传感器实验报告 (2)
无线传感器实验二报告

浙江工业大学计算机学院实验报告实验名称无线传感网络实验之丢包率检测日期 2014年12月30日一、实验内容本次实验主要是通过代码的编写测试节点的发送功率和距离的远近对接收节点的丢包率的影响。
对发送功率的设置是通过修改CC2420.h文件中的参数实现的。
其中距离的远近的调节是容易实现的。
而对丢包率的计算是由接收节点的主机B将收到的数据包打印到屏幕上,主机A烧写的节点则是实现每次发送100个数据包。
二、程序源代码主机A(发送方)✧BlinkToRadio.h#ifndef BLINKTORADIO_H#define BLINKTORADIO_Henum {AM_BLINKTORADIO = 6,TIMER_PERIOD_MILLI = 250};typedef nx_struct BlinkToRadioMsg {nx_uint16_t nodeid;nx_uint16_t counter;} BlinkToRadioMsg;#endif✧BlinkToRadioAppC.nc#include <Timer.h>#include "BlinkToRadio.h"configuration BlinkToRadioAppC {}implementation {components MainC;components LedsC;components BlinkToRadioC as App;components new TimerMilliC() as Timer0;components ActiveMessageC;components new AMSenderC(AM_BLINKTORADIO);components new AMReceiverC(AM_BLINKTORADIO);App.Boot -> MainC;App.Leds -> LedsC;App.Timer0 -> Timer0;App.Packet -> AMSenderC;App.AMPacket -> AMSenderC;App.AMControl -> ActiveMessageC;App.AMSend -> AMSenderC;App.Receive -> AMReceiverC;}BlinkToRadioC.nc#include <Timer.h>#include "BlinkToRadio.h"module BlinkToRadioC {uses interface Boot;uses interface Leds;uses interface Timer<TMilli> as Timer0;uses interface Packet;uses interface AMPacket;uses interface AMSend;uses interface Receive;uses interface SplitControl as AMControl;}implementation {uint16_t counter;message_t pkt;bool busy = FALSE;void setLeds(uint16_t val) {if (val & 0x01)call Leds.led0On();elsecall Leds.led0Off();if (val & 0x02)call Leds.led1On();elsecall Leds.led1Off();if (val & 0x04)call Leds.led2On();elsecall Leds.led2Off();}event void Boot.booted() {call AMControl.start();}event void AMControl.startDone(error_t err) {if (err == SUCCESS) {call Timer0.startPeriodic(TIMER_PERIOD_MILLI);}else {call AMControl.start();}}event void AMControl.stopDone(error_t err) {}event void Timer0.fired() {counter++;//发送100个数据包if(counter <101) {if (!busy) {BlinkToRadioMsg* btrpkt =(BlinkToRadioMsg*)(call Packet.getPayload(&pkt,sizeof(BlinkToRadioMsg)));if (btrpkt == NULL) {return;}btrpkt->nodeid = 10;btrpkt->counter = counter;if (call AMSend.send(AM_BROADCAST_ADDR,&pkt, sizeof(BlinkToRadioMsg)) == SUCCESS) {busy = TRUE;}}}}event void AMSend.sendDone(message_t* msg, error_t err) {if (&pkt == msg) {busy = FALSE;}}event message_t* Receive.receive(message_t* msg, void* payload, uint8_t len){if (len == sizeof(BlinkToRadioMsg)) {BlinkToRadioMsg* btrpkt = (BlinkToRadioMsg*)payload;setLeds(btrpkt->counter);}return