苏科版八年级数学上册期中模拟考试卷.docx
苏科版八年级上册数学期中考试试题含答案

苏科版八年级上册数学期中考试试卷一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.一个等腰三角形的两边长分别是2cm 和5cm ,则它的周长为()A .9cm B .12cm C .7cm D .9cm 或12cm 3.如图,点C 、D 分别在BO 、AO 上,AC 、BD 相交于点E ,若CO DO =,则再添加一个条件,仍不能证明AOC △≌BOD 的是()A .A B∠=∠B .ADE BCE ∠=∠C .AC BD =D .AD BC=4.如图,点A 、B 、C 都在方格纸的“格点”上,请找出“格点”D ,使点A 、B 、C 、D 组成一个轴对称图形,这样的点D 共有()个.A .1B .2C .3D .45.根据下列已知条件,能画出唯一的ABC ∆的是()A .90C ∠=︒,6AB =B .4AB =,3BC =,30A ∠=︒C .60A ∠=︒,45B ∠=︒,4AB =D .3AB =,4BC =,8CA =6.如图,Rt △ABC 中,AB =AC =3,AO =1,D 点在线段BC 上运动,若将AD 绕A 点逆时针旋转90°得到AE ,连接OE ,则在D 点运动过程中,线段OE²的最小值为()A.1B.2C.3D.4二、填空题7.一个汽车牌照号码在水中的倒影为,则该车牌照号码为_________.8.如图,在△ABC中,∠ACB=90°,D是AB边的中点若AB=18,则CD的长为_____.9.等腰三角形的一个内角为100°,则它的一个底角的度数为______.10.已知直角三角形两直角边长分别为8和6,则此直角三角形斜边长为___.11.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“SAS”,需要添加的条件是_____.12.如图,在△ABC中,∠C=90°,BD平分∠ABC,DC=5,则点D到AB的距离为___.13.如图所示,△AEB≌△DFC,AE⊥CB,DF⊥BC,∠C=28°,则∠A的度数为______.14.如图,在△ABC中,BD平分∠ABC,ED∥BC,AB=9,AD=6,则△AED的周长为___.15.如图,∠ADB=90°,正方形ABCG和正方形AEFD的面积分别是100和36,则以BD 为直径的半圆的面积是___.(结果保留π)16.如图,在Rt△ABC中,∠C=90°,沿过点A的一条直线AE折叠Rt△ABC,使点C恰好落在AB边的中点D处,则∠B的度数是___.17.如图,点A、B、C、O在网格中小正方形的顶点处,直线l经过点C、O,将△ABC 沿l平移得到△MNO,M是A的对应点,再将这两个三角形沿l翻折,P、Q分别是A、M 的对应点.已知网格中每个小正方形的边长都等于1,则PQ2的值为___.18.如图,在长方形ABCD中,AB=6,AD=8,E、F分别是BC、CD上的一点,EF⊥AE,将△ECF沿EF翻折得到ΔEC′F,连接AC′.若△AEC′是等腰三角形,且AE=AC′,则BE =___.三、解答题19.已知:如图,C是AE的中点,AB∥CD,且AB=CD.求证:△ABC≌△CDE.20.已知:如图,ED⊥AB,FC⊥AB,垂足分别为D、C,AC=BD,AE=BF,求证:(1)△AED≌△BFC;(2)AE∥BF.21.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在边BC上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称;(2)△AEF与四边形ABCD重叠部分的面积=;(3)在AE上找一点P,使得PC+PD的值最小.22.如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.23.如图,在△ABC中,AB=7,AC=25,AD是中线,点E在AD的延长线上,且AD =ED=12.(1)求证:△CDE≌△BDA;(2)判断△ACE的形状,并证明;(3)求△ABC的面积.24.尺规作图:如图,射线OM ⊥射线ON ,A 为OM 上一点,请以OA 为一边作两个大小不等的等腰直角三角形.保留作图痕迹,标上顶点字母,并写出所画的三角形.25.如图,在ABC 中,90ACB ∠=︒,5AB =,3BC =,点P 从点A 出发,以每秒2个单位长度的速度沿折线A C B A ---运动.设点P 的运动时间为t 秒()0t >.(1)求AC 的长及斜边AB 上的高.(2)当点P 在CB 上时,①CP 的长为______________(用含t 的代数式表示).②若点P 在BAC ∠的角平分线上,则t 的值为______________.(3)在整个运动过程中,直接写出BCP 是等腰三角形时t 的值.26.【问题发现】(1)如图1,△ABC 和△ADE 均为等边三角形,点B ,D ,E 在同一直线上,连接CE ,容易发现:①∠BEC 的度数为;②线段BD 、CE 之间的数量关系为;【类比探究】(2)如图2,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,点B ,D ,E 在同一直线上,连接CE ,试判断∠BEC 的度数及线段BE 、CE 、DE 之间的数列关系,并【问题解决】(3)如图3,∠AOB=∠ACB=90°,OA=3,OB=6,AC=BC,则OC2的值为.参考答案1.D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A.不是轴对称图形,故A不符合题意;B.不是轴对称图形,故B不符合题意;C.不是轴对称图形,故C不符合题意;D.是轴对称图形,故D符合题意.故选:D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠2.B【解析】【分析】根据已知条件和三角形三边关系可知,等腰三角形的腰长不可能为2cm,只能为5cm,然后即可求得三角形的周长.【详解】本题只知道等腰三角形的两边的长,并不知道腰和底,所以需要分两种情况讨论,当腰长为2cm时,由于2+2<5,所以此时三角形不存在;当腰长为5cm时,5+5>2,所以此三角形满足题意,此时三角形的周长为:5+5+2=12cm.故答案为B.【点睛】本题考查了等腰三角形的概念,注意三角形两边之和大于第三边是解题的关键.3.C【解析】【分析】根据题目给出的条件结合全等三角形的判定定理分别分析即可.【详解】解:A、可利用AAS证明△AOC≌△BOD,故此选项不合题意;B、根据三角形外角的性质可得∠A=∠B,再利用AAS证明△AOC≌△BOD,故此选项不合题意;C、不可利用SSA证明△AOC≌△BOD,故此选项符合题意;D、根据线段的和差关系可得OA=OB,再利用SAS证明△AOC≌△BOD,故此选项不合题意.故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.D【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:点A 、B 、C 、D 组成一个轴对称图形,这样的点D 共有4个.故选D .【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.5.C【解析】【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A .∠C=90°,AB=6,不符合全等三角形的判定方法,即不能画出唯一三角形,故本选项不符合题意;B .4AB =,3BC =,30A ∠=︒,不符合全等三角形的判定定理,不能画出唯一的三角形,故本选项不符合题意;C .60A ∠=︒,45B ∠=︒,4AB =,符合全等三角形的判定定理ASA ,能画出唯一的三角形,故本选项符合题意;D .3+4<8,不符合三角形的三边关系定理,不能画出三角形,故本选项不符合题意;故选:C .【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.6.B【解析】在AB 上截取AQ=AO=1,利用SAS 证明△AQD ≌△AOE ,推出QD=OE ,当QD ⊥BC 时,QD 的值最小,即线段OE²有最小值,利用勾股定理即可求解.【详解】解:如图,在AB 上截取AQ=AO=1,连接DQ,∵将AD 绕A 点逆时针旋转90°得到AE ,∴∠BAC=∠DAE=90°,∴∠BAC-∠DAC =∠DAE-∠DAC ,即∠BAD=∠CAE ,在△AQD 和△AOE 中,AQ AOQAD OAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△AQD ≌△AOE(SAS),∴QD=OE ,∵D 点在线段BC 上运动,∴当QD ⊥BC 时,QD 的值最小,即线段OE²有最小值,∵△ABC 是等腰直角三角形,∴∠B=45°,∵QD ⊥BC ,∴△QBD 是等腰直角三角形,∵AB=AC=3,AO=1,∴QB=2,∴由勾股定理得∴线段OE²有最小值为2,故选:B .【点睛】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键.7.WL027【解析】【详解】解:关于水面对称的图形为W L027,∴该汽车牌照号码为WL027.8.9【解析】【分析】根据直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半,即可得出答案.【详解】在△ABC中,∵∠ACB=90°,D是AB边的中点,∴CD=12AB=9.故答案为9.【点睛】本题考查的是直角三角形的性质.掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.9.40°【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】解:①当100°这个角是顶角时,底角=(180°-100°)÷2=40°;②当100°这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查的是等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.10.10【解析】【分析】根据勾股定理列式计算即可得解.【详解】解:∵直角三角形的两直角边长分别为8和6,∴斜边长=10.故答案为:10.【点睛】本题主要考查了勾股定理,比较简单,熟练掌握勾股定理是解题的关键.11.AB=AC【解析】【分析】根据角平分线定义求出∠BAD=∠CAD ,根据SAS 推出两三角形全等即可.【详解】解:AB=AC ,理由是:∵AD 平分∠BAC ,∴∠BAD=∠CAD ,在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪=⎨⎪=⎩∠∠,∴△ABD ≌△ACD (SAS ),故答案为AB=AC .