABC ·OD =0程序框图一、经典例题领会好[例3] (2021·新课标全国卷Ⅱ)执行下面的程序框图,若是输入的N =10,那么输出的S =( )A .1+12+13+…+110B .1+12!+13!+…+110!C .1+12+13+…+111D .1+12!+13!+…+111![解析] 当输入N =10时,由于k =1,S =0,T =1,因此T =11=1,S =1,k =2,现在不知足k >10;当k =2时,T =11×2=12!,S =1+12!,k =3,现在不知足k >10;当k =3时,T =11×2×3=13!,S =1+12!+13!,k =4,现在不知足k >10; 当k =4时,T =11×2×3×4=14!,S =1+12!+13!+14!,k =5,现在不知足k >10 ; ……当k =10时,T =11×2×3×4×…×10=110!,S =1+12!+13!+14!+…+110!,k =11,现在知足k >10.因此输出S =1+12!+13!+14!+…+110!. [答案] B1解答有关程序框图问题,首先要读懂程序框图,要熟练掌握程序框图的三种基本结构.2利用循环结构表示算法要注意:①要选择准确的表示累计的变量;②要注意在哪一步结束循环;③执行完整每一次循环,防止执行程序不彻底,造成错误.二、预测押题不能少3.(1)程序框图如图,若是程序运行的结果为S =132,那么判定框中可填入( ) A .k ≤10 B .k ≥10 C .k ≤11D .k ≥11解析:选A 输出的S 值是一个逐次积存的结果,第一次运行S =12,k =11;第二次运行S=132,k=10.若是现在输出结果,那么判定框中的k的最大值是10.(2)假设某程序框图如下图,那么该程序运行后输出的值是( ) A.2 B.3C.4 D.5解析:选C 逐次运行的结果是n=3,i=2;n=4,i=3;n=2,i=4.故输出的值是4.程序框图与概率的交汇算法是新课标高考中的一大热点,专门体此刻算法的交汇性问题上,这些问题题目背景新颖,交汇自然,要紧表此刻算法与函数、数列、不等式、概率及统计的交汇.一、经典例题领会好[例] (2021·四川高考节选)某算法的程序框图如下图,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.(1)别离求出按程序框图正确编程运行时输出y的值为i的概率P i(i=1,2,3);(2)甲、乙两同窗依据自己对程序框图的明白得,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部份数据.甲的频数统计表(部份)运行次数n输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3014610…………2 100 1 027376697乙的频数统计表(部份)运行次数n输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3012117…………2 100 1 051696353当n=2 100时,依照表中的数据,别离写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判定两位同窗中哪一名所编程序符合算法要求的可能性较大;(3)将按程序框图正确编写的程序运行3次,求输出y 的值为2的次数ξ的散布列及数学期望. (1)学审题——审条件之审视图表和数据程序框图――→审图 计算输出y 的值为1,2,3的数的个数―――――――→古典概型公式 概率. (2)学审题 频数统计表――→审表 各小组频数―→频率―――――→与1比较 结论.(3)学审题 条件―→确信y 的取值13−−−−−−→每次发生的概率为求出散布列―→期望值. [解] (1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12;当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13;当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16.因此,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16.(2)当n =2 100时,甲、乙所编程序各自输出y 的值为i (i =1,2,3)的频率如下:输出y 的值为1的频率 输出y 的值为2的频率 输出y 的值为3的频率 甲1 0272 1003762 1006972 100 乙1 0512 1006962 1003532 100比较频率趋势与概率,可得乙同窗所编程序符合算法要求的可能性较大. (3)随机变量ξ可能的取值为0,1,2,3.P (ξ=0)=C 03×⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫233=827, P (ξ=1)=C 13×⎝ ⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫232=49,P (ξ=2)=C 23×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫231=29, P (ξ=3)=C 33×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫230=127, 故ξ的散布列为因此,E (ξ)=3×13=1.即ξ的数学期望为1.此题要紧考查算法与程序框图、古典概型、频数、频率、随机变量的散布列、数学期望等概念及相关计算,考查运用统计与概率的知识与方式解决实际问题的能力,考查数据处置能力、应用意识和创新意识.解答此题的易错点为:一是错读程序框图使此题在求解第一步时就显现错误,二是处置频数散布表中数据时运算错误. 二、预测押题不能少某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如下图的长方体ABCD ­EFGH 材料切割成三棱锥H ­ACF .(1)假设点M ,N ,K 别离是棱HA ,HC ,HF 的中点,点G 是NK 上的任意一点,求证:MG ∥平面ACF ;(2)已知原长方体材料中,AB =2 m ,AD =3 m ,DH =1 m ,依照艺术品加工需要,工程师必需求出该三棱锥的高.工程师设计了一个求三棱锥的高度的程序,其框图如下图,那么运行该程序时乙工程师应输入的t 的值是多少?解:(1)证明:∵HM =MA ,HN =NC ,HK =KF ,∴MK ∥AF ,MN ∥AC . ∵MK ⊄平面ACF ,AF ⊂平面ACF ,∴MK ∥平面ACF , 同理可证MN ∥平面ACF ,∵MN ,MK ⊂平面MNK ,且MK ∩MN =M ,∴平面MNK∥平面ACF,又MG⊂平面MNK,故MG∥平面ACF.(2)由程序框图可知a =CF ,b =AC ,c =AF , ∴d =b 2+c 2-a 22bc=AC 2+AF 2-CF 22AC ·AF=cos ∠CAF ,∴e =12bc1-d 2=12AC ·AF ·sin∠CAF =S △ACF .又h =3t e ,∴t =13he =13h ·S △ACF =V 三棱锥H ­ACF .∵三棱锥H ­ACF 为将长方体ABCD ­EFGH 切掉4个体积相等的小三棱锥所得, ∴V 三棱锥H ­ACF =2×3×1-4×13×12×3×2×1=6-4=2,故t =2.1.(2021·四川高考)如图,在复平面内,点A 表示复数z ,那么图中表示z 的共轭复数的点是( )A .AB .BC .CD .D解析:选B 因为x +y i 的共轭复数是x -y i ,应选B.2.(2021·福建质检)执行如下图的程序框图,假设输入的x 值为2,那么输出的x 值为( ) A .3 B .126C .127D .128解析:选C 假设输入的x =2,那么x =22-1=3,而3<126,故x =23-1=7,而7<126,故x =27-1=127.因为127>126,因此输出的x 值为127. 3.(2021·郑州质量预测)假设复数z =2-i ,那么z +10z=( )A .2-iB .2+iC .4+2iD .6+3i解析:选D ∵z=2-i,∴z+10z=(2+i)+102-i=(2+i)+102+i2-i2+i=6+3i.4.(2021·江西高考)阅读如下程序框图,若是输出i=5,那么在空白矩形框中应填入的语句为( )A .S =2*i -2 =2*i -1C .S =2*i =2*i +4解析:选C 此框图依次执行如下循环:第一次:i =1,S =0,i =1+1=2,i 是奇数不成立,S =2*2+1=5,继续循环; 第二次:i =2+1=3,i 是奇数成立,继续循环;第三次:i =3+1=4,i 是奇数不成立,S =2*4+1=9,继续循环;第四次:i =4+1=5,i 是奇数成立,由题意知现在应跳出循环,输出i =5,即S <10不成立. 故应填S =2*i (现在S =10<10不成立).假设填S =2*i +4,那么在第二次循环中就跳出循环.应选C. 5.(2021·河南洛阳模拟)执行如下图的程序框图,任意输入一次x (0≤x ≤1)与y (0≤y ≤1),那么能输出数对(x ,y )的概率为( )解析:选B 依题意,不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤1表示的平面区域的面积等于12=1;不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤1,y ≤x2表示的平面区域的面积等于∫10x 2d x =13x 310=13,因此所求的概率为13.6.