msg;}}✧MakefileCOMPONENT=BlinkToRadioAppCinclude $(MAKERULES)主机B(接收方)✧BlinkToRadio.h#ifndef BLINKTORADIO_H#define BLINKTORADIO_Henum {AM_BLINKTORADIO = 6,TIMER_PERIOD_MILLI = 250};typedef nx_struct BlinkToRadioMsg {nx_uint16_t nodeid;nx_uint16_t counter;} BlinkToRadioMsg;#endif✧BlinkToRadioAppC.nc#include <Timer.h>#include "BlinkToRadio.h"configuration BlinkToRadioAppC {}implementation {components MainC;components LedsC;components BlinkToRadioC as App;components new TimerMilliC() as Timer0;components ActiveMessageC;components new AMSenderC(AM_BLINKTORADIO);components new AMReceiverC(AM_BLINKTORADIO);App.Boot -> MainC;App.Leds -> LedsC;App.Timer0 -> Timer0;App.Packet -> AMSenderC;App.AMPacket -> AMSenderC;App.AMControl -> ActiveMessageC;App.AMSend -> AMSenderC;App.Receive -> AMReceiverC;}BlinkToRadioC.nc#include <Timer.h>#include "BlinkToRadio.h"#include "printf.h"module BlinkToRadioC {uses interface Boot;uses interface Leds;uses interface Timer<TMilli> as Timer0;uses interface Packet;uses interface AMPacket;uses interface AMSend;uses interface Receive;uses interface SplitControl as AMControl;}implementation {uint16_t counter;message_t pkt;bool busy = FALSE;uint32_t nowtime;uint16_t Number=0;event void Boot.booted() {call AMControl.start();}event void AMControl.startDone(error_t err) {if (err == SUCCESS) {}else {call AMControl.start();}}event void AMControl.stopDone(error_t err) {}event void Timer0.fired() {printf("now is:%d\n",(call Timer0.getNow()));printfflush();call Leds.led0Toggle();}event void AMSend.sendDone(message_t* msg, error_t err) {if (&pkt == msg) {busy = FALSE;}}event message_t* Receive.receive(message_t* msg, void* payload,uint8_t len){if (len == sizeof(BlinkToRadioMsg)) {BlinkToRadioMsg* btrpkt = (BlinkToRadioMsg*)payload;if(btrpkt->nodeid==10){//====================================if (!busy) {call Leds.led2Toggle();Number++;printf("No.%d pakage is received,thenumber:%d\n",btrpkt->counter,Number);printfflush();if (call AMSend.send(AM_BROADCAST_ADDR, &pkt,sizeof(BlinkToRadioMsg)) == SUCCESS) {busy = TRUE;}}}}return msg;}}MakefileCOMPONENT=BlinkToRadioAppCCFLAGS += -I$(TOSDIR)/lib/printfinclude $(MAKERULES)三、实验步骤1.在实验四的代码基础上,修改BlinkToRadioC.nc中的事件Timer0.fired()和事件Receive.receive中收到数据包后输出对应的信息。
传感器实验报告--实验二、三、五

实验二金属箔式应变片——单臂、半桥、全桥的比较1、实验目的:验证金属箔式应变片单臂、半桥、全桥的性能。
2、所需单元及部件:直流稳压电源、电桥、差动放大器、测微头、V/F表。
3、旋纽初始位置:直流稳压电源打到OV挡,V/F表打到V±20V挡,差动放大增益旋钮打到最大。