【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .12.5【解析】【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边距离相等可得DE=CD .【详解】解:如图,过点D 作DE ⊥AB 于E ,∵∠C=90°,BD 平分∠ABC ,∴DE=CD=5,即点D 到AB 的距离是5.故答案为:5.13.62【分析】根据C ∠和AEB DFC V V ≌可得28B ∠=︒,再根据AE CB ⊥和三角形的内角和定理即可求解.【详解】解:∵AEB DFC V V ≌,28C ∠=︒,∴28B C ∠=∠=︒.∵AE CB ⊥,∴90AEB =︒∠.∴18062A AEB B ∠=︒-∠-∠=︒.故答案为:62.14.15【详解】解:∵ED ∥BC ,∴∠EDB=∠CBD ,∵BD 平分∠ABC ,∴∠CBD=∠ABD ,∴∠EDB=∠ABD ,∴DE=BE ,∴AE+ED+AD=AE+BE+AD=AB+AD=9+6=15,即△AED 的周长为15,故答案为:15.15.8π【分析】根据勾股定理求出BD ,再利用圆的面积公式求半圆面积即可.【详解】∵正方形ABCG 和正方形AEFD 的面积分别是100和36,∴AB 2=100,AD 2=36,∵∠ADB =90°,∴在Rt ABD △中,8BD =,∴半圆面积:218822ππ⎛⎫⨯= ⎪⎝⎭.故答案为:8π.16.30°【分析】由折叠的性质可得出:∠CAE=∠DAE ,∠ADE=∠C=90°,结合点D 为线段AB 的中点,利用等腰三角形的三线合一可得出AE=BE ,进而可得出∠B=∠DAE ,再利用三角形内角和定理,即可求出∠B 的度数.【详解】解:由折叠,可知:∠CAE=∠DAE ,∠ADE=∠C=90°,∴ED ⊥AB .∵点D 为线段AB 的中点,ED ⊥AB ,∴AE=BE ,∴∠B=∠DAE .又∵∠CAE+∠DAE+∠B+∠C=180°,∴3∠B=90°,∴∠B=30°.故答案为:30°.17.10【解析】连接PQ,AM,根据PQ=AM即可解答.【详解】解:连接PQ,AM,由图形变换可知:PQ=AM,由勾股定理得:AM2=12+32=10.∴PQ2=AM2=12+32=10.故答案为:10.18.8 3【解析】设BE=x,则EC=8-x,由翻折得:EC′=EC=8-x.当AE=AC′时,作AH⊥EC′,由∠AEF=90°,EF平分∠CEC′可证得∠AEB=∠AEH,则△ABE≌△AHE,所以BE=HE=x,由三线合一得EC′=2EH,即8-x=2x,解方程即可.【详解】解:∵四边形ABCD是矩形,设BE=x,则EC=8-x,由翻折得:EC′=EC=8-x,作AH⊥EC′,如图,∵EF⊥AE,∴∠AEF=∠AEC′+∠FEC′=90°,∴∠BEA+∠FEC=90°,∵△ECF沿EF翻折得△EC′F,∴∠FEC′=∠FEC,∴∠AEB=∠AEH,∵∠B=∠AHE=90°,AH=AH,∴△ABE≌△AHE(AAS),∴BE=HE=x,∵AE=AC′,∴EC′=2EH,即8-x=2x,解得x=8 3,∴BE=8 3.故答案为:8 3.19.见解析【解析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE.【详解】证明:∵点C是AE的中点,∵AB ∥CD ,∴∠A=∠ECD ,在△ABC 和△CDE 中,AC CE A ECD AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CDE (SAS ).20.(1)见解析;(2)见解析【解析】(1)求出90EDA FCB ∠=∠=︒,AD=BC ,根据HL 证明Rt AED Rt BFC ∆≅∆即可;(2)根据全等三角形的性质得出∠A=∠B ,根据平行线的判定得出即可.【详解】解:(1)∵ED ⊥AB ,FC ⊥AB ,∴90EDA FCB ∠=∠=︒∵AC =BD ,∴AC CD BD CD +=+,即AD BC=在Rt AED ∆和Rt BFC ∆中,AD BC AE BF=⎧⎨=⎩∴Rt AED Rt BFC∆≅∆(2)由(1)知Rt AED Rt BFC∆≅∆∴∠A=∠B∴AE ∥BF .21.(1)见解析;(2)6;(3)见解析【解析】(1)根据轴对称的性质确定出点B 关于AE 的对称点F 即可;(2)即DC 与EF 的交点为G ,由四边形ADGE 的面积=平行四边形ADCE 的面积-△ECG 的面积求解即可;(3)根据轴对称的性质取格点M ,连接MC 交AE 于点P ,此时PC+PD 的值最小.【详解】解:(1)如图所示,△AEF 即为所求作:(2)重叠部分的面积=S 四边形ADCE-S △ECG =2×4-12×2×2=8-2=6.故答案为:6;(3)如图所示,点P 即为所求作:22.(1)证明见解析;(2)22°.【解析】(1)连接DE .由G 是CE 的中点,DG CE ^得到DG 是CE 的垂直平分线,根据线段垂直平分线的性质得到DE DC =,由DE 是Rt ADB 的斜边AB 上的中线,根据直角三角形斜边上的中线等于斜边的一半得到12DE BE AB ==,即可得到DC BE =.(2)由DE DC =得到DEC BCE ∠=∠,由DE BE =得到B EDB ∠=∠,根据三角形外角性质得到2EDB DEC BCE BCE ∠=∠+∠=∠,则2B BCE ∠=∠,由此根据外角的性质来求BCE ∠的度数.【详解】(1)如图,连接DE .∵G是CE的中点,DG CE^,∴DG是CE的垂直平分线,∴DE DC=.∵AD是高,CE是中线,∴DE是Rt ADB的斜边AB上的中线,∴12DE BE AB==.∴DC BE=;(2)∵DC DE=,DEC BCE∴∠=∠,2EDB DEC BCE BCE∴∠=∠+∠=∠,DE BE=,B EDB∴∠=∠,2B BCE∴∠=∠,366AEC BCE∴∠=∠= ,22BCE∴∠= .23.(1)见解析;(2)△ACE是直角三角形,证明见解析;(3)84【解析】(1)根据SAS证明△CDE≌△BDA即可;(2)由全等三角形的性质得出AB=CE=7,利用勾股定理逆定理证得△ACE是直角三角形;(3)求得△ACE的面积,即可得出△ABC的面积.【详解】解:(1)证明:∵AD 是边BC 上的中线,∴BD=CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD ED ⎧⎪∠∠⎨⎪⎩===,∴△CDE ≌△BDA (SAS ),(2)△ACE 是直角三角形,证明如下:∵△ABD ≌△ECD ,∴AB=CE=7,∵AE=AD+ED=24,AC=25,CE=7,∴AE 2+CE 2=AC 2,∴△ACE 是直角三角形,(3)∵△CDE ≌△BDA∴CDE BDAS =S ∴△ABC 的面积=△ACE 的面积=12×7×24=84.【点睛】此题考查三角形全等的判定与性质,勾股定理的逆定理的运用,三角形的面积计算方法,掌握三角形全等的判定方法与勾股定理逆定理是解决问题的关键.24.见解析【分析】以O 为圆心,OA 为半径作圆,与射线ON 交于点B ,则△AOB 是以OA 为腰的等腰直角三角形;作∠MON 的平分线OP ,过点A 作AC ⊥OP 于点C ,则△AOC 是以OA 为斜边的等腰直角三角形.【详解】解:如图:△AOB 和△AOC 即为所作..【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的判定.25.(1)125;(2)①24t -;②83;(3)t 的值为0.5或4.75或5或5.3.【解析】(1)直接利用勾股定理即可求得AC 的长,再利用等面积法即可求得斜边AB 上的高;(2)①CP 的长度等于运动的路程减去AC 的长度,②过点P '作P 'D ⊥AB ,证明Rt △AC P '≌Rt △AD P '得出AD=AC=4,分别表示各线段,在Rt △BD P '利用勾股定理即可求得t 的值;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,②当点P 在线段AB 上时,又分三种情况:BC=BP ;PC=BC ;PC=PB ,分别求得点P 运动的路程,再除以速度即可得出答案.【详解】解:(1)∵90C ∠=︒,5AB =,3BC =,∴在Rt ABC ∆中,2222534AC AB BC =-=-=.∴AC 的长为4.设斜边AB 上的高为h .∵1122AB h AC BC ⨯⨯=⨯⨯,∴1153422h ⨯⨯=⨯⨯,∴125h =.∴斜边AB 上的高为125.(2)已知点P 从点A 出发,以每秒2个单位长度的速度沿折线A-C-B-A 运动,①当点P 在CB 上时,点P 运动的长度为:AC+CP=2t ,∵AC=4,∴CP=2t-AC=2t-4.故答案为:2t-4.②当点P '在∠BAC 的角平分线上时,过点P '作P 'D ⊥AB ,如图:∵A P '平分∠BAC ,P 'C ⊥AC ,P 'D ⊥AB ,∴P 'D=P 'C=2t-4,∵BC=3,∴B P '=3-(2t-4)=7-2t ,在Rt △AC P '和Rt △AD P '中,AP AP P D P C ''''=⎧⎨=⎩,∴Rt △AC P '≌Rt △AD P '(HL ),∴AD=AC=4,又∵AB=5,∴BD=1,在Rt △BD P '中,由勾股定理得:2221(24)(72)t t +-=-解得:83t =,故答案为:83;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,∴此时CP=BC=3,∴AP=AC-CP=4-3=1,∴2t=1,∴t=0.5;②当点P在线段AB上时,若BC=BP,则点P运动的长度为:AC+BC+BP=4+3+3=10,∴2t=10,∴t=5;若PC=BC,如图2,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=5,BC=3,AC=4,∴AB•CH=AC•BC,∴5CH=4×3,∴125 CH=,在Rt△BCH中,由勾股定理得:1.8BH==,∴BP=3.6,∴点P运动的长度为:AC+BC+BP=4+3+3.6=10.6,∴2t=10.6,∴t=5.3;若PC=PB,如图3所示,过点P作PQ⊥BC于点Q,则30.52BQ CQ BC ==⨯=,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ ∥AC ,∴PQ 为△ABC 的中位线,∴PQ=0.5×AC=0.5×4=2,在Rt △BPQ中,由勾股定理得: 2.5BP ==,点P 运动的长度为:AC+BC+BP=4+3+2.5=9.5,∴2t=9.5,∴t=4.75.综上,t 的值为0.5或4.75或5或5.3.【点睛】本题考查勾股定理,HL 定理,等腰三角形的性质和判定.掌握等面积法和分类讨论思想是解题关键.26.