假设数列{a n }是等差数列,那么数列{b n }b n =a 1+a 2+…+a nn也为等差数列.类比这一性质可知,假设正项数列{c n }是等比数列,且{d n }也是等比数列,那么d n 的表达式应为( )A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n =n c n 1+c n 2+…+c nnnD .d n =nc 1·c 2·…·c n解析:选D 假设{a n }是等差数列,那么a 1+a 2+…+a n =na 1+n n -12d ,∴b n =a 1+n -12d =d 2n +a 1-d 2,即{b n }为等差数列;假设{c n }是等比数列,那么c 1·c 2·…·c n=c n 1·q 1+2+…+(n -1)=c n 1·q 12n n (-),∴d n =nc 1·c 2·…·c n =c 1·q12n -,即{d n }为等比数列,应选D.7.已知复数z =1-i ,那么z 2-2z z -1=________.解析:z 2-2z z -1=z -12-1z -1=z -1-1z -1=(-i)-1-i =-i -i-i·i=-2i.答案:-2i8.(2021·山东高考)执行下面的程序框图,假设输入的ε的值为,那么输出的n 的值为________.解析:逐次计算的结果是F 1=3,F 0=2,n =2;F 1=5,F 0=3,n =3,现在输出, 故输出结果为3. 答案:39.(2021·福建质检)观看以劣等式: 13+23=1; 73+83+103+113=12; 163+173+193+203+223+233=39; ……那么当m <n 且m ,n ∈N 时,3m +13+3m +23+3m +43+3m +53+…+3n -23+3n -13=________(最后结果用m ,n 表示). 解析:由13+23=1,知m =0,n =1,1=12-02;由73+83+103+113=12,知m =2,n =4,12=42-22; 由163+173+193+203+223+233=39,知m =5,n =8,39=82-52;………依此规律可归纳,3m +13+3m +23+3m +43+3m +53+…+3n -23+3n -13=n 2-m 2.答案:n 2-m 210.已知复数z 1知足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,且z 1·z 2是实数,求z 2.解:∵(z1-2)(1+i)=1-i,∴z1=2-i.设z2=a+2i,a∈R,则z1·z2=(2-i)(a+2i)=(2a+2)+(4-a)i.∵z1·z2∈R,∴a=4.∴z2=4+2i.11.(2021·郑州质量预测)每一年的3月12日,是中国的植树节.林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗的高度,规定高于128厘米的树苗为“良种树苗”,测得高度如下(单位:厘米):甲:137,121,131,120,129,119,132,123,125,133;乙:110,130,147,127,146,114,126,110,144,146.(1)依照抽测结果,画出甲、乙两种树苗高度的茎叶图,并依照你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出对两种树苗高度的统计结论;(2)设抽测的10株甲种树苗高度平均值为x,将这10株树苗的高度依次输入按程序框图进行运算(如图),问输出的S大小为多少?并说明S的统计学意义;(3)假设小王在甲种树苗中随机领取了5株进行种植,用样本的频率散布估量整体散布,求小王领取到的“良种树苗”的株数X的散布列.解:(1)茎叶图如下图:统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度;②甲种树苗比乙种树苗长得更整齐;③甲种树苗高度的中位数为127,乙种树苗高度的中位数为;④甲种树苗的高度大体上是对称的,而且大多数集中在均值周围,乙种树苗的高度散布较为分散.(2)依题意,x =127,S =35.S 表示10株甲种树苗高度的方差,是描述树苗高度的离散程度的量. S 值越小,表示树苗长得越整齐,S 值越大,表示树苗长得越良莠不齐.(3)由题意可知,领取一株甲种树苗取得“良种树苗”的概率为12,那么X ~B ⎝ ⎛⎭⎪⎫5,12,因此随机变量X 的散布列为12.(2021·北京高考)已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右极点,且四边形OABC 为菱形时,求此菱形的面积; (2)当点B 不是W 的极点时,判定四边形OABC 是不是可能为菱形,并说明理由. 解:(1)椭圆W :x 24+y 2=1的右极点B 的坐标为(2,0).因为四边形OABC 为菱形,因此AC 与OB 彼此垂直平分. 因此可设A (1,m ),代入椭圆方程得14+m 2=1,即m =±32.因此菱形OABC 的面积是12|OB |·|AC |=12×2×2|m |=3.(2)四边形OABC 不可能为菱形.理由如下: 假设四边形OABC 为菱形.因为点B 不是W 的极点,且直线AC 只是原点,因此可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),那么x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2.因此AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2. 因为M 为AC 和OB 的交点,因此直线OB 的斜率为-14k.因为k ·⎝ ⎛⎭⎪⎫-14k ≠-1,因此AC 与OB 不垂直.因此四边形OABC 不是菱形,与假设矛盾.因此当点B 不是W 的极点时,四边形OABC 不可能是菱形.。

[精品]2019届高考数学一轮复习第十二章推理与证明算法复数第一节合情推理与演绎推理课后作业理48(1)

[精品]2019届高考数学一轮复习第十二章推理与证明算法复数第一节合情推理与演绎推理课后作业理48(1)

【创新方案】2017届高考数学一轮复习 第十二章 推理与证明、算法、复数 第一节 合情推理与演绎推理课后作业 理[全盘巩固]一、选择题1.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x )2.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .121 B .123 C .231 D .2113.在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体P ­ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( )A.18B.19C.164D.1274.(2016·陕西商洛期中)对于任意的两个实数对(a ,b )和(c ,d ),规定:(a ,b )=(c ,d ),当且仅当a =c ,b =d ;运算为:(a ,bc ,d )=(ac -bd ,bc +ad );运算为:(a ,b c ,d )=(a +c ,b +d ),设p ,q ∈R ,若p ,q )=(5,0),则(p ,q )=( )A .(4,0)B .(2,0)C .(0,2)D .(0,-4)5.(2016·西安五校联考)已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1) 二、填空题6.观察下列不等式: 52-225-2≥2×72, 45-3542-32≥52×⎝ ⎛⎭⎪⎫723, 98-2893-23≥83×⎝ ⎛⎭⎪⎫1125, 910-51095-55≥2×75, ……由以上不等式,可以猜测:当a >b >0,s 、r ∈N *时,有a s -b sa r -b r≥________.7.(2016·日照模拟)对于实数x ,[x ]表示不超过x 的最大整数,观察下列等式:[ 4 ]+[ 5 ]+[ 6 ]+[7 ]+[8 ]=10,[9 ]+[10 ]+[11 ]+[12 ]+[13 ]+[14 ]+[15 ]=21, ……按照此规律第n 个等式的等号右边的结果为________.8.如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f x 1+f x 2+…+f x n n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n .若y =sinx 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.三、解答题9.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5.求:(1)a 18的值; (2)该数列的前n 项和S n .10.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD2=1AB2+1AC 2.在四面体ABCD 中,类比上述结论,你能得到怎样的猜想?并说明理由.[冲击名校]1.(2016·太原模拟)某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班; 丙说:我们三人各自值班的日期之和相等. 