4、注意事项:(1)在更换应变片时应将直流稳压电源打到OV挡。
(2)在实验过程中如有发现电压表输出发生过载,应将量程扩大。
(3)在本实验中只能将放大器接成差动形式,否则系统不能正常工作。
(4)直流稳压电源不能打的过,以免损坏应变片或造成严重自热效应。
(5)接全桥时请注意区别各工作片的工作状态与方向不得接错5、实验数据单臂电桥——表1半桥电桥——表2全桥电桥——表3单臂、半桥、全桥V —X 的关系曲线:单臂、半桥、全桥电桥V—X对比图-800-600-400-200200400600800位移(mm)电压(m v )(2)分析系统灵敏度S ,并作比较:根据灵敏度的定义,V —X 的关系曲线斜率的绝对值越大,表示电桥的灵敏度越高。
由上图计算得:S1=153-(-176)/20=16.45mv/mm,s2=325-(-305)/20=31.50mv/mm, s3=632-(-631)/20=63.15mv/mm由上式可知:单臂电桥的灵敏度最小,全桥电桥的灵敏度最大。
可以近似得出全桥电桥的灵敏度是半桥电桥灵敏度的2倍,是单臂电桥的4倍。
实验三 电涡流式传感器的静态标定1、实验目的: 了解电涡流式传感器的原理及工作性能2、所需单元及部件: 涡流变换器、V/F 表、测微头、铁测片、涡流传感器、示波器3、实验原理:利用电磁在导体表面产生的电涡流,不同的材料所产生的电涡流是不同的。
4、实验数据:〈1〉把电涡流式传感器调至铁测片,用示波器观察涡流变换器输入端的波形。
时基打到1μS 档。
如发现没有振荡波形出现,可将被测体移开一些。
可见:波形为__正弦波__波形,示波器的时基为__1__μS/cm ,故波形频率约为__1000000HZ __。
传感器实验实验报告

传感器实验实验报告传感器实验实验报告引言:传感器是一种能够将各种物理量、化学量或生物量转换为可测量电信号的装置。
它在各个领域中都有着广泛的应用,如环境监测、医疗诊断、智能家居等。
本次实验旨在通过对不同类型传感器的测试和比较,深入了解传感器的原理和性能。
实验一:温度传感器温度传感器是一种常见的传感器类型,用于测量环境中的温度。
我们选择了一款热敏电阻温度传感器进行测试。
实验中,我们将传感器连接到一个电路板上,并使用示波器测量输出电压随温度的变化。
通过改变环境温度,我们观察到传感器输出电压与温度之间的线性关系。
这表明该传感器具有良好的灵敏度和稳定性。
实验二:光照传感器光照传感器是一种能够测量环境中光照强度的传感器。
我们选择了一款光敏电阻光照传感器进行测试。
实验中,我们将传感器暴露在不同光照条件下,并使用万用表测量输出电阻的变化。
结果显示,传感器输出电阻随光照强度的增加而减小。
这说明该传感器能够准确地感知光照强度,并将其转化为电信号输出。
实验三:湿度传感器湿度传感器是一种用于测量环境湿度的传感器。
我们选择了一款电容式湿度传感器进行测试。
实验中,我们将传感器放置在一个密封的容器中,并通过改变容器内的湿度来模拟不同湿度条件。
通过连接传感器到一个数据采集系统,我们能够实时监测到传感器的输出信号。
结果显示,传感器的输出电容随湿度的增加而增加。
这说明该传感器对湿度变化非常敏感,并能够准确地测量环境湿度。
实验四:气体传感器气体传感器是一种能够检测环境中气体浓度的传感器。
我们选择了一款气敏电阻气体传感器进行测试。
实验中,我们将传感器暴露在不同浓度的气体环境中,并使用示波器测量输出电阻的变化。
结果显示,传感器的输出电阻随气体浓度的增加而减小。
这表明该传感器能够准确地感知气体浓度,并将其转化为电信号输出。
结论:通过本次实验,我们深入了解了不同类型传感器的原理和性能。
温度传感器、光照传感器、湿度传感器和气体传感器在各自的应用领域中都具有重要的作用。
光电传感器实验报告(文档4篇)

光电传感器实验报告(文档4篇)以下是网友分享的关于光电传感器实验报告的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。
光电传感器实验报告第一篇实验报告2――光电传感器测距功能测试1.实验目的:了解光电传感器测距的特性曲线;掌握LEGO基本模型的搭建;熟练掌握ROBOLAB软件;2.实验要求:能够用LEGO积木搭建小车模式,并在车头安置光电传感器。
能在光电传感器紧贴红板,以垂直红板的方向作匀速直线倒车运动过程中进行光强值采集,绘制出时间-光强曲线,然后推导出位移-光强曲线及方程。
3.程序设计:编写程序流程图并写出程序,如下所示:ROBOLAB程序设计:4.实验步骤:1) 搭建小车模型,参考附录步骤或自行设计(创新可加分)。
2) 用ROBOLAB编写上述程序。
3) 将小车与电脑用USB数据线连接,并打开NXT的电源。
点击ROBOLAB 的RUN按钮,传送程序。
4) 取一红颜色的纸板(或其他红板)竖直摆放,并在桌面平面与纸板垂直方向放置直尺,用于记录小车行走的位移。
5) 将小车的光电传感器紧贴红板放置,用电脑或NXT的红色按钮启动小车,进行光强信号的采样。
从直尺上读取小车的位移。
6) 待小车发出音乐后,点击ROBOLAB的数据采集按钮,进行数据采集,将数据放入红色容器。
共进行四次数据采集。
7) 点击ROBOLAB的计算按钮,分别对四次采集的数据进行同时显示、平均线及拟和线处理。
8) 利用数据处理结果及图表,得出时间同光强的对应关系。
再利用小车位移同时间的关系(近似为匀速直线运动),推导出小车位移同光强的关系表达式。
5.调试与分析a) 采样次数设为24,采样间隔为0.05s,共运行1.2s。
采得数据如下所示。