(1)60°,BD=CE ;(2)∠BEC=90°,BE=CE+DE ,理由见解析;(3)92【解析】【分析】(1)根据等边三角形的性质得到AB=AC ,AD=AE ,∠BAC=∠DAE=60°,得到∠BAD=∠CAE ,证明△BAD ≌△CAE ,根据全等三角形的性质证明结论;(2)由“SAS”可证△ABD ≌△ACE ,可得BD=CE ,∠AEC=∠ADB=135°,即可求解;(3)由“AAS”可证△ACF ≌△CBE ,可得BE=CF ,AF=CE ,可求OF=CF=32,由勾股定理可求解.【详解】解:(1)∵△ABC 和△ADE 为等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴BD=CE ;∠AEC=∠ADB=180°-∠ADE=120°,∴∠BEC=∠AEC-∠AED=120°-60°=60°,故答案为:60°,BD=CE ;(2)∠BEC=90°,BE=CE+DE ,理由如下:∵∠BAC=∠DAE=90°,∴AB=AC ,AD=AE ,∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴BD=CE ,∠AEC=∠ADB=135°,∴∠BEC=∠AEC-∠AED=135°-45°=90°,∵BE=BD+DE ,∴BE=CE+DE ;(3)如图,过点C 作CF ⊥AO 交AO 延长线于F ,过点B 作BE ⊥CF 于E,∵∠ACB=90°=∠E=∠AFC ,∴∠BCE+∠ACF=90°=∠BCE+∠CBE ,∴∠ACF=∠CBE ,又∵AC=BC ,∠AFC=∠E ,∴△ACF ≌△CBE (AAS ),∴BE=CF,AF=CE,∵OA=3,OB=6,∴EC+CF=BO=6,OA=AF-OF=CE-BE=CE-CF=3,∴EC=92,CF=32=OF,∴OC2=CF2+OF2=(32)2+(32)2=92.故答案为:9 2.。
江苏省镇江市2024-2025学年苏科版数学八年级上册期中模拟卷

江苏省镇江市2024-2025学年苏科版数学八年级上册期中模拟卷一、单选题1.剪纸是中国优秀的传统文化.下列剪纸图案中,是轴对称图形的是()A .B .C .D .2.满足下列条件的ABC V 是直角三角形的是()A .2BC =,3AC =,4AB =B .2BC =,3AC =,3AB =C .::3:4:5BC AC AB =D .::3:4:5A B C ∠∠∠=3.一个等腰三角形顶角的度数是底角度数的2倍,则这个等腰三角形的底角是()A .30︒B .40︒C .45︒D .50︒4.如图,已知12∠=∠,若用“SAS ”证明BDA ACB ≌,还需加上条件()A .AD BC =B .DC ∠=∠C .BD AC =D .OA OB =5.校园湖边一角的形状如图所示,其中AB ,BC ,CD 表示围墙,若在线段右侧的区域中找到一点P 修建一个观赏亭,使点P 到三面墙的距离都相等,则点P 在()A .线段AC 、BD 的交点B .ABC ∠、BCD ∠角平分线的交点C .线段AB 、BC 垂直平分线的交点D .线段BC 、CD 垂直平分线的交点6.如图,把ABC V 沿线段DE 折叠,使点A 落在点F 处,BC DE ∥;若50B ∠=︒,则BDF ∠的度数为()A .40︒B .80︒C .50︒D .100︒7.如图所示,点O 是ABC V 内一点,BO 平分ABC ∠,OD BC ⊥于点D ,连接OA ,若5OD =,20AB =,则AOB V 的面积是()A .20B .30C .50D .1008.如图所示,边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B 、C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==.点D 在BC 边上从B 至C 的运动过程中,BED 周长变化规律为()A .不变B .一直变小C .先变大后变小D .先变小后变大二、填空题9.若一直角三角形两直角边长分别为6和8,则斜边长为.10.等腰三角形的一边长12cm ,另一边长5cm ,它的第三边长为cm .11.如图,已知ABC DEF ≌△△,点B ,E ,C ,F 依次在同一条直线上.若85BC CE ==,,则CF 的长为.12.如图,ABC V 中,90C ∠=︒,AD 平分BAC ∠,52AB CD ==,,则ABD △的面积是13.如图,在Rt ABC △中,90ACB ∠=︒,以AB AC 、为边的正方形的面积分别为S S ₁、₂,若3115S S ==₁,₂,则BC 的长为.14.如图,在Rt ABC △中,90C ∠=︒,20B ∠=︒,MN 垂直平分AB ,交BC 于点D ,连接AD ,则CAD ∠=︒.15.如图,在等腰三角形ABC V 中,=AB AC ,D 为BC 延长线上一点,EC AC ⊥且=AC CE ,垂足为C ,连接BE ,若=6BC ,则BCE 的面积为.16.如图,在Rt ABC △中,90ABC ∠=︒,以AC 为边,作ACD ,满足AD AC =,点E 为BC 上一点,连接AE ,12BAE CAD ∠=∠,连接DE .下列结论中正确的是.(填序号)①AC DE ⊥;②ADE ACB ∠=∠;③若//CD AB ,则AE AD ⊥;④2DE CE BE =+.三、解答题17.在如图的网格中按要求画图:(1)把ABC V 向右平移5格,再向下平移2格,画出所得111A B C △;(2)画111D E F V ,使得它与DEF 关于直线MN 对称;(3)画出111A B C △与111D E F V 的对称直线l .18.如图,点A ,B ,C ,D 在一条直线上,AE DF ∥,AE DF =,AB CD =.(1)求证:AEC DFB ≅ .(2)若40A ∠=︒,145ECD ∠=︒,求∠F 的度数.19.如图,点E 在BC 上,AC CB DB BC ⊥⊥,,且.AC BE AB DE ==,(1)求证:CE BD AC =-;(2)若ABC V 的三边长分别为a ,b ,c ,利用此图证明勾股定理.20.如图,折叠等腰三角形纸片ABC ,使点C 落在AB 边上的F 处,折痕为DE .已知AB AC =,FD BC ⊥.(1)判断AEF △的形状,并说明你的结论;(2)若2AF =,8BF =,求AE 的长.21.如图,在ABC V 中,BD CE 、分别是边AC AB 、上的高,点M 是BC 的中点,连接ME MD DE 、、.(1)求证:DEM △为等腰三角形;(2)直接写出....EMD ∠与ABD ∠之间的数量关系:.22.(1)如图1,已知以△ABC 的边AB 、AC 分别向外作等腰直角△ABD 与等腰直角△ACE ,∠BAD =∠CAE =90°,连接BE 和CD 相交于点O ,AB 交CD 于点F ,AC 交BE 于点G ,求证:BE =DC ,且BE ⊥DC .(2)探究:若以△ABC 的边AB 、AC 分别向外作等边△ABD 与等边△ACE ,连接BE 和CD 相交于点O ,AB 交CD 于点F ,AC 交BE 于G ,如图2,则BE 与DC 还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD 的度数?23.图①是由边长分别为a ,()a b >的两个正方形拼成的图形,其面积为1S ,图②是长、宽分别为a ,b 的长方形,其面积为2S .(1)图③是由图①中的图形补成的大正方形,其面积为3S ,则1S ,2S ,3S 的数量关系是______;(2)对于图③,通过两种不同方法计算它的面积,可以得到一个代数恒等式是:_______;(3)在图①边长为a 的正方形中放入两个边长为b 的小正方形,得到图④所示的图形,若116S =,25S =,求图④中阴影部分的面积.24.定义:若过三角形的一个顶点作射线与其对边相交,将这个三角形分成的两个三角形中有等腰三角形,那么这条射线就叫做原三角形的“等腰分割线”.(1)在Rt ABC △中,90C ∠=︒,8AC =,6BC =.①如图1,若O 为AB 的中点,则射线OC _____ABC V 的等腰分割线(填“是”或“不是”)②如图2,已知ABC V 的一条等腰分割线BP 交AC 边于点P ,且PB PA =,请求出CP 的长度.(2)如图3,ABC V 中,CD 为AB 边上的高,F 为AC 的中点,过点F 的直线l 交AD 于点E ,作CM l ⊥,DN l ⊥,垂足为M ,N ,3BD =,5AC =,且45A ∠<︒.若射线CD 为ABC V 的“等腰分割线”,求CM DN +的最大值.。
苏科版2024~2025学年八年级数学上册期中复习练[含答案]
![苏科版2024~2025学年八年级数学上册期中复习练[含答案]](https://img.taocdn.com/s3/m/408793472379168884868762caaedd3383c4b5ec.png)
期中复习练(1)一、选择题1.剪纸是中国优秀的传统文化.下列剪纸图案中,是轴对称图形的是( ).A . B .C .D .2.下列说法错误的是( )A .﹣4是16的平方根B 2C .116的平方根是14D 53.如图,在四边形ABCD 中,90A Ð=°,对角线BD 平分ABC Ð,若53BC AD ==,,则BCD △的面积为( )A .6B .7.5C .12D .154.如图是小明制作的风筝,他根据DE DF =,EH FH =,不用度量,就知道DEH DFH Ð=Ð,小 明是通过全等三角形的判定方法得到的结论,则小明用的判定方法是( )A . SASB . ASAC . AASD . SSS5.如图,有一个圆柱体,它的高BD 等于12cm ,底面上圆的周长等于18cm ,一只蚂蚁从点D 出发沿着圆柱的侧面爬行到点C 的最短路程是( )A .18cmB .15cmC .12cmD .9cm6.如图,在ABC V 中,A ABC CB =Ð∠,将BCE V 沿E 折叠,使点C 落在AB 边上点D 处,若36A Ð=°,则AED Ð的度数为( )A .36°B .72°C .30°D .54°7.如图,ABC V 中,AD 是中线,5AB =,3AC =,则AD 的取值范围是( )A .14AD <<B .28AD <<C .35AD <<D .01AD <<8.两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD CD =,AB CB =,在探究筝形的性质时,得到如下结论:①ABD CBD V V ≌;②AC BD ^;③直线BD 上任一点到A 、C 两点距离相等;④点O 到四条边的边距离相等.其中正确的结论有( )A .1个B .2个C .3个D .4个9.习题课上,张老师和同学们一起探究一个问题:“如图,在ABC V 中,D 、E 分别是AC 、AB 上的点,BD 与CE 相交于点O ,给出四个条件:①OB OC = ②EBO DCO Ð=Ð ③BEO CDO Ð=Ð ④BE CD =.若在上述四个条件中,选择两个作为已知条件,哪种组合能判定ABC V 是等腰三角形?”你认为正确的组合方法有( )A .2种B .3种C .4种D .6种10.如图,等腰ABC V 的底边BC 长为4cm ,面积为216cm ,腰AC 的垂直平分线EF 交AC 于点E ,交AB 于点F ,D 为BC 的中点,M 为直线EF 上的动点.