据此可判断丙必定值班的日期是( ) A .2日和5日 B .5日和6日 C .6日和11日 D .2日和11日2.如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,依此类推,则标签为2 0132的格点的坐标为( )A .(1 006,1 005)B .(1 007,1 006)C .(1 008,1 007)D .(1 009,1 008) 3.设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.4.(2016·淄博模拟)如图所示的三角形数阵叫“莱布尼茨调和三角形”,它是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,则第7行第4个数(从左往右)为________.5.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )=13x 3-12x 2+3x -512的对称中心;(2)计算f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫22 017+f ⎝ ⎛⎭⎪⎫32 017+f ⎝ ⎛⎭⎪⎫42 017+…+f ⎝ ⎛⎭⎪⎫2 0162 017.答 案 [全盘巩固]一、选择题1.解析:选D 由所给函数及其导数知,偶函数的导函数为奇函数,因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ).2.解析:选B 法一:由a +b =1,a 2+b 2=3,得ab =-1,代入后三个等式中符合,则a 10+b 10=(a 5+b 5)2-2a 5b 5=123.法二:令a n =a n+b n,则a 1=1,a 2=3,a 3=4,a 4=7,…,得a n +2=a n +a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123.3.解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.4.解析:选B 由p ,q )=(5,0)得⎩⎪⎨⎪⎧p -2q =5,2p +q =0⇒⎩⎪⎨⎪⎧p =1,q =-2,所以p ,q )=,-2)=(2,0).5.解:选B 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n n +2个“整数对”,注意到+2<60<+2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).二、填空题6.解析:由已知不等式可知,52-225-2≥2×72=21×⎝ ⎛⎭⎪⎫5+222-1,45-3542-32≥52×⎝ ⎛⎭⎪⎫723=52×⎝ ⎛⎭⎪⎫4+325-2,98-2893-23≥83×⎝ ⎛⎭⎪⎫1125=83×⎝ ⎛⎭⎪⎫9+228-3,910-51095-55≥2×75=105×⎝ ⎛⎭⎪⎫9+5210-5,故猜想当a >b >0,s 、r ∈N *时,a s -b sa r -b r ≥s r ⎝ ⎛⎭⎪⎫a +b 2s -r . 答案:s r ⎝⎛⎭⎪⎫a +b 2s -r7.解析:因为[ 1 ]+[ 2 ]+[ 3 ]=1×3,[ 4 ]+[ 5 ]+[ 6 ]+[7 ]+[8 ]=2×5,[9 ]+[10 ]+[11 ]+[12]+[13 ]+[14 ]+[15 ]=3×7,……,以此类推,第n 个等式的等号右边的结果为n (2n +1),即2n 2+n .答案:2n 2+n8.解析:由题意知,凸函数满足f x 1+f x 2+…+f x n n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n ,又y =sin x 在区间(0,π)上是凸函数,则sin A +sin B +sin C ≤3sin A +B +C3=3sinπ3=332. 答案:332三、解答题9.解:(1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2,…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n=(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n ) =2+2+…+22个2+3+3+…+32个3=52n ; 当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12.综上所述,S n=⎩⎪⎨⎪⎧52n ,n 为偶数,52n -12,n 为奇数.10解:如图所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC ,∴1AD2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2.又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2. 猜想,在四面体ABCD 中,AB 、AC 、AD 两两垂直,AE ⊥平面BCD ,则1AE2=1AB2+1AC2+1AD 2.证明:如图,连接BE 并延长交CD 于F ,连接AF . ∵AB ⊥AC ,AB ⊥AD , ∴AB ⊥平面ACD . ∵AF ⊂平面ACD , ∴AB ⊥AF .在Rt △ABF 中,AE ⊥BF , ∴1AE2=1AB2+1AF 2.∵AB ⊥平面ACD ,∴AB ⊥CD .∵AE ⊥平面BCD ,∴AE ⊥CD .又AB 与AE 交于点A , ∴CD ⊥平面ABF ,∴CD ⊥AF . ∴在Rt △ACD 中1AF2=1AC2+1AD 2,∴1AE2=1AB2+1AC2+1AD 2.[冲击名校]1.解析:选C 这12天的日期之和S 12=122(1+12)=78,甲、乙、丙各自的日期之和是26.对于甲,剩余2天日期之和22,因此这两天是10日和12日,故甲在1日,3日,10日,12日有值班;对于乙,剩余2天日期之和是9,可能是2日,7日,也可能是4日,5日,因此丙必定值班的日期是6日和11日.2.解析:选B 因为点(1,0)处标1=12,点(2,1)处标9=32,点(3,2)处标25=52,点(4,3)处标49=72,依此类推得点(1 007,1 006)处标2 0132.故选B.3.解析:根据题意知,分子都是x ,分母中的常数项依次是2,4,8,16,…,可知f n (x )的分母中常数项为2n,分母中x 的系数为2n-1,故f n (x )=f (f n -1(x ))=xn-x +2n.答案:xn-x +2n4.解析:设第n 行第m 个数为a (n ,m ),由题意知a (6,1)=16,a (7,1)=17,∴a (7,2)=a (6,1)-a (7,1)=16-17=142,a (6,2)=a (5,1)-a (6,1)=15-16=130,a (7,3)=a (6,2)-a (7,2)=130-142=1105,a (6,3)=a (5,2)-a (6,2)=120-130=160,∴a (7,4)=a (6,3)-a (7,3)=160-1105=1140.答案:11405.解:(1)f ′(x )=x 2-x +3,f ″(x )=2x -1, 由f ″(x )=0,即2x -1=0,解得x =12.f ⎝ ⎛⎭⎪⎫12=13×⎝ ⎛⎭⎪⎫123-12×⎝ ⎛⎭⎪⎫122+3×12-512=1.由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝ ⎛⎭⎪⎫12,1.(2)由(1),知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝ ⎛⎭⎪⎫12,1,所以f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2,即f (x )+f (1-x )=2.故f ⎝⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫2 0162 017=2,f ⎝ ⎛⎭⎪⎫22 017+f ⎝ ⎛⎭⎪⎫2 0152 017=2,f ⎝⎛⎭⎪⎫32 017+f ⎝ ⎛⎭⎪⎫2 0142 017=2,……f ⎝⎛⎭⎪⎫2 0162 017+f ⎝ ⎛⎭⎪⎫12 017=2,所以f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫22 017+f ⎝ ⎛⎭⎪⎫32 017+…+f ⎝ ⎛⎭⎪⎫2 0162 017=12×2×2 016=2 016.。

高考数学一轮复习第十二章推理与证明算法复数品味高考感悟考情课件理

高考数学一轮复习第十二章推理与证明算法复数品味高考感悟考情课件理
答案:5
x 3. (2014· 陕西高考)已知 f(x)= , x≥0, 若 f1(x)=f(x), 1+x fn+1(x)=f(fn(x)),n∈N*, 则 f2 014(x)的表达式为________. x x 1+x x x 解析:由 f1(x)= ⇒f (x)=f1+x= x =1+2x; 1+ x 2 1+ 1+x x 1+2x x 又可得 f3(x)=f(f2(x))= = ,故可猜想 f2 014(x)= x 1+3x 1+ 1+2x x . 1+2 014x
并说明理由.