b) 在ROBOLAB的数据计算工具中得到平均后的光电传感器特性曲线,如图所示:c) 对上述平均值曲线进行线性拟合,得到的光强与时间的线性拟合函数:d) 取四次实验小车位移的平均值,根据时间与光强的拟合函数求取距离与光强的拟合函数:由上图可得光强与时间的关系为:y=-25.261858×t+56.524457 ; 量取位移为4.5cm,用时1.2s,得:x=3.75×t ;光强与位移的关系为:y= -6.73649547×x+56.524457 ;e) 通过观测上图及导出的光强位移函数可知,光电传感器在短距离里内对位移信号有着良好的线性关系,可以利用光强值进行位移控制。
传感器技术实验报告

传感器技术实验报告
《传感器技术实验报告》
近年来,随着科技的不断发展,传感器技术在各个领域中得到了广泛的应用。
传感器作为一种能够感知环境并将感知到的信息转化为可用信号的装置,已经成为了现代科技发展中不可或缺的一部分。
在本次实验中,我们将对传感器技术进行一系列的实验,以探究其在不同领域中的应用和性能表现。
实验一:温度传感器性能测试
在这个实验中,我们使用了一款市场上常见的温度传感器,通过连接到实验仪器上并对其进行测试,我们得出了传感器在不同温度下的性能表现。
通过实验数据的分析,我们发现该温度传感器具有较高的精准度和稳定性,能够在不同温度条件下准确地反映出环境温度变化。
实验二:光敏传感器应用实验
在这个实验中,我们将光敏传感器应用于光控灯的设计中。
通过实验数据的采集和分析,我们发现光敏传感器能够准确感知环境光线的强弱,并将其转化为控制信号,从而实现了光控灯的自动开关。
这一实验结果表明了光敏传感器在节能环保领域中的重要应用价值。
实验三:压力传感器在工业领域中的应用
在这个实验中,我们将压力传感器应用于工业机械设备中,通过实验数据的采集和分析,我们发现压力传感器能够准确感知机械设备的工作压力,并将其转化为控制信号,从而实现了对机械设备的智能监控和控制。
这一实验结果表明了压力传感器在工业领域中的重要应用潜力。
通过以上一系列的实验,我们深入探究了传感器技术在不同领域中的应用和性
能表现,实验结果表明了传感器技术在现代科技发展中的重要作用和广阔前景。
我们相信,随着科技的不断进步,传感器技术将会在更多领域中得到广泛的应用,为人类社会的发展进步做出更大的贡献。
传感器检测实验报告

一、实验目的1. 了解传感器的基本原理和检测方法。
2. 掌握不同类型传感器的应用和特性。
3. 通过实验,验证传感器检测的准确性和可靠性。
4. 培养动手能力和分析问题的能力。
二、实验原理传感器是将物理量、化学量、生物量等非电学量转换为电学量的装置。
本实验主要涉及以下几种传感器:1. 电阻应变式传感器:利用应变片将应变转换为电阻变化,从而测量应变。
2. 电感式传感器:利用线圈的自感或互感变化,将物理量转换为电感变化,从而测量物理量。
3. 电容传感器:利用电容的变化,将物理量转换为电容变化,从而测量物理量。
4. 压电式传感器:利用压电效应,将物理量转换为电荷变化,从而测量物理量。
三、实验仪器与设备1. 电阻应变式传感器实验装置2. 电感式传感器实验装置3. 电容传感器实验装置4. 压电式传感器实验装置5. 数字万用表6. 示波器7. 信号发生器8. 振动台四、实验步骤1. 电阻应变式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的应变值和电压值。
(4)分析应变值和电压值之间的关系,验证电阻应变式传感器的检测原理。
2. 电感式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的电感值和电压值。
(4)分析电感值和电压值之间的关系,验证电感式传感器的检测原理。
3. 电容传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的电容值和电压值。
(4)分析电容值和电压值之间的关系,验证电容传感器检测原理。
4. 压电式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
传感器实验报告

传感器实验报告实验一金属箔式应变片单臂电桥实验数据处理线性拟合V=5.767*x-0.422 灵敏度为5.767思考题:(1) 本实验电路对直流稳压电源有何要求,对放大器有何要求。
直流稳压源输出应稳定,且不超过负载的额定值。
放大器应对差模信号有较好放大作用,无零漂或零漂小可忽略。
(2)将应变片换成横向补偿片后,又会产生怎样的数据,并根据其结构说明原因。
灵敏度将大幅度降低,线性性也将变差,电压随位移的变化将变得十分小。
因为横向补偿片原本是横向粘贴在悬梁臂上的,用于补偿应变片测量的横向效应。
在悬梁臂形变的时候,横向补偿片仅仅横向部分发生形变,而应变片敏感栅往往很粗而且有效长度短,因此阻值变化小。
实验二金属箔式应变片双臂电桥(半桥)实验数据处理V=11.95*x+0.778灵敏度为11.95思考题:(1)根据应变片受力情况变化,对实验结果作出解释。
在梁上下表面受力方向相反的应变片相当于将形变放大两倍,,因此,ΔV/ΔX大约是实验一中的两倍。
(2)将受力方向相反的两片应变片换成同方向应变片后,情况又会怎样。
同方向的两片应变片相互抵消,输出为零。
(3)比较单臂,半桥两种接法的灵敏度。
在相同形变量下,半桥的灵敏度约是单臂的两倍。
实验三金属箔式应变片四臂电桥(全桥)的静态位移性能V=24.15*x+1.4灵敏度问24.15思考题:(1)如果不考虑应变片的受力方向,结果又会怎样。
对臂应变片的受力方向应接成相同,邻臂应变片的受力方向相反,否则相互抵消没有输出(2)比较单臂,半桥,全桥各种接法的灵敏度。
在相同形变量下,半桥灵敏度约是单臂的两倍,全桥灵敏度越是半桥的两倍,即约为全桥的四倍。