则CDM V 周长的最小值为( )A .6cmB .8cmC .9cmD .10cm二、填空题11.等腰三角形的一个外角为100°,那么它的一个底角为 .12 1.7320508=L 0.01为 .13.如图,在ABC V 中,90BAC Ð=°,30BCA Ð=°,1AB =,以BC 为边构造如图所示的等边BCD △,连接AD ,则AD 的长为 .14.如图,AD AE =,12Ð=Ð,请你添加一个条件(只填一个即可),使ABD ACE ≌△△.15.如图,20cm BC =,DE 是线段AB 的垂直平分线,与BC 交于点E ,12cm AC =,则ACE △的周长为 .16.如图,60AOB Ð=°,OC 平分AOB Ð,点P 在OC 上,PD OA ^于D ,6OP cm =,点E 是射线OB 上的动点,则PE 的最小值为 cm .17.已知Rt ABC V 中,90C Ð=°,9AC =,12BC =,将它的一条直角边沿一锐角角平分线所在直线翻折,使直角顶点落在斜边上点D 处,折痕交另一直角边于点E ,则折叠后不重合部分三角形的周长为 .18.如图,在等腰三角形ACB 中,AC =BC =10,AB =16,D 为底边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为点E ,F ,则DE+DF 等于 .19.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边△ABC 和等边△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:①AD BE =;②PQ //AE ;③OP OQ =;④△CPQ 为等边三角形;⑤60AOB Ð=°;其中正确的有 (注:把你认为正确的答案序号都写上)三、解答题20.如图所示,ABC V 在正方形网格中,若点A 的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B 和点C 的坐标;(3)作出ABC V 关于x 轴的对称图形A B C ¢¢¢V .(不用写作法)21.命题:全等三角形的对应边上的高相等.(1)将该命题写成“如果…,那么…”的形式: ;(2)下面是小明同学根据题意画出的图形及写出的已知和求证,请帮助小明同学写出证明过程.已知:如图,A ABC B C ¢¢¢≌△△,AD BC ^,A D B C ¢¢¢¢^.求证:AD A D ¢¢=.22.“某市道路交通管理条例“规定:小汽车在城市道路上行驶速度不得超过60千米/时,如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方24米的C 处,过了1.5秒后到达B 处(BC ^AC ),测得小汽车与车速检测仪间的距离AB 为40米,请问这辆小汽车是否超速?若超速,则超速了多少?23.“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节.某校八年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE ,他们进行了如下操作:①测得水平距离BD 的长为15米;②根据手中剩余线的长度计算出风筝线BC 的长为25米;③牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE ;(2)如果小明想风筝沿CD 方向下降12米,则他应该往回收线多少米?24.如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为0.7米,梯子滑动后停在DE 的位置上,测得BD 长为1.3米,求梯子顶端A 下落了多少米?25.小丽与爸爸妈妈在公园里荡秋千,如图,小丽坐在秋千的起始位置A 处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2m 高的B 处接住她后用力一推,爸爸在C 处接住她,若妈妈与爸爸到OA 的水平距离BF CG 、分别为1.8m 和2.2m ,90BOC Ð=°.(1)CGO V 与OFB △全等吗?请说明理由.(2)爸爸是在距离地面多高的地方接住小丽的?26.如图,在Rt ABC △中,90ACB Ð=°,AD 、BE 、CF 分别是三边上的中线.(1)若1AC =,BC 222AD CF BE +=;(2)是否存在这样的Rt ABC △,使得它三边上的中线AD 、BE 、CF 的长恰好是一组勾股数?请说明理由.(提示:满足关系222a b c +=的3个正整数a 、b 、c 称为勾股数.)27.如图1,AB 、CD 在直线l 的同侧,AB 在CD 的左边,AB l ^,CD l ^,2AB CD =,连接AD 、AC 、BC .V是三角形:(1)ABC(2)如图2,以AD为一边向外作等边ADEV,当边DE与CD重合时,直接写出CD与DE的数量关系;AB=时,求BC的长.(3)如图3,当等边ADEV的边AE BD∥,且61.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A 、C 、D 均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项B 能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.【详解】A .﹣4是16的平方根,说法正确;B. 2,说法正确;C.116的平方根是±14,故原说法错误;D. ,说法正确.故选:C .【点睛】此题考查了平方根以及算术平方根的定义,熟记相关定义是解题的关键.3.B【分析】过点D 作DE BC ^于点E ,根据角平分线的性质定理得到3DE AD ==,根据三角形面积公式即可得到答案.熟练掌握角平分线的性质定理是解题的关键.【详解】解:过点D 作DE BC ^于点E ,∵90A Ð=°,对角线BD 平分ABC Ð,3AD =,∴3DE AD ==,∴5BC =,∴11537.522BCD S BC DE =×=´´=V ,故选:B4.D【分析】根据SSS 即可证明DHE DHF △≌△,可得DEH DFH Ð=Ð.【详解】解:在DHE V 和DHF △中,DH DH DE DF EH FH =ìï=íï=î,(SSS)DHE DHF \△≌△,DEH DFH \Ð=Ð.故选:D .【点睛】本题考查全等三角形的应用,解题的关键是熟练掌握全等三角形的判定方法.5.B【分析】将圆柱的侧面展开,得到一个长方形,再利用两点之间线段最短解答.【详解】如图所示:由于底面上圆的周长等于18cm ,则11892AD =´=.又∵12BD AC ==∴15DC ===.故蚂蚁从点D 出发沿着圆柱的表面爬行到点C 的最短路程15cm ;故答案为:B .【点睛】此题主要考查了平面展开图的最短路径问题,将圆柱的侧面展开,构造出直角三角形是解题的关键.6.A【分析】根据等腰三角形的性质可得72C Ð=°,再由折叠的性质可得72BDE C Ð=Ð=°,再利用三角形外角的性质求解即可.【详解】解:∵A ABC CB =Ð∠,36A Ð=°,∴()1=18036=722C а-°°,由折叠的性质可得,72BDE C Ð=Ð=°,∵BDE A AED Ð=Ð+Ð,∴=7236=36AED а-°°,故选:A .【点睛】本题考查等腰三角形的性质、折叠的性质、三角形外角的性质,熟练掌握三角形的性质和折叠的性质得出72BDE C Ð=Ð=°是解题的关键.7.A【分析】本题主要考查了全等三角形的判定和性质,以及三角形三边之间的关系.构造全等三角形是解题的关键.延长AD ,过B 点作AC 的平行线交AD 的延长线于E 点,则BDE CDA △≌△,则可得DE AD =,因此2AE AD =.在ABE V 中,根据三角形三边之间的关系求出AE 的范围,则可得AD 的范围.【详解】解:如图,延长AD ,过B 点作AC 的平行线交AD 的延长线于E 点.∵AD 是ABC V 的中线,BD CD \=,BE AC Q ∥,12\Ð=Ð,又34ÐÐ=Q ,ASA ()BDE CDA \V V ≌,3BE AC \==,DE AD =,2AE AD \=,在ABE V 中,AB BE AE AB BE -<<+,5353A E \-<<+,28AE \<<,228AD \<<,14AD \<<.故选:A .8.C【分析】根据SSS 证明ABD CBD ≌△△,可得①正确,推出ADB CDB Ð=Ð,再根据等腰三角形的三线合一的性质即可判断②④正确,根据角平分线的性质定理,可得③错误.【详解】解:在ABD △与CBD △中,AD CD AB BC DB DB =ìï=íï=î,(SSS)ABD CBD \≌△△,故①正确;ADB CDB \Ð=Ð,DA DC =Q ,AC BD \^,AO OC =,故②正确;∴直线BD 上任一点到A 、C 两点距离相等,故③正确;过点O 作OE AD ^于E ,作OF CD ^于F ,作OG AB ^于G ,作OH BC ^于H ,∵AD CD =,AB CB =,AC BD ^,∴ADB CDB Ð=Ð,ABD CBD Ð=Ð,∴OE OF =,OG OH =,但无法判断OE 、OF 和OG 、OH 相等,故④错误;综上正确的有①②③三项.故选C .【点睛】本题考查全等三角形的判定和性质、等腰三角形的三线合一的性质的应用,以及角平分线的性质定理,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.9.C【分析】第1种:可选①②,根据OB OC =,可得∠OBC =∠OCB ,从而得到∠ABC =∠ACB ,进而得到△ABC 是等腰三角形;第2种,可选①③,根据OB OC =,可得∠OBC =∠OCB ,从而得到△BCE ≌△CBD ,进而得到∠ABC =∠ACB ,可得到△ABC 是等腰三角形;第3种,可选②④,可证得△BOE ≌△COD ,从而得到OB =OC ,进而得到∠ABC =∠ACB ,可得到△ABC 是等腰三角形;第4种,可选③④,可证得△BOE ≌△COD ,从而得到OB =OC ,∠OBE =∠OCD ,进而得到∠ABC =∠ACB ,可得到△ABC 是等腰三角形,即可求解.【详解】解:第1种:可选①②,理由如下:∵OB OC =,∴∠OBC =∠OCB ,∵EBO DCO Ð=Ð,∴∠ABC =∠ACB ,∴AB =AC ,∴△ABC 是等腰三角形;第2种,可选①③,理由如下:∵OB OC =,∴∠OBC =∠OCB ,∵BEO CDO Ð=Ð,BC =CB ,∴△BCE ≌△CBD ,∴∠ABC =∠ACB ,∴AB =AC ,∴△ABC 是等腰三角形;第3种,可选②④,理由如下:∵EBO DCO Ð=Ð, ∠BOE =∠COD ,BE CD =,∴△BOE ≌△COD ,∴OB =OC ,∴∠OBC =∠OCB ,∴∠ABC =∠ACB ,∴AB =AC ,∴△ABC 是等腰三角形;第4种,可选③④,理由如下:∵BEO CDO Ð=Ð,∠BOE =∠COD ,BE CD =,∴△BOE ≌△COD ,∴OB =OC ,∠OBE =∠OCD ,∴∠OBC =∠OCB ,∴∠ABC =∠ACB ,∴AB =AC ,∴△ABC 是等腰三角形;∴有4种正确的组合方法.