2an+1 解: (1)证明: 因为 =2an+1-an=2d(n=1,2,3)是同一个 2an 常数,所以 2a1,2a2,2a3,2a4 依次构成等比数列.
(2)不存在,理由如下: 令 a1+d=a,则 a1,a2,a3,a4 分别为 a-d,a,a+d,a +2d(a>d,a>-2d,d≠0).
将 t2=t+1 代入(*)式,得 t(t+1)+2(t+1)-2=t2+3t=t+ 1 1+3t=4t+1=0,则 t=- . 4 1 显然 t=- 不是上面方程的解,矛盾,所以假设不成立, 4
3 4 因此不存在 a1,d,使得 a1,a2 ቤተ መጻሕፍቲ ባይዱ,a3,a4依次构成等比数列.
3 . (2014· 江 西 高 考 ) 已 知 数 列 {an} 的 前 n 项 和 Sn = 3n2-n ,n∈N*. 2 (1)求数列{an} 的通项公式; (2)证明:对任意的 n>1,都存在 m∈N* ,使得 a1,an, am 成等比数列.
x 答案:f2 014(x)= 1+2 014x
4.(2014· 陕西高考)观察分析下表中的数据: 多面体 面数(F) 顶点数(V) 棱数(E) 三棱柱 五棱锥 立方体 5 6 6 6 6 8 9 10 12

(旧教材适用)2023高考数学一轮总复习第十二章算法初步复数推理与证明第1讲算法初步课件


(2)(2022·宁夏银川一中段测)运行如图所示的算法程序,结果为( )
n=10 s=0 DO s=s+n n=n-1
LOOP UNTIL PRINT n END
s>=45
A.3
B.4
C.5 答案 B
D.6
解析 n=10,s=0,进入循环得到 s=10,n=9,不满足 s≥45,再进 入循环得到 s=19,n=8,仍然不满足 s≥45,再进入循环得到 s=27,n=7, 仍然不满足 s≥45,再进入循环得到 s=34,n=6,仍然不满足 s≥45,再进 入循环得到 s=40,n=5,仍然不满足 s≥45,再进入循环得到 s=45,n=4, 满足 s≥45,终止循环.输出的结果为 4.故选 B.
2.循环结构中必有条件结构,其作用是控制循环进程,避免进入“死 循环”,是循环结构必不可少的一部分.
3.注意区分当型循环与直到型循环.直到型循环是“先循环,后判断, 条件满足时终止循环”,而当型循环则是“先判断,后循环,条件满足时执 行循环”.两者的判断框内的条件表述在解决同一问题时是不同的,它们恰 好相反.
角度
算法与数列的交汇
例 3 (2021·西宁模拟)执行如图所示的程序框图,若输入 n=10,则输
出的 S 的值是( )
9 A.10 C.1112
B.1110 D.292
答案 B 解析 模拟程序的运行,可得程序的功能是利用循环结构计算并输出变 量 S=1×1 2+2×1 3+…+10×1 11的值,可得 S=1×1 2+2×1 3+…+10×1 11= 1-12+12-31+…+110-111=1-111=1110.故选 B.
A.i>100,n=n+1 C.i>34,n=n+3

高考数学一轮复习 第十二章 算法初步、推理与证明、复数12.3合情推理与演绎推理教学案 理 新人教A版

12.3 合情推理与演绎推理考纲要求1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.1.合情推理主要包括__________和__________.合情推理的过程:从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想(1)归纳推理:由某类事物的________具有某些特征,推出该类事物的__________都具有这些特征的推理,或者由________概括出__________的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理:由________具有某些类似特征和其中________的某些已知特征,推出________也具有这些特征的推理称为类比推理(简称类比),简言之,类比推理是由______到______的推理.2.演绎推理:从______的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由______到______的推理.(1)三段论是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(2)“三段论”可以表示为①大前提:M是P.②小前提:S是M.③结论:S是P.用集合说明:即若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.1.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○…,按这种规律往下排,那么第36个圆的颜色应是( ).A.白色B.黑色C.白色可能性大D.黑色可能性大2.数列2,5,11,20,32,x,…中的x等于( ).A.28 B.32C.33 D.473.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R 上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( ).A.f(x) B.-f(x)C.g(x) D.-g(x)4.给出下列三个类比结论.①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数是( ).A.0 B.1 C.2 D.3一、归纳推理【例1】 观察:①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想. 方法提炼1.归纳推理的特点:(1)归纳推理是由部分到整体、由个别到一般的推理;(2)归纳的前提是部分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的.所以“前提真而结论假”的情况是可能发生的;(3)人们在进行归纳推理时,总是先收集一定的事实材料,有了个别性的、特殊性的事实作为前提,然后才能进行归纳推理,因此归纳推理要在观察和试验的基础上进行;(4)归纳推理能够发现新事实、获得新结论,是做出科学发现的重要手段.2.归纳推理的一般步骤:首先,对有限的资料进行观察、分析、归纳整理;然后,在此基础上提出带有规律性的结论,即猜想;最后,检验这个猜想.请做演练巩固提升1 二、类比推理【例2】 在Rt △ABC 中,∠BAC =90°,作AD ⊥BC ,D 为垂足,BD 为AB 在BC 上的射影,CD 为AC 在BC 上的射影,则有AB 2+AC 2=BC 2,AC 2=CD ·BC 成立.直角四面体PABC (即PA ⊥PB 、PB ⊥PC 、PC ⊥PA )中,O 为P 在△ABC 内的射影,△PAB 、△PBC 、△PCA 的面积分别记为S 1、S 2、S 3,△OAB 、△OBC 、△OCA 的面积分别记为S ′1、S ′2、S ′3,△ABC 的面积记为S .类比直角三角形中的射影结论,在直角四面体PABC 中可得到正确结论________(写出一个正确结论即可).方法提炼1.类比推理的特点:(1)类比推理是由特殊到特殊的推理;(2)类比推理是从人们已经掌握了的事物的特征,推测正在被研究中的事物的特征,所以类比推理的结果具有猜测性,不一定可靠;(3)类比推理以旧的知识作基础,推测新的结果,具有发现的功能;(4)由于类比推理的前提是两类对象之间具有某些可以清楚定义的类似特征,所以进行类比推理的关键是明确地指出两类对象在某些方面的类似特征.2.类比推理的步骤:首先,找出两类对象之间可以确切表述的相似特征;然后,用一类对象的已知特征去推测另一类对象的特征,从而获得一个猜想;最后,检验这个猜想.类比是科学研究最普遍的方法之一.在数学中,类比是发现概念、方法、定理和公式的重要手段,也是开拓新领域和创造新分支的重要手段.类比在数学中应用广泛,数与式、平面与空间、一元与多元、低次与高次、相等与不等、有限与无限之间有不少结论,都是先用类比法猜想,而后加以证明的.请做演练巩固提升2 三、演绎推理【例3】 如图,已知直四棱柱ABCD ­A 1B 1C 1D 1的底面是直角梯形,AB ⊥BC ,AB ∥CD ,E ,F 分别是棱BC ,B 1C 1上的动点,且EF ∥CC 1,CD =DD 1=1,AB =2,BC =3.(1)证明:无论点E 怎样运动,四边形EFD 1D 都为矩形; (2)当EC =1时,求几何体A ­EFD 1D 的体积. 方法提炼1.演绎推理是由一般性的命题推出特殊性命题的一种推理模式.2.演绎推理的一般模式是由大前提、小前提推出结论的三段论推理.三段论推理常用的一种格式,可以用以下公式来表示:如果b ⇒c ,a ⇒b ,则a ⇒c .3.演绎推理是一种必然性推理.演绎推理的前提与结论之间有蕴涵关系,因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的.错误的前提可能导致错误的结论.三段论推理也可用集合论的观点来解释:若集合M 的所有元素都具有性质P ,S 是M 的子集,那么S 中所有元素也都具有性质P .