实验四金属箔式应变片四臂电桥(全桥)振动时的幅频性能实验数据处理思考题:(1)在实验过程中,观察示波器读出频率与频率表示值是否一致,据此,根据应变片的幅频特性可作何应用。
不一致。
可以根据这个原理反向测出梁的震动频率,利用应变片读出峰值,在找到对应的频率值即可。
基本传感器实验报告

基本传感器实验报告传感器是一种能够感知环境中某种特定物理量并将其转化为可供人们观测或处理的信号的装置。
在现代科技发展中,传感器扮演着重要的角色,广泛应用于工业生产、医疗设备、汽车电子、智能家居等领域。
本实验旨在通过对基本传感器的实验,探究其工作原理和应用。
实验一,温度传感器。
温度传感器是一种能够感知环境温度并将其转化为电信号的装置。
我们选用了一款常见的NTC热敏电阻作为温度传感器,并通过连接电路和微处理器进行实验。
实验结果显示,随着环境温度的升高,NTC热敏电阻的电阻值呈现出明显的下降趋势,从而产生了与温度成反比的电信号。
这为温度传感器的工作原理提供了直观的验证。
实验二,光敏传感器。
光敏传感器是一种能够感知环境光照强度并将其转化为电信号的装置。
我们选用了一款光敏电阻作为光敏传感器,并通过搭建简单的光照实验装置进行实验。
实验结果显示,光敏电阻的电阻值随着光照强度的增加而呈现出明显的下降趋势,从而产生了与光照强度成正比的电信号。
这为光敏传感器的工作原理提供了直观的验证。
实验三,压力传感器。
压力传感器是一种能够感知环境压力并将其转化为电信号的装置。
我们选用了一款压阻式传感器作为压力传感器,并通过搭建简单的压力实验装置进行实验。
实验结果显示,压阻式传感器的电阻值随着受压程度的增加而呈现出明显的变化,从而产生了与压力大小成正比的电信号。
这为压力传感器的工作原理提供了直观的验证。
结论:通过本次实验,我们对基本传感器的工作原理有了更深入的了解。
温度传感器、光敏传感器和压力传感器分别能够感知环境的温度、光照强度和压力,并将其转化为电信号输出。
这些传感器在工业生产、环境监测、智能家居等领域有着广泛的应用前景。
通过不断地研究和实验,我们相信传感器技术将会在未来发展中发挥越来越重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器实验报告(二)
自动化1204班蔡华轩 U201113712 吴昊 U201214545
实验七:
一、实验目的:了解电容式传感器结构及其特点。
二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结
构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而
只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。
三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏
检波、滤波模板、数显单元、直流稳压源。
四、实验步骤:
1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。
2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。
图
7-1 电容传感器位移实验接线图
3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控
箱Vi 孔),Rw 调节到中间位置。
4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm
图(7-1)
五、思考题:
试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一
下在此设计中应考虑哪些因素?
答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等
六:实验数据处理
由excle处理后得图线可知:系统灵敏度S=58.179
非线性误差δf=21.053/353=6.1%
实验八直流激励时霍尔式传感器位移特性实验
一、实验目的:了解霍尔式传感器原理与应用。
二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。
它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。
根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中
运动时,它就可以进行位移测量。
图8-1 霍尔效应原理
三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、±
15V、测微头、数显单元。
四、实验步骤:
1、将霍尔传感器按图8-2 安装。
霍尔传感器与实验模板的连接
按图8-3 进行。
1、3 为电源±4V,2、4 为输出。
图8-2 霍尔
传感器安装示意图
2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节RW2
使数显表指示为零。
图8-3 霍尔传感器位移直流激励实验接线图
3、旋转测微头向轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似
不变,将读数填入表8-1。
X(mm)
V(mv)
五、思考题:
本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?