故选:C【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的判定和性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.10.D【分析】连接AD ,AM ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点A 关于直线EF 的对称点为点C ,MA =MC ,推出MC +DM =MA +DM ≥AD ,故AD 的长为BM +MD 的最小值,由此即可得出结论.【详解】解:连接AD ,MA .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =16,解得AD =8 cm ,∵EF 是线段AC 的垂直平分线,∴MA =MC ,∴MC +DM =MA +DM ≥AD ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =8+12×4=10(cm ).故选:D .【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质和垂直平分线的性质是解答此题的关键.11.50°或80°【分析】由等腰三角形的一个外角是100°,可分别从①若100°的外角是此等腰三角形的顶角的邻角;②若100°的外角是此等腰三角形的底角的邻角去分析求解,即可求得答案.【详解】解:①若100°的外角是此等腰三角形的顶角的邻角,则此顶角为:18010080°-°=°,则其底角为:18080502°-°=°;②若100°的外角是此等腰三角形的底角的邻角,则此底角为:18010080°-°=°;故这个等腰三角形的一个底角为:50°或80°.故答案为:50°或80°.【点睛】此题考查了等腰三角形的性质,解题的关键是注意分类讨论思想的应用,小心别漏解.12.1.73【分析】根据近似数的精确度求解.0.01为 1.73.故答案为:1.73.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.13【分析】根据30BCA Ð=°,可得22BC AB ==,从而得到AC =BCD △是等边三角形,可得2BC CD ==,60BCD Ð=°,从而得到90ACD ACB BCD Ð=Ð+Ð=°,然后根据勾股定理,即可求解.【详解】解:90BAC Ð=°Q ,30BCA Ð=°,1AB =,22BC AB \==,∴AC ==,BCD QV 是等边三角形,2BC CD \==,60BCD Ð=°,90ACD ACB BCD \Ð=Ð+Ð=°,在Rt ACD △中,AD ===【点睛】本题主要考查了勾股定理,直角三角形的性质,等边三角形的性质,熟练掌握勾股定理,直角三角形的性质,等边三角形的性质是解题的关键.14.B C Ð=Ð(答案不唯一)【分析】由12Ð=Ð可得BAD CAE Ð=Ð,根据三角形全等的判定定理,填写相关条件即可.【详解】解:∵12Ð=Ð,∴12CAD CAD Ð+Ð=Ð+Ð,即BAD CAE Ð=Ð,若B C Ð=Ð,则在BAD D 与CAE D 中,B C BAD CAE AD AE Ð=ÐìïÐ=Ðíï=î,∴()BAD CAE AAS D D ≌.另当ADB AEC Ð=Ð或AB AC =时,均可证BAD CAED D ≌故答案为:B C Ð=Ð(答案不唯一)【点睛】本题考查了三角形全等判定定理,熟练掌握三角形全等判定的方法是解题的关键.15.32【分析】本题考查了线段垂直平分线的性质,根据线段垂直平分线上的点到线段两个端点的距离相等得出AE BE =,即可求解,熟练掌握知识点是解题的关键.【详解】∵DE 是线段AB 的垂直平分线,∴AE BE =,∴ACE △的周长为201232cm AC CE AE AC CE EB AC BC ++=++=+=+=,故答案为:32.16.3【分析】过P 作PH OB ^,根据垂线段最短即可求出PE 最小值.【详解】∵60AOB Ð=°,OC 平分AOB Ð,∴30AOC Ð=°,∵PD OA ^,6OP cm =,∴132PD OP cm ==,过P 作PH OB ^于点H ,∵PD OA ^,OC 平分AOB Ð,∴3PD PH cm ==,∵点E 是射线OB 上的动点,∴PE 的最小值为6cm ,故答案为:6cm .【点睛】此题考查了垂线段最短以及角平分线的性质,解题的关键是掌握角平分线的性质及垂线段最短的实际应用.17.18或12【分析】首先利用勾股定理求出Rt ABC V 的斜边AB 的长,然后根据题意,分两种情况:第一种情况,如图1,不重合部分是BDE V ,由折叠的性质可得9==AD AC ,DE CE =,然后得出BD 的长,最后BDE V 的周长++BE DE BD 转化为求BC BD +即可;第二种情况:如图2,不重合部分是ADE V ,由折叠的性质可得12==BD BC ,DE CE =,然后得出AD 的长,最后BDE V 的周长++AE DE AD 转化为求AC BD +即可.【详解】解:在Rt ABC V 中,90C Ð=°,9AC =,12BC =,∴15AB ==可分两种情况:第一种情况:如图1,不重合部分是BDE V ,∵直角边AC 沿A Ð的平分线所在直线AE 翻折,直角顶点C 落在斜边上点D 处,∴9==AD AC ,DE CE =,∴1596=-=-=BD AB AD ,∴++BE DE BD=++BE CE BD=+BC BD126=+18=∴BDE V 的周长为18;第二种情况:如图2,不重合部分是ADE V ,∵直角边BC 沿B Ð的平分线所在直线BE 翻折,直角顶点C 落在斜边上点D 处,∴12==BD BC ,DE CE =,∴15123=-=-=AD AB BD ,∴++AE DE AD=++AE CE AD=+AC BD93=+12=∴ADE V 的周长为12;综上所述,折叠后不重合部分三角形的周长为18或12.【点睛】本题是几何变换综合题,考查了勾股定理、折叠的性质的知识.根据题意分情况计算是解答本题的关键.18.9.6【分析】连接CD ,过C 点作底边AB 上的高CG ,根据等腰三角形的性质得出BG =8,利用勾股定理求出CG =6,再根据S △ABC =S △ACD +S △DCB 不难求得DE+DF 的值.【详解】连接CD ,过C 点作底边AB 上的高CG ,∵AC =BC =10,AB =16,∴BG =12AB =8,CG 6,∵S △ABC =S △ACD +S △DCB ,∴AB•CG =AC•DE+BC•DF ,∵AC =BC ,∴16×6=10×(DE+DF),∴DE+DF =9.6.故答案为9.6.【点睛】本题考查了勾股定理,等腰三角形的性质,辅助线是解决几何问题的一个关键,此外此题还考查了等腰三角形“三线合一”的性质.19.①②④⑤【分析】首先证明E ACD BC @D D ,推出AD BE =,说明①正确;证明ACP BCQ D @D ,推出CP CQ =,又60PCQ Ð=°,可得△CPQ 为等边三角形,故④正确;证明60PQC DCE Ð=Ð=°,推出//PQ AE ,故结论②正确;通过60AOB DAE AEO DAE ADC DCE Ð=Ð+Ð=Ð+Ð=Ð=°,得出⑤正确;现有条件不足以证明OP OQ =,故③错误.【详解】解:ABC D Q 和CDE D 都是等边三角形,AC BC \=,CD CE =,60ACB DCE °Ð=Ð=,ACB BCD DCE BCD \Ð+Ð=Ð+Ð,ACD BCE ÐÐ\=,在ACD D 和BCE D 中,AC BC =,ACD BCE Ð=Ð,CD CE =,ACD BCE \D @D ,AD BE \=,结论①正确;ACD BCE D @D Q ,CAD CBE \Ð=Ð,又60ACB DCE Ð=Ð=°Q ,18060BCD ACB DCE \Ð=°-Ð-Ð=°,60ACP BCQ \Ð=Ð=°,在ACP D 和BCQ D 中,ACP BCQ Ð=Ð,CAP CBQ Ð=Ð,AC BC =,ΔΔACP BCQ \@,AP =BQ \,CP CQ =,又60PCQ Ð=°Q ,PCQ \D 是等边三角形,结论④正确;60PQC DCE \Ð=Ð=°,//PQ AE \,结论②正确;ACD BCE D @D Q ,ADC AEO \Ð=Ð,60AOB DAE AEO DAE ADC DCE \Ð=Ð+Ð=Ð+Ð=Ð=°,故结论⑤正确;现有条件不足以证明OP OQ =,故③错误;综上,正确的结论有4个,分别是:①②④⑤,故答案为:①②④⑤.【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质和应用、平行线的判定等,熟练掌握等边三角形的性质,从图中找出全等的三角形是解决问题的关键.20.(1)见解析(2)()3,1B --,()1,1C (3)见解析【分析】本题考查了平面直角坐标系的建立,和平面直角坐标系内点的坐标的确定,以及作关于x 轴对称的轴对称图形,熟练掌握和灵活运用各知识点是解决此题的关键.(1)根据点A 的坐标为(0,3),即可建立正确的平面直角坐标系;(2)观察建立的直角坐标系即可得出答案;(3)分别作点A ,B ,C 关于x 轴的对称点A ¢,B ¢,C ¢,连接A B ¢¢,B C ¢¢,C A ¢¢,则A B C ¢¢¢V 即为所求.【详解】(1)解:所建立的平面直角坐标系如下所示:(2)解:由平面直角坐标系可知:点B 和点C 的坐标分别为:()3,1B --,()1,1C ;(3)解:所作A B C ¢¢¢V 如下图所示:21.(1)如果两个三角形是全等三角形,那么它们对应边上的高相等(2)见解析【分析】本题考查了命题,全等三角形的判定和性质,熟练掌握命题与定理的知识以及全等三角形的判定和性质是解题的关键.(1)找出命题的题设和结论,然后进行改写即可;(2)利用AAS 证明ABD A B D ¢¢¢△≌△,根据全等三角形的性质可得AD A D ¢¢=.【详解】(1)解:将该命题写成“如果…,那么…”的形式:如果两个三角形是全等三角形,那么它们对应边上的高相等;(2)证明:∵A ABC B C ¢¢¢≌△△,∴AB A B ¢¢=,B B ¢Ð=Ð,又∵AD BC ^,A D B C ¢¢¢¢^,∴90ADB AD B ¢¢Ð=°=Ð,∵ADB AD B ¢¢Ð=Ð,B B ¢Ð=Ð,AB A B ¢¢=∴(AAS)ABD A B D ¢¢¢△△≌,∴AD A D ¢¢=.22.超速了,16.8千米/时【分析】根据题意得出由勾股定理得出BC 的长,进而得小汽车行驶速度为76.8千米/时,进而得出答案.【详解】解:根据题意,得24m 40m 90AC AB C ==Ð=°,,,在Rt ACB △中,根据勾股定理,222222402432BC AB AC =-=-=,所以32m BC =,小汽车1.5秒行驶32米,则1小时行驶76800(米),即小汽车行驶速度为76.8千米/时,因为 76.860>,所以小汽车已超速行驶,超速76.86016.8-=千米/时.