三段论的公式中包含三个判断:第一个判断称为大前提,它提供了一个一般性的原理;第二个判断叫小前提,它指出了一个特殊情况;这两个判断联合起来,揭示了一般原理和特殊情况的内在联系,从而产生了第三个判断结论.请做演练巩固提升3把握不准周期性而致误【典例】 (2012陕西高考)观察下列不等式1+122<32, 1+122+132<53, 1+122+132+142<74, ……照此规律,第五个不等式为________________.答案:1+122+132+142+152+162<116答题指导:在解答本题时有两点易造成误解:(1)对于给定的式子,只观察式子结果,而不去继续探究下几项式子,从而找不到规律而误解.(2)在继续探究的情况下,运算错误从而导致周期找不到或找错周期而误解.1.观察下列各式:72=49,73=343,74=2 401,…,则72 011的末两位数字为( ). A .01 B .43 C .07 D .492.在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体PABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( ).A.18B.19C.164 D.1273.“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以y=⎝ ⎛⎭⎪⎫13x是增函数(结论)”,上面推理的错误..是( ). A .大前提错导致结论错 B .小前提错导致结论错C .推理形式错导致结论错D .大前提和小前提错都导致结论错4.(2012湖北高考)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b 2 012是数列{a n }中的第______项; (2)b 2k -1=______.(用k 表示)5.(2012长沙模拟)有以下命题:设a n 1,a n 2,…,a n m 是公差为d 的等差数列{a n }中任意m 项,若n 1+n 2+…+n m m =p +r m (p ∈N *,r ∈N 且r <m ),则a n 1+a n 2+…+a n mm =a p +r md ;特别地,当r =0时,称a p 为a n 1,a n 2,…,a n m 的等差平均项.(1)已知等差数列{a n }的通项公式为a n =2n ,根据上述命题,则a 1,a 3,a 10,a 18的等差平均项为________.(2)将上述真命题推广到各项为正实数的等比数列中:设a n 1,a n 2,…,a n m 是公比为q的等比数列{a n }中任意m 项,若n 1+n 2+…+n m m =p +r m(p ∈N *,r ∈N 且r <m ),则________;特别地,当r =0时,称a p 为a n 1,a n 2,…,a n m 的等比平均项.参考答案基础梳理自测知识梳理1.归纳推理 类比推理 (1)部分对象全部对象 个别事实 一般结论 (2)两类对象 一类对象 另一类对象 特殊 特殊 2.一般性 一般 特殊 基础自测1.A 解析:由图知,图形是三白二黑的圆周而复始相继排列,是一个周期为5的三白二黑的圆列,因为36÷5=7余1,所以第36个圆应与第1个圆颜色相同,即白色.2.D 解析:由5-2=3,11-5=6,20-11=9,32-20=12,则x -32=15,∴x =47. 3.D 解析:由已知的三个求导式可归纳推理得到偶函数的导函数是奇函数,又f (x )是偶函数,所以g(x )是奇函数,故g(-x )=-g(x ).4.B 解析:只有③正确. 考点探究突破【例1】 解:猜想sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.证明:左边=sin 2α+cos(α+30°)[cos(α+30°)+sin α]=sin2α+⎝ ⎛⎭⎪⎫32cos α-12sin α⎝ ⎛⎭⎪⎫32cos α+12sin α=sin 2α+34cos 2α-14sin 2α=34=右边.所以,猜想是正确的.【例2】 S 21=S 1′S(或S 2=S 21+S 22+S 23)解析:空间问题与平面问题的类比,通常可抓住几何要素的如下对应关系作对比:多面体↔多边形,面↔边,体积↔面积,二面角↔平面角,面积↔线段长,…,由此,可类比得S 21=S 1′S(或S 2=S 21+S 22+S 23).【例3】 (1)证明:在直四棱柱ABCD­A 1B 1C 1D 1中,DD 1∥CC 1, ∵EF∥CC 1,∴EF∥DD 1.又∵平面ABCD∥平面A 1B 1C 1D 1, 平面ABCD∩平面EFD 1D =ED , 平面A 1B 1C 1D 1∩平面EFD 1D =FD 1,∴ED∥FD 1.∴四边形EFD 1D 为平行四边形. ∵侧棱DD 1⊥底面ABCD ,又DE ⊂平面ABCD , ∴DD 1⊥DE.∴四边形EFD 1D 为矩形. (2)解:连接AE ,∵四棱柱ABCD ­A 1B 1C 1D 1为直四棱柱, ∴侧棱DD 1⊥底面ABCD.又AE ⊂平面ABCD ,∴DD 1⊥AE. 在Rt △ABE 中, AB=2,BE=2,则AE=在Rt △CDE 中,EC=1,CD=1,则在直角梯形ABCD 中,=∴AE 2+DE 2=AD 2,即AE ⊥ED. 又∵ED ∩DD 1=D , ∴AE ⊥平面EFD 1D.由(1)可知,四边形EFD 1D 为矩形,且DD 1=1,∴矩形EFD 1D 的面积为S 矩形EFD 1D =DE ·DD 1∴几何体A­EFD 1D 的体积为V A­EFD 1D =13S 矩形EFD 1D ·AE=13×2×22=43.演练巩固提升1.B 解析:(法一)由题意得,72 011=7502×4+3=(74)502·73,由于74=2 401末位为1,倒数第二位为0,因此2 401502的末两位定为01.又73=343,∴(74)502·73的末两位定为43.(法二)用归纳法:∵72=49,73=343,74=2 401,75=16 807,76=117 649,77=823 543,…,由上知末两位有周期性且T =4.又72 011=7502×4+3,∴72 011的末两位与73的末两位一样为43.2.D 解析:正四面体的内切球与外接球的半径之比为1∶3,故体积之比为V 1V 2=127.3.A 解析:y =a x是增函数这个大前提是错误的,从而导致结论错误.4.(1)5 030 (2)5k (5k -1)2解析:(1)由题意可得,a 1=1,a 2=3,a 3=6,a 4=10,…,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n .以上各式相加得,a n -a 1=2+3+…+n =(n -1)(n +2)2,故a n =n (n +1)2.因此,b 1=a 4=10,b 2=a 5=15,b 3=a 9=45,b 4=a 10=55,…由此归纳出b 2 012=a 5 030.(2)b 1=a 4=4×52,b 3=a 9=9×102,b 5=a 14=14×152,….归纳出b 2k -1=5k (5k -1)2.5.a 8ma n 1·a n 2·…·a n m =a p ·r mq解析:(1)∵a 1+a 3+a 10+a 184=2+6+20+364=16,∴a 1,a 3,a 10,a 18的等差平均项为a 8.(2)用m a n 1·a n 2·…·a n m 类比a n 1+a n 2+…+a n m m 用a p ·r m q 来类比a p +rmd 可得.。

高考数学一轮复习第十二章推理与证明算法复数第一节合情推理与演绎推理课后作业理48

【创新方案】2017届高考数学一轮复习 第十二章 推理与证明、算法、复数 第一节 合情推理与演绎推理课后作业 理[全盘巩固]一、选择题1.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x ) 2.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .121B .123C .231D .2113.在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体P ­ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( )A.18B.19C.164D.1274.(2016·陕西商洛期中)对于任意的两个实数对(a ,b )和(c ,d ),规定:(a ,b )=(c ,d ),当且仅当a =c ,b =d ;运算为:(a ,b c ,d )=(ac -bd ,bc +ad );运算为:(a ,bc ,d )=(a +c ,b +d ),设p ,q ∈R ,若p ,q )=(5,0),则(1,2p ,q )=( )A .(4,0)B .(2,0)C .(0,2)D .(0,-4)5.(2016·西安五校联考)已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1) 二、填空题6.