答:反应的是磁场强度B的变化。
六数据处理
用excle计算如下:
Excel处理 x-v图像
由以上的图线和表格数据可以得到:
系统灵敏度S=657.07
非线性误差δf=129.68/5570=2.33%
实验九电涡流传感器
一、实验目的:了解电涡流传感器测量位移的工作原理和特性。
二、基本原理:通以高频电流的线圈产生磁场,当有导电体接近时,因导电体
涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。
三、需用器件与单元:电涡流传感器实验模板、电涡流传感器、直流电源、数
显单元、测微头、铁圆片。
四、验步骤:
1.根据图9-3 安装电涡流传感器。
2、观察传感器结构,这是一个扁平绕线圈。
3、将电涡流传感器输出线接入实验模板上标有L的两端插孔中,作为振荡器的一个元件(传感器屏蔽层接地)。
4、在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。
5、将实验模板输出端V0 与数显单元输入端Vi 相接。
数显表量程切换开关选择电压20V 档。
6、用连接导线从主控台接入+15V 直流电源到模板上标有+15V 的插孔中。
7、使测微头与传感器线圈端部接触,开启主控箱电源开关,记下数显表读数,然后每隔0.2mm 读一个数,直到输出几乎不变为止。
将结果列入表
9-1。
表
X(mm)
V(mv)
8
位移测量时的佳工作点,试计算量程为1mm、3mm 及5mm 时的灵敏度和
线性度(可以用端基法或其它拟合直线)。
实验线路图:
电涡流传感器安装示意图
五、思考题:
1、电涡流传感器的量程与哪些因素有关,如果需要测量±5mm 的量程应如何
设计传感器?
2、用电涡流传感器进行非接触位移测量时,如何根据量程使用选用传感器。
答:1,与电涡流传感器能够产生磁场大小有关,还与被测体的材质有关;如果要测量正负5伏的量程让传感器中空被测物体靠近一侧是会远离另外一侧从而保证测量范围。
2.在保证精度的情况下尽量使用量程大的传感器。
六:实验数据处理
Excel处理数据和绘图如下:
总实验数据图线
实验数据记录如下:
有以上数据可以计算有:
当量程为5mm时:系统灵敏度S=1.5815
非线性误差δf=0.268/7.86=3.41%
当量程为3mm时:系统灵敏度S=1.6666
非线性误差δf=0.2205/5.09=4.33%
当量程为1mm时:系统灵敏度S=1.7429
非线性误差δf=0.2205/1.78=12.4%
实验十光纤传感器
一、实验目的:了解光纤位移传感器的工作原理和性能。
二、基本原理:本实验采用的是导光型多模光纤,它由两束光纤组成Y 型光纤,探头为半圆分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。
两光束混合后的端部是工作端亦即探头,它与被测体相距X,由光源发出的光通过光纤传到端部射出后再经被测体反射回来,由另一束光纤接收反射光信号再由光电转换器转换成电压量,而光电转换器转换的电压量大小与间距X有关,因此可用于测量位移。
图11-3 光纤位移特性曲线
三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源±15V、反射面。
四、实验步骤:
1、根据图11-4 安装光纤位移传感器,二束光纤插入实验板上光电变换座孔上。
其内部已和发光管D及光电转换管T 相接。
2、将光纤实验模板输出端V01 与数显单元相连,见图11-5。
图11-5
3、调节测微头,使探头与反射平板轻微接触。
4、实验模板接入±15V 电源,合上主控箱电源开关,调RW使数显表显示为零。
5、旋转测微头,被测体离开探头,每隔0.1mm 读出数显表值,将其填入表11-1。
度和非线性误差。
五、思考题:
光纤位移传感器测位移时对被测体的表面有些什么要求?
答:被测量物体表面一定要光滑,并且反光性能要好。
图11-5 光纤传感器位移实验接线图六实验数据处理
实验原始数据:
光纤位移传感器位移特性曲线:
当量程为1mm时
系统灵敏度S= 1.1473
非线性误差δf=0.06/1.19=5.31%
实验数据x-v图。