【点睛】本题考查的是勾股定理的应用,算术平方根的含义,掌握根据已知得出BC 的长是解题关键.23.(1)风筝的高度CE 为21.6米(2)他应该往回收线8米【分析】本题考查了勾股定理的应用;(1)利用勾股定理求出CD 的长,再加上DE 的长度,即可求出CE 的高度;(2)根据勾股定理即可得到结论.【详解】(1)解:由题意得: 1.6m AB DE ==,在Rt CDB △中,由勾股定理得,222222515400CD BC BD =-=-=,所以,20CD =(负值舍去),所以,20 1.621.6CE CD DE =+=+=(米),答:风筝的高度CE 为21.6米;(2)解:由题意得,12CM =米,20128DM \=-=米,17BM \===(米),25178BC BM \-=-=(米),\他应该往回收线8米.24.梯子下滑了0.9米.【分析】在直角三角形ABC 中,根据勾股定理得:AC =2米,由于梯子的长度不变,在直角三角形CDE 中,根据勾股定理得CE =1.5米,所以AE =0.9米,即梯子的顶端下滑了0.9米.【详解】在Rt △ABC 中,AB =2.5米,BC =0.7米,故AC =米,在Rt △ECD 中,AB =DE =2.5米,CD =(1.3+0.7)=2米,故EC =米,故AE =AC -CE =2.4-1.5=0.9米.答:梯子下滑了0.9米.【点睛】本题考查了勾股定理的应用,准确理解题意,熟练掌握知识点是解题的关键.25.(1)CGO OFB ≌△△,理由见解析(2)爸爸接住小丽的地方距地面的高度为1.6m【分析】(1)由直角三角形的性质得出BOF OCG Ð=Ð,根据AAS 可证明CGO OFB ≌△△;(2)由全等三角形的性质得出,OF CG OG BF ==,求出FG 的长则可得出答案.【详解】(1)CGO OFB ≌△△.理由如下;∵90BOC Ð=°,∴90COG BOF Ð+Ð=°∵CG OA ^,∴90COG OCG Ð+Ð=°,∴BOF OCG Ð=Ð.又∵BF OA ^,∴90BFO OGC Ð=Ð=°.∵OC OB =,∴()AAS CGO OFB ≌△△.(2)∵CGO OFB ≌△△,∴,OF CG OG BF ==,∴ 2.2 1.80.4m FG OF OG CG BF =-=-=-=,∴爸爸接住小丽的地方距地面的高度为1.20.4 1.6m +=.【点睛】本题考查了全等三角形的判定与性质,直角三角形两锐角互余,证明CGO OFB ≌△△是解题的关键.26.(1)证明见解析(2)不存在这样的Rt ABC △,理由见解析【分析】(1)连接FD ,根据三角形中线的定义求出CD 、CE ,再根据三角形的中位线平行于第三边并且等于第三边的一半可得12FD AC =,然后分别利用勾股定理列式求出2AD 、2CF 、2BE 即可得证;(2)设两直角边分别为a 、b ,根据(1)的思路求出2AD 、2CF 、2BE ,再根据勾股定理列出方程表示出a 、b 的关系,然后用a 表示出AD 、BE 、CF ,再进行判断即可.【详解】(1)证明:如图,连接FD ,∵AD 、BE 、∴12CD BC ==,1122CE AC ==,1122ED AC ==,由勾股定理得,22222312AD AC CD =+=+=,2222221324CF CD ED ED æö=+==+=ç÷èø,2222219(24BE BC CE +==+,∵339=244+,∴222AD CF BE +=.(2)解:设两直角边分别为a 、b .∵AD 、BE 、CF 分别是三边上的中线,∴12CD =,12CE =,1122ED AC ==,由勾股定理得,()22222221424AD C CD b a a b =+=+=+,222222211112244CF CD FD a b a b æöæö=+=+=+ç÷ç÷èøèø,22222221124BE BC CE a b a b æö=+=+=+ç÷èø.∵222AD CF BE +=,∴22222211114444a b a b a b +++=+,整理得,222b =,∴AD =,CF ,32BE b =,∴CF AD BE =::∵∴不存在这样的Rt ABC △.【点睛】本题考查了勾股定理及三角形中位线的性质,三角形的中位线平行于第三边并且等于第三边的一半,用两条直角边分别表示出三条中线的平方是解题的关键,也是本题的难点.27.(1)等腰(2)14CD DE =【分析】(1)过C 作CH AB ^于H ,可得四边形BDCH 是矩形,即知CD BH =,而2AB CD =,故2AB BH =,得HC 是线段AB 的垂直平分线,故AC BC =,ABC V 是等腰三角形;(2)由CD l ^,ADE V 是等边三角形,可得30ADB BDE ADE Ð=Ð-Ð=°,即得1122AB AD DE ==,故14CD DE =;(3)由ADE V 是等边三角形,AE BD ∥,可得30BAD Ð=°,在Rt ABD △中,得()22262BD BD +=,故BD =Rt BCD △中,由勾股定理即得BC 【详解】(1)解:过C 作CH AB ^于H ,如图所示:∵AB l ^,CD l ^,∴90BDC BHC Ð=Ð=°,HB CD ∥,∴HBC BCD Ð=Ð,∵BC CB =,∴()AAS HBC DCB V V ≌,∴CD BH =,∵2AB CD =,∴2AB BH =,∴H 是AB 的中点,∴HC 是线段AB 的垂直平分线,∴AC BC =,∴ABC V 是等腰三角形;故答案为:等腰.(2)解:∵CD l ^,∴90BDE Ð=°,∵ADE V 是等边三角形,∴AD DE =,60ADE Ð=°,∴30ADB BDE ADE Ð=Ð-Ð=°,∵90ABD Ð=°,∴1122AB AD DE ==,∵2AB CD =,∴122CD DE =,∴14CD DE =,故答案为:14CD DE =.(3)解:∵ADE V 是等边三角形,∴60EAD Ð=°,∵AE BD ∥,∴60ADB EAD Ð=Ð=°,∵90ABD Ð=°,∴30BAD Ð=°,∴在Rt ABD △中,2AD BD =,∵6AB =,∴()22262BD BD +=,解得BD =,∵2AB CD =,∴3CD =,在Rt BCD △中,BC ===∴BC .【点睛】本题主要考查三角形综合应用,涉及等边三角形的性质及应用,等腰三角形的判定,含30°角的直角三角形三边关系等知识,解题的关键是掌握并能熟练应用等边三角形的性质.。
苏科版八年级上册数学期中考试试题附答案

苏科版八年级上册数学期中考试试卷一、单选题1.下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是()A.B.C.D.2.4的平方根是()A.±2B.2C.-2D.±83.下列每一组数据中的三个数值分别为三角形的三边长,能构成直角三角形的是()A.3、4、5B.7、8、10C.5、12、14D.2、3、44.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.70°或50°5.一个等腰三角形的两边长分别是2和7,则它的周长是()A.11B.16C.15D.11或166.等边三角形中,两条中线所夹的锐角的度数为A.30°B.40°C.50°D.60°7.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适 ()当的位置是在ABCA.三边中线的交点B.三边垂直平分线的交点C.三条角平分线的交点D.三边上高的交点8.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB 的长度为()A.5B.6C.7D.259.已知()22x -,求x+y 的值()A .-1B .-3C .1D .310.如图,DE 是△ABC 中AC 边上的垂直平分线,如果BC=5cm ,AB=6cm ,则△EBC 的周长为()A .8cmB .9cmC .10cmD .11cm二、填空题11.9的算术平方根是.12.等腰三角形的一个内角120°,则它的底角是_____.13.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.14.直角三角形的一直角边长4cm ,斜边长5cm ,则其斜边上的高是__________cm .15.在△ABC 中,∠A =80°,当∠B =_____时,△ABC 是等腰三角形.16.如图,∠1=∠2,要使△ABE ≌△ACE ,需添加一个条件是__________.(填上一个条件即可)17.如图,点E 在正方形ABCD 内,满足90AEB =︒∠,3AE =,4BE =,则阴影部分的面积是________.18.如图所示,已知△ABC 的周长是12,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D,且OD=3,则△ABC的面积是_____________三、解答题19.计算:求出下列x的值.x-=(1)x2=16(2)()316420.已知:如图,AC∥DF,AC=DF,AB=DE.求证:(1)△ABC≌△DEF;(2)BC∥EF.21.如图,△ABC中,∠B=90°,BC上一点D,BD=6,CD=10(1)若AD平分∠BAC,求点D到AC边的距离;(2)若点D恰好在AC边的垂直平分线上,求AB的长.22.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△BDE≌△CEF;(2)当∠A=40°时,求∠B和∠EDF的度数;23.已知△ABC中,AB=AC,CD⊥AB于D.(1)若∠A=40°,求∠B和∠BCD的度数;(2)若AC=5,CD=3,求BD和BC的长.24.钓鱼岛是中国的固有领土.近期我国海监船加大钓鱼岛海域的巡航维权力度.如图,OA OB,OA=90海里,OB=30海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置.(不写作法,保留作图痕迹)(2)求我国海监船行驶的航程BC的长.25.在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°,(1)如图1,当点A、C、D在同一条直线上时,AC=4,EC=3,①求证:AF⊥BD;②AF的长度为直接写出答案);(2)如图2,当点A、C、D不在同一条直线上时,求证:AF⊥BD;(3)如图3,在(2)的条件下,连接CF并延长CF交AD于点G,则∠FCD+∠FEC=(直接写出答案)26.如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.(1)如图1,当折痕的另一端F在AB边上且AE=4时,求AF的长(2)如图2,当折痕的另一端F在AD边上且BG=10时,①求证:EF=EG;②求AF的长.(3)如图3,当折痕的另一端F在AD边上,B点的对应点E在长方形内部,E到AD的距离为2cm,且BG=10时,求AF的长.参考答案1.D【解析】【分析】根据轴对称图形的定义,逐一判断选项,即可.