观察下列不等式: 52-225-2≥2×72, 45-3542-32≥52×⎝ ⎛⎭⎪⎫723,98-2893-23≥83×⎝ ⎛⎭⎪⎫1125, 910-51095-55≥2×75, ……由以上不等式,可以猜测:当a >b >0,s 、r ∈N *时,有a s -b sa r -br ≥________.7.(2016·日照模拟)对于实数x ,[x ]表示不超过x 的最大整数,观察下列等式: [ 1 ]+[ 2 ]+[ 3 ]=3,[ 4 ]+[ 5 ]+[ 6 ]+[7 ]+[8 ]=10,[9 ]+[10 ]+[11 ]+[12 ]+[13 ]+[14 ]+[15 ]=21, ……按照此规律第n 个等式的等号右边的结果为________.8.如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f x 1+f x 2+…+f x n n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n .若y =sinx 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.三、解答题9.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5.求:(1)a 18的值; (2)该数列的前n 项和S n .10.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD2=1AB2+1AC 2.在四面体ABCD 中,类比上述结论,你能得到怎样的猜想?并说明理由.[冲击名校]1.(2016·太原模拟)某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班; 丙说:我们三人各自值班的日期之和相等. 据此可判断丙必定值班的日期是( ) A .2日和5日 B .5日和6日 C .6日和11日 D .2日和11日2.如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,依此类推,则标签为2 0132的格点的坐标为( )A .(1 006,1 005)B .(1 007,1 006)C .(1 008,1 007)D .(1 009,1 008) 3.设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.4.(2016·淄博模拟)如图所示的三角形数阵叫“莱布尼茨调和三角形”,它是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n(n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,则第7行第4个数(从左往右)为________.5.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )=13x 3-12x 2+3x -512的对称中心;(2)计算f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫22 017+f ⎝ ⎛⎭⎪⎫32 017+f ⎝ ⎛⎭⎪⎫42 017+…+f ⎝ ⎛⎭⎪⎫2 0162 017.答 案 [全盘巩固]一、选择题1.解析:选D 由所给函数及其导数知,偶函数的导函数为奇函数,因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ).2.解析:选B 法一:由a +b =1,a 2+b 2=3,得ab =-1,代入后三个等式中符合,则a 10+b 10=(a 5+b 5)2-2a 5b 5=123.法二:令a n =a n+b n,则a 1=1,a 2=3,a 3=4,a 4=7,…,得a n +2=a n +a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123.3.解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127. 4.解析:选B 由p ,q )=(5,0)得⎩⎪⎨⎪⎧p -2q =5,2p +q =0⇒⎩⎪⎨⎪⎧p =1,q =-2,所以p ,q )=,-2)=(2,0).5.解:选B 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n n +2个“整数对”,注意到+2<60<+12,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).二、填空题6.解析:由已知不等式可知,52-225-2≥2×72=21×⎝ ⎛⎭⎪⎫5+222-1,45-3542-32≥52×⎝ ⎛⎭⎪⎫723=52×⎝ ⎛⎭⎪⎫4+325-2,98-2893-23≥83×⎝ ⎛⎭⎪⎫1125=83×⎝ ⎛⎭⎪⎫9+228-3,910-51095-55≥2×75=105×⎝ ⎛⎭⎪⎫9+5210-5,故猜想当a >b >0,s 、r ∈N *时,a s -b s a r -b r ≥s r ⎝ ⎛⎭⎪⎫a +b 2s -r.答案:s r ⎝ ⎛⎭⎪⎫a +b 2s -r7.解析:因为[ 1 ]+[ 2 ]+[ 3 ]=1×3,[ 4 ]+[ 5 ]+[ 6 ]+[7 ]+[8 ]=2×5,[9 ]+[10 ]+[11 ]+[12]+[13 ]+[14 ]+[15 ]=3×7,……,以此类推,第n 个等式的等号右边的结果为n (2n +1),即2n 2+n .答案:2n 2+n8.解析:由题意知,凸函数满足f x 1+f x 2+…+f x n n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n ,又y =sin x 在区间(0,π)上是凸函数,则sin A +sin B +sin C ≤3sin A +B +C3=3sinπ3=332.答案:332三、解答题9.解:(1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2,…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n=(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n ) =2+2+…+22个2+3+3+…+32个3=52n ; 当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12.综上所述,S n=⎩⎪⎨⎪⎧52n ,n 为偶数,52n -12,n 为奇数.10解:如图所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC ,∴1AD2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2.又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2. 猜想,在四面体ABCD 中,AB 、AC 、AD 两两垂直,AE ⊥平面BCD ,则1AE2=1AB2+1AC2+1AD 2.证明:如图,连接BE 并延长交CD 于F ,连接AF . ∵AB ⊥AC ,AB ⊥AD , ∴AB ⊥平面ACD . ∵AF ⊂平面ACD , ∴AB ⊥AF .在Rt △ABF 中,AE ⊥BF ,∴1AE2=1AB2+1AF 2.∵AB ⊥平面ACD ,∴AB ⊥CD .∵AE ⊥平面BCD ,∴AE ⊥CD .又AB 与AE 交于点A , ∴CD ⊥平面ABF ,∴CD ⊥AF . ∴在Rt △ACD 中1AF2=1AC2+1AD 2,∴1AE2=1AB2+1AC2+1AD 2.[冲击名校]1.解析:选C 这12天的日期之和S 12=122(1+12)=78,甲、乙、丙各自的日期之和是26.对于甲,剩余2天日期之和22,因此这两天是10日和12日,故甲在1日,3日,10日,12日有值班;对于乙,剩余2天日期之和是9,可能是2日,7日,也可能是4日,5日,因此丙必定值班的日期是6日和11日.2.解析:选B 因为点(1,0)处标1=12,点(2,1)处标9=32,点(3,2)处标25=52,点(4,3)处标49=72,依此类推得点(1 007,1 006)处标2 0132.故选B.3.解析:根据题意知,分子都是x ,分母中的常数项依次是2,4,8,16,…,可知f n (x )的分母中常数项为2n,分母中x 的系数为2n-1,故f n (x )=f (f n -1(x ))=xn-x +2n.答案:xn-x +2n4.解析:设第n 行第m 个数为a (n ,m ),由题意知a (6,1)=16,a (7,1)=17,∴a (7,2)=a (6,1)-a (7,1)=16-17=142,a (6,2)=a (5,1)-a (6,1)=15-16=130,a (7,3)=a (6,2)-a (7,2)=130-142=1105,a (6,3)=a (5,2)-a (6,2)=120-130=160,∴a (7,4)=a (6,3)-a (7,3)=160-1105=1140. 答案:11405.解:(1)f ′(x )=x 2-x +3,f ″(x )=2x -1, 由f ″(x )=0,即2x -1=0,解得x =12.f ⎝ ⎛⎭⎪⎫12=13×⎝ ⎛⎭⎪⎫123-12×⎝ ⎛⎭⎪⎫122+3×12-512=1.由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝ ⎛⎭⎪⎫12,1. (2)由(1),知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝ ⎛⎭⎪⎫12,1,所以f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2,即f (x )+f (1-x )=2.故f ⎝⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫2 0162 017=2,f ⎝ ⎛⎭⎪⎫22 017+f ⎝ ⎛⎭⎪⎫2 0152 017=2,f ⎝⎛⎭⎪⎫32 017+f ⎝ ⎛⎭⎪⎫2 0142 017=2,……f ⎝⎛⎭⎪⎫2 0162 017+f ⎝ ⎛⎭⎪⎫12 017=2,所以f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫22 017+f ⎝ ⎛⎭⎪⎫32 017+…+f ⎝ ⎛⎭⎪⎫2 0162 017=12×2×2 016=2 016.。

高考数学一轮复习 第十二章算法初步、推理与证明、复

2014届高考一轮复习收尾精炼: 合情推理与演绎推理一、选择题1.下列推理过程是演绎推理的是( ).A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°B .某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人C .由平面三角形的性质推测空间四面体的性质D .在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳出{a n }的通项公式2.(2012山东枣庄模拟)将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( ).1 3 5 79 11 13 15 1719 21 23 25 27 29 31 … … …A .809B .852C .786D .893 3.定义一种运算“*”:对于正整数n 满足以下运算性质: (1)1*1=1,(2)(n +1)*1=n *1+1,则n *1=( ).A .nB .n +1C .n -1D .n 24.(2012广东模拟)观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72, …,可以得出的一般结论是( ).A .n +(n +1)+(n +2)+…+(3n -2)=n 2B .n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2C .n +(n +1)+(n +2)+…+(3n -1)=n 2D .n +(n +1)+(n +2)+…+(3n -1)=(2n -1)25.如图,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e =( ).A.5+12 B.5-12C.5-1D.5+1 6.(2012江西高考)观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( ).A .76B .80C .86D .927.已知x >0,由不等式x +1x≥2x ·1x =2,x +4x 2=x 2+x 2+4x2≥33x 2·x2·4x2=3,…,我们可以得出推广结论:x +a xn ≥n +1(n ∈N *),则a =( ).A .2nB .n 2C .3nD .n n二、填空题8.设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结论,可推测一般的结论为________.9.某少数民族的刺绣有着悠久的历史,下图甲、乙、丙、丁为她们刺绣最简单的四种图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形,则f (6)=__________.10.观察下列不等式:1>12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+131>52,…,由此猜想第n 个不等式为______. 三、解答题11.已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1(a >0,b >0)写出具有类似特性的性质,并加以证明.12.(2012福建高考)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°;②sin 215°+cos 215°-sin 15°cos 15°;③sin 218°+cos 212°-sin 18°cos 12°;④sin 2(-18°)+cos 248°-sin(-18°)cos 48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.参考答案一、选择题1.A 解析:C 是类比推理,B 与D 均为归纳推理,而合情推理包括类比推理和归纳推理,故B ,C ,D 都不是演绎推理.而A 是由一般到特殊的推理形式,故A 是演绎推理.2.A 解析:前20行共有正奇数1+3+5+…+39=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.3.A 解析:由(n +1)*1=n *1+1,得n *1=(n -1)*1+1=(n -2)*1+2=…=1*1+( n -1). 又∵1*1=1,∴n *1= n .4.B 解析:可以发现:第一个式子的第一个数是1,第二个式子的第一个数是2,…,故第n 个式子的第一个数是n ;第一个式子中有1个数相加,第二个式子中有3个数相加,…,故第n 个式子中有2n -1个数相加;第一个式子的结果是1的平方,第二个式子的结果是3的平方,…,第n 个式子的结果应该是2n -1的平方,故可以得到n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.5.A 解析:在“黄金双曲线”中,B (0,b ),F (-c,0),A (a,0).∵FB uu r ⊥AB uu u r ,∴FB uu r ·AB uu u r=0.∴b 2=ac .而b 2=c 2-a 2,∴c 2-a 2=ac .在等号两边同除以a 2得e 2-e -1=0,又e >1,∴解得e =5+12. 6.B 解析:由已知条件得,|x |+|y |=n (n ∈N +)的不同整数解(x ,y )的个数为4n ,所以|x |+|y |=20的不同整数解(x ,y )的个数为80,故选B.7.D 解析:再续写一个不等式:x +33x 3=x 3+x 3+x 3+33x 3≥44x 3·x 3·x 3·33x3=4, 由此可得a =n n. 二、填空题8.f (2n )≥n +22解析:由前四个式子可得,第n 个不等式的左边应当为f (2n),右边应当为n +22,即可得一般的结论为f (2n)≥n +22.9.61 解析:根据所给图形的规律,f (1)=1,f (n +1)-f (n )=4n ,n ∈N *,由累加法可得f (n )=2n 2-2n +1,所以f (6)=61.10.1+12+13+…+12n -1>n2解析:由1>12,1+12+122-1>22,1+12+13+…+123-1>32, 1+12+13+…+124-1>42, 1+12+13+…+125-1>52, 可猜想第n 个不等式为1+12+13+…+12n -1>n2.三、解答题11.解:类似的性质为:若M ,N 是双曲线x 2a 2-y 2b2=1(a >0,b >0)上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明:设点M ,P 的坐标分别为(m ,n ),(x ,y ), 则N (-m ,-n ).因为点M (m ,n )在已知双曲线上,所以n 2=b 2a2m 2-b 2.同理y 2=b 2a2x 2-b 2.则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).12.