【详解】A.不是轴对称图形,不符合题意,B.不是轴对称图形,不符合题意,C.不是轴对称图形,不符合题意,D.是轴对称图形,符合题意,故选D【点睛】本题主要考查轴对称图形的定义,熟练掌握轴对称图形的定义,是解题的关键.2.A【解析】【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根.【详解】解:∵(±2)2=4,∴4的平方根是±2,故选:A.【点睛】本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.3.A【解析】【分析】判断是否为直角三角形,这里给出三边的长,只要验证两小边的平方和是否等于最长边的平方即可.A、32+42=52,能构成直角三角形,故此选项符合题意;B、72+82≠102,不能构成直角三角形,故此选项不符合题意;C、52+122≠142,不能构成直角三角形,故此选项不符合题意;D、22+32≠42,不能构成直角三角形,故此选项不符合题意.故选:A.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.C【解析】【分析】根据等腰三角形的性质及三角形的内角和定理即可求得结果.【详解】解:①当等腰三角形的一个底角为40°时,它的顶角为180°-40°×2=100°②当等腰三角形的一个顶角为40°时,它的顶角为40°故选:C.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理,解答本题的关键是熟练掌握等腰三角形的两个底角相等,三角形的内角和为180°.5.B【解析】【分析】题目给出等腰三角形有两条边长为2和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为2时,2+2<7,所以不能构成三角形;当腰为7时,2+7>7,所以能构成三角形,周长是:2+7+7=16.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.D【解析】【分析】如图,等边三角形ABC中,根据等边三角形的性质知,底边上的高与底边上的中线,顶角的平分线重合,所以∠1=∠2=12∠ABC=30°,再根据三角形外角的性质即可得出结论.【详解】解:如图,∵等边三角形ABC,AD、BE分别是中线,∴AD、BE分别是角平分线,∴∠1=∠2=12∠ABC=30°,∴∠3=∠1+∠2=60°.故选:D.【点睛】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.7.B【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.解:∵三角形的三条边的垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三边中垂线的交点最适当.故选:B.【点睛】本题主要考查了游戏的公平性与线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.8.A【解析】【分析】建立格点三角形,利用勾股定理求解AB的长度即可.【详解】解:如图所示:AB==.5故选:A.【点睛】本题考查了勾股定理的知识,解题的关键是掌握格点三角形中勾股定理的应用.9.C【解析】【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【详解】x-+=0,解:∵()22∴x-2=0,y+1=0,∴x=2,y=-1,∴x+y=2-1=1,故选:C.【点睛】本题考查了代数式的求值,非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.D【解析】【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【详解】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=AB=6cm,∴△EBC的周长=BC+BE+CE=5+6=11(cm).故选:D.【点睛】本题主要考查了线段垂直平分线的性质,利用线段进行等量代换是解答本题的关键.11.3【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239 ,∴9算术平方根为3.故答案为:3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.12.30°【解析】【分析】因为三角形的内角和为120°,所以120°只能为顶角,从而可求出底角.【详解】∵120°为三角形的顶角,∴底角为:(180°﹣120°)÷2=30°.故答案为30°.【点睛】本题考查等腰三角形的性质,等腰三角形的两个底角相等,从而可求出解.13.5【解析】【分析】先根据勾股定理求出斜边的长,再根据斜边上的中线等于斜边的一半求解即可.【详解】解:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=12×10=5.故答案为:5.【点睛】本题主要考查了勾股定理的应用和直角三角形斜边上的中线等于斜边的一半,关键是能正确求出斜边的长度.14.2.4【解析】【分析】根据勾股定理求出直角三角形另一条一直角边,根据三角形的面积公式计算即可.【详解】解:设斜边上的高为hcm,=3,由三角形的面积公式可得,1 2×3×4=12×h×5,解得,h=12 2.45=,故答案为:2.4.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.15.20°或50°或80°【解析】【分析】分三种情况分析,A ∠是顶角,B Ð是顶角,C ∠是顶角,【详解】∵80A ∠=︒,∴①当C ∠是顶角,80B A ∠=∠=︒时,△ABC 是等腰三角形;②当A ∠是顶角,∠B=(180°﹣80°)÷2=50°时,△ABC 是等腰三角形;③B Ð是顶角,∠B=180°﹣80°×2=20°时,△ABC 是等腰三角形;故答案为:80°或50°或20°16.∠B=∠C (或BE=CE 或∠BAE=∠CAE )【解析】【分析】根据题意,易得∠AEB=∠AEC ,又AE 公共,所以根据全等三角形的判定方法容易寻找添加条件.【详解】解:∵∠1=∠2,∴∠AEB=∠AEC ,又AE 是公共边,∴当∠B=∠C 时,△ABE ≌△ACE (AAS );当BE=CE 时,△ABE ≌△ACE (SAS );当∠BAE=∠CAE 时,△ABE ≌△ACE (ASA ).故答案为:∠B=∠C (或BE=CE 或∠BAE=∠CAE ).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.19【解析】【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【详解】解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:AB=5,∴正方形的面积是5×5=25,∵△AEB的面积是12AE×BE=12×3×4=6,∴阴影部分的面积是25-6=19,故答案为:19.18.18【分析】过点O作OE⊥AB于E,作OF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得OE=OD=OF,然后根据三角形的面积列式计算即可得解.【详解】解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=3,∴△ABC的面积=12×(AB+BC+CA)×3=12×12×3=18.故答案为:18.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.注意:角平分线上的点到角的两边的距离相等.19.(1)x=±4;(2)x=5【解析】【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案.【详解】解:(1)x 2=16,解得:x=±4;(2)(x-1)3=64,故x-1=4,解得:x=5.【点睛】本题主要考查了立方根和平方根,正确掌握相关定义是解题关键.20.(1)见解析;(2)见解析【解析】【分析】(1)由平行线的性质可得∠A=∠FDE ,再由已知即可证得结论;(2)由全等三角形的性质可得∠ABC=∠E ,由平行线的判定定理即可得到结论.(1)∵AC ∥DF∴∠A=∠FDE在△ABC 和△DEF 中AC DFA FDE AB DE=⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF(SAS)(2)∵△ABC≌△DEF∴∠ABC=∠E∴BC∥EF【点睛】本题考查了全等三角形的判定与性质、平行线的判定与性质,掌握这两个判定与性质是关键.21.(1)6;(2)8【解析】【分析】(1)过点D作DH⊥AC于点H,根据角平分线的性质可得出结论;(2)根据D恰好在AC边的垂直平分线上得出AD=CD=10,在Rt△ABD中根据勾股定理即可得出AB的长.【详解】(1)过点D作DH⊥AC于点H,∵AD平分∠BAC,∠B=90°,∴DH=BD=6,即点D到AC边的距离是3;(2)∵点D恰好在AC边的垂直平分线上,∴AD=CD=10,在Rt△ABD中,∵AD=10,BD=6,∴8=.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22.(1)见解析;(2)∠B=70°;∠EDF=55°【解析】【分析】(1)由等腰三角形的性质可知B C ∠=∠,即可直接利用“SAS”证明BDE CEF ≅ .(2)根据三角形内角和定理和等腰三角形的性质可求出B Ð的大小,再根据全等三角形的性质可推出BDE CEF ∠=∠,DE EF =,进而得出EDF EFD ∠=∠.再次根据三角形内角和定理和平角可得出180B BDE BED DEF CEF BED ∠+∠+∠=∠+∠+∠=︒,即得到70B DEF ∠=∠=︒,最后再次利用三角形内角和定理和等腰三角形的性质即可求出答案.【详解】解:(1)∵AB=AC∴B C ∠=∠.在BDE 和CEF △中BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,∴()BDE CEF SAS ≅ .(2)∵40A ∠=︒,∴1(180)702B C A ∠=∠=︒-∠=︒.∵BDE CEF ≅ ,∴BDE CEF ∠=∠,DE EF =,∴EDF EFD ∠=∠.∵180B BDE BED DEF CEF BED ∠+∠+∠=∠+∠+∠=︒∴70B DEF ∠=∠=︒,∴1(180)552EDF EFD DEF ∠=∠=︒-∠=︒.23.(1)∠B=70°,∠BCD=20°;(2)BD=1,【分析】(1)在△ABC 中,AB=AC ,∠A=40°,利用等腰三角形的性质求出∠B 的度数,在Rt △CBD 中,求出∠BCD 的度数;(2)在Rt △CDA 中,利用勾股定理求出AD 的长,然后求出BD 的长,再在Rt △CDB 中,利用勾股定理求出BC 的长即可.