解法一:(1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下: sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sinα)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 解法二:(1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下: sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos 2α2+1+cos(60°-2α)2-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12 sin 2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【创新设计】(江苏专用)2017版高考数学一轮复习 第十二章 推理与证明、算法初步、复数 第1讲 合情推理与演绎推理练习 理基础巩固题组 (建议用时:40分钟)一、填空题1.(2016·西安八校联考)观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4, 2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第________项.解析 两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5为和为8的第3项,所以为第24项. 答案 242.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=________. 解析 由已知得偶函数的导函数为奇函数,故g (-x )=-g (x ). 答案 -g (x )3.在平面几何中,有“正三角形内切圆半径等于这个正三角形高的13”.拓展到空间,类比平面几何的上述正确结论,则正四面体的内切球半径等于这个正四面体的高的________. 解析 设正三角形的边长为a ,高为h ,内切圆半径为r ,由等面积法知3ar =ah ,所以r =13h ; 同理,由等体积法知4SR =HS ,所以R =14H . 答案 144.下列推理是归纳推理的是________.①A ,B 为定点,动点P 满足PA +PB =2a >AB ,则P 点的轨迹为椭圆;②由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式; ③由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x2a2+y2b2=1的面积S =πab ; ④科学家利用鱼的沉浮原理制造潜艇.解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以②是归纳推理. 答案 ②5.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于________.解析 观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a 10+b 10=123. 答案 1236.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________. 解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……, 则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2,易知f (14)=119,f (15)=135,故n =14.答案 147.(2016·徐州检测)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,……,根据上述规律,第n 个等式为________.解析 观察所给等式左右两边的构成易得第n 个等式为13+23+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22=n2(n +1)24. 答案 13+23+…+n 3=n2(n +1)248.(2016·济南模拟)有一个奇数组成的数阵排列如下: 1 3 7 13 21 … 5 9 15 23 … … 11 17 25 … … … 19 27 … … … … 29 … … … … … … … … … … …则第30行从左到右第3个数是________.解析 先求第30行的第1个数,再求第30行的第3个数.观察每一行的第一个数,由归纳推理可得第30行的第1个数是1+4+6+8+10+ (60)30×(2+60)2-1=929.又第n 行从左到右的第2个数比第1个数大2n ,第3个数比第2个数大2n +2,所以第30行从左到右的第2个数比第1个数大60,第3个数比第2个数大62,故第30行从左到右第3个数是929+60+62=1 051.答案 1 051二、解答题9.给出下面的数表序列:表1 表2 表31 1 3 1 3 54 4 812 …其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).解表4为 1 3 5 74 8 1212 2032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.10.f(x)=13x+3,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.解f(0)+f(1)=130+3+1 31+3=11+3+13(1+3)=33(1+3)+13(1+3)=33,同理可得f(-1)+f(2)=33,f(-2)+f(3)=33.由此猜想f(x)+f(1-x)=3 3.证明f(x)+f(1-x)=13x+3+131-x+3=13x +3+3x 3+3·3x =13x +3+3x3(3+3x )=3+3x 3(3+3x )=33.能力提升题组(建议用时:20分钟)11.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )=________.解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n2+n +22个区域. 答案n2+n +2212.古希腊人常用小石子在沙滩上摆成各种形状来研究数. 比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是________(填序号).①289;②1 024;③1 225;④1 378.=3a ,2+1a =2a ,1=1a 则,}n a {记该数列为,…,10,6,3,1观察三角形数: 解析,3+2a .n +1-n a =n a … =n +…+3+2+1=n a ⇒)n +…+3+2+(1+)1-n a +…+2a +1a (=n a +…+2a +1a ∴,n (n +1)2分,把四个选项的数字.2n =n b 则,}n b {记该数列为,…,16,9,4,1观察正方形数:别代入上述两个通项公式,可知使得n 都为正整数的只有1 225.答案 ③13.(2016·南通测试)已知点A (x 1,ax 1),B (x 2,ax 2)是函数y =a x(a >1)的图象上任意不同两点,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论ax1+ax22>a x1+x22成立.运用类比思想方法可知,若点A (x 1,sin x 1),B (x 2,sin x 2)是函数y =sin x (x ∈(0,π))的图象上任意不同两点,则类似地有________成立. 解析 对于函数y =a x(a >1)的图象上任意不同两点A ,B ,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论ax1+ax22>ax1+x22成立;对于函数y=sin x (x ∈(0,π))的图象上任意不同的两点A (x 1,sin x 1),B (x 2,sin x 2),线段AB 总是位于A ,B 两点之间函数图象的下方, 类比可知应有sin x1+sin x22<sin x1+x22成立.答案sin x1+sin x22<sin x1+x2214.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD2=1AB2+1AC2,那么在四面体ABCD 中,类比上述结论,你能得到怎样的猜想,并说明理由. 证明 如图所示,由射影定理,得AD 2=BD ·DC ,AB 2=BD ·BC , AC 2=BC ·DC ,∴1AD2=1BD·DC=BC2BD·BC·DC·BC =BC2AB2·AC2.又BC 2=AB 2+AC 2, ∴1AD2=AB2+AC2AB2·AC2=1AB2+1AC2. 猜想,在四面体ABCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD ,则1AE2=1AB2+1AC2+1AD2. 证明:如图,连接BE 并延长交CD 于F ,连接AF . ∵AB ⊥AC ,AB ⊥AD ,AC ∩AD =A , ∴AB ⊥平面ACD , 又AF ⊂平面ACD ,∴AB⊥AF.在Rt△ABF中,AE⊥BF,∴1AE2=1AB2+1AF2,①在Rt△ACD中,AF⊥CD,∴1AF2=1AC2+1AD2,②①+②得1AE2=1AB2+1AC2+1AD2.。

相关文档
最新文档