【详解】解:(1)∵在△ABC 中,AB=AC ,∠A=40°,∴∠B=12×(180°-40°)=70°,又∵CD ⊥AB 于D ,∴在Rt △CBD 中,∠BCD=90°-∠B=20°;(2)在Rt △CDA 中,∵AC=AB=5,CD=3,∴,∴BD=AB-AD=5-4=1.在Rt △CDB 中,CD=3,BD=1,∴=24.(1)见解析;(2)我国渔政船行驶的航程BC 的长为50海里【分析】(1)利用尺规作图作AB 的垂直平分线即可;(2)设BC 为x 海里,在Rt OBC ∆利用勾股定理列方程即可解题.【详解】解:(1)作AB 的垂直平分线与OA 交于点C ;(2)连接BC ,设BC 为x 海里,则CA 也为x 海里,OC 为(90-x)海里∵∠O=90°,∴在Rt OBC ∆中,222BO OC BC +=,即:302+(90-x)2=x 2解得:x=50,答:我国渔政船行驶的航程BC 的长为50海里【点睛】本题考查了勾股定理的应用以及线段垂直平分线的性质,利用勾股定理不仅仅能求直角三角形的边长,而且它也是直角三角形中一个重要的等量关系.25.(1)①见解析;②AF=5.6;(2)见解析;(3)45°【解析】【分析】(1)①证明△ACE ≌△BCD ,得到∠1=∠2,由对顶角相等得到∠3=∠4,所以∠BFE=∠ACE=90°,即可解答;②根据勾股定理求出BD ,利用△ABD 的面积的两种表示方法,即可解答;(2)证明△ACE ≌△BCD ,得到∠1=∠2,又由∠3=∠4,得到∠BFA=∠BCA=90°,即可解答;(3)∠AFG=45°,如图3,过点C 作CM ⊥BD ,CN ⊥AE ,垂足分别为M 、N ,由△ACE ≌△BCD ,得到S △ACE=S △BCD ,AE=BD ,证明得到CM=CN ,得到CF 平分∠BFE ,由AF ⊥BD ,得到∠BFE=90°,所以∠BFC=45°,根据三角形外角的性质即可得到∠FCD+∠FEC=45°.【详解】(1)①证明:如图1,在△ACE 和△BCD 中,∵90AC BC ACB ECD EC DC =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ACE ≌△BCD ,∴∠1=∠2,∵∠3=∠4,∴∠BFE=∠ACE=90°,∴AF ⊥BD ;②∵∠ECD=90°,BC=AC=4,DC=EC=3,∴=5,∵S △ABD=12AD•BC=12BD•AF ,即12×(4+3)×4=12×5•AF ,∴AF=5.6;(2)证明:如图2,∵∠ACB=∠ECD=90°,∴∠ACB+∠ACD=∠ECD+∠ACD ,∴∠BCD=∠ACE ,在△ACE ≌△BCD 中,AC BCACE BCD EC DC=⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ,∴∠1=∠2,∵∠3=∠4,∴∠BFA=∠BCA=90°,∴AF ⊥BD ;(3)∠FCD+∠FEC=45°,如图3,过点C 作CM ⊥BD ,CN ⊥AE ,垂足分别为M 、N ,∵△ACE ≌△BCD ,∴S △ACE=S △BCD ,AE=BD ,∠FEC=∠FDC ,∵S △ACE=12AE•CN ,S △BCD=12BD•CM ,∴CM=CN ,∵CM ⊥BD ,CN ⊥AE ,∴CF 平分∠BFE ,∵AF ⊥BD ,∴∠BFE=90°,∴∠BFC=45°,∴∠FCD+∠FEC=∠FCD+∠FDC=∠BFC=45°.【点睛】本题考查了全等三角形的判定定理与性质定理,角平分线的判定和性质,解决本题的关键是证明△ACE ≌△BCD ,得到三角形的面积相等,对应边相等.26.(1)3;(2)①见解析,②6;(3)223【分析】(1)根据翻折的性质可得BF =EF ,然后用AF 表示出EF ,在Rt △AEF 中,利用勾股定理列出方程求解即可;(2)①根据翻折的性质可得∠BGF =∠EGF ,再根据两直线平行,内错角相等可得∠BGF =∠EFG ,从而得到∠EGF =∠EFG ,再根据等角对等边证明即可;②根据翻折的性质可得EG =BG ,HE =AB ,FH =AF ,然后在Rt △EFH 中,利用勾股定理列式计算即可得解;(3)设EH 与AD 相交于点K ,过点E 作MN ∥CD 分别交AD 、BC 于M 、N ,然后求出EM、EN,在Rt△ENG中,利用勾股定理列式求出GN,再根据△GEN和△EKM相似,利用相似三角形对应边成比例列式求出EK、KM,再求出KH,然后根据△FKH和△EKM相似,利用相似三角形对应边成比例列式求解即可.【详解】(1)解:∵纸片折叠后顶点B落在边AD上的E点处,∴BF=EF,∵AB=8,∴EF=8﹣AF,在Rt△AEF中,AE2+AF2=EF2,即42+AF2=(8﹣AF)2,解得AF=3;(2)①证明:∵纸片折叠后顶点B落在边AD上的E点处,∴∠BGF=∠EGF,∵长方形纸片ABCD的边AD∥BC,∴∠BGF=∠EFG,∴∠EGF=∠EFG,∴EF=EG;②解:∵纸片折叠后顶点B落在边AD上的E点处,∴EG=BG=10,HE=AB=8,FH=AF,∴EF=EG=10,在Rt△EFH中,FH6,∴AF=FH=6;(3)解:如图3,设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,∵E到AD的距离为2cm,∴EM=2,EN=8﹣2=6,在Rt△ENG中,GN=8,∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,∠GEN+∠NGE=180°﹣90°=90°,∴∠KEM=∠NGE,又∵∠ENG=∠KME=90°,∴△GEN∽△EKM,∴EKEG=KMEN=EMGN,即EK10=KM6=28,解得EK=52,KM=32,∴KH=EH﹣EK=8﹣52=112,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴FHEM=KHKM,即FH2=11232,解得FH=22 3,∴AF=FH=22 3.。
2023-2024学年苏科新版八年级上册数学期中复习试卷(含解析)

2023-2024学年苏科新版八年级上册数学期中复习试卷一.选择题(共8小题,满分24分,每小题3分)1.下列四个标志中,是轴对称图形的是( )A.B.C.D.2.如图,AC=DC,∠1=∠2,添加下面一个条件不能使△ABC≌△DEC的是( )A.BC=EC B.∠A=∠D C.DE=AB D.∠DEC=∠ABC 3.在△ABC中,AB=AC,△ABC的中线BD将这个三角形的周长分为9和15两个部分,则BC长为( )A.12B.4C.12或4D.6或104.下列式子中,正确的是( )A.B.C.D.5.若一个直角三角形的两边长分别为4和5,则第三条边长的平方为( )A.9B.41C.9或41D.不确定6.下列说法错误的是( )A.任何命题都有逆命题B.真命题的逆命题不一定是正确的C.任何定理都有逆定理D.一个定理若存在逆定理,则这个逆定理一定是正确的7.如图是5×5的正方形网格中,以D、E为顶点作位置不同的格点的三角形与△ABC全等,这样格点三角形最多可以画出( )A.2个B.3个C.4个D.5个8.已知△ABC是等腰三角形,过△ABC的一个顶点的一条直线,把△ABC分成的两个小三角形也是等腰三角形,则原△ABC的顶角的度数有几种情况?( )A.2B.3C.4D.5二.填空题(共8小题,满分24分,每小题3分)9.5的平方根是 ;0.027的立方根是 .10.已知在△ABC中,∠A=40°,D为边AC上一点,△ABD和△BCD都是等腰三角形,则∠C的度数可能是 .11.三角形三条角平分线交于一点,且这一点到三顶点的距离相等. 12.△ABC中,AB=7,AC=24,BC=25,则∠A= 度.13.如图,正方体的棱长为2,O为AD的中点,则O,A1,B三点为顶点的三角形面积为 .14.如图,锐角△ABC中,BC=12,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,NE=6,则△EAN的周长为 .15.课堂上,老师给同学们出了一道题:“有一直角三角形的两边长分别为6cm和8cm,你们知道第三边的长度吗”刘飞立刻回答;“第三边是10cm.”你认为第三边应该是 cm.16.如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,点E、F分别是线段AB、AD上的动点,且BE=AF,则BF+CE的最小值为 .三.解答题(共9小题,满分72分)17.如图,在正方形网格中,每个小方格的边长都为1,△ABC各顶点都在格点上.若点A 的坐标为(0,3),请按要求解答下列问题:(1)在图中建立符合条件的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)画出△ABC关于x轴的对称图形△A′B′C′.18.如图所示,在△ABC中,D、E分别是AB,AC上的一点,BE与CD交于点O,给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.(1)上述四个条件中,哪两个可以判定△ABC是等腰三角形.(2)选择第(1)题中的一种情形为条件,试说明△ABC是等腰三角形;(3)在上述条件中,若∠A=60°,BE平分∠B,CD平分∠C,则∠BOC的度数?19.如图,四边形ABCD为正方形纸片,点E是CD的中点,若CD=4,CF=1,图中有几个直角三角形?你是如何判断的?试说明理由.20.已知:2x+y+7的立方根是3,16的算术平方根是2x﹣y,求:(1)x、y的值;(2)x2+y2的平方根.21.如图,在等边△ABC中,点D是射线BC上一动点(点D在点C的右侧),CD=DE,∠BDE=120°.点F是线段BE的中点,连接DF、CF.(1)请你判断线段DF与AD的数量关系,并给出证明;(2)若AB=4,求线段CF长度的最小值.22.如图,一架梯子AB长10米,斜靠在一面墙上,梯子底端离墙6米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了2米,那么梯子的底端在水平方向滑动了多少米?23.如图,在△ABC中,D为BC中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC的延长线于G.(1)求证:BF=CG(2)若AB=5,AC=3,求AF的长.24.Rt△ABC中,∠BAC=90°,AB=AC,点D在直线BC上运动,连接AD,将线段AD 绕点D顺时针旋转90°得到线段DE,连接AE,CE.(1)当点D与点B重合时,如图1,请直接写出线段EC和线段AC的数量关系;(2)点D在线段BC上(不与点B,C重合)时,请写出线段AC,DC,EC之间的数量关系,并说明理由;(3)若AB=4,CD=1,请直接写出△DCE的面积.25.综合与实践【问题情境]课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=6,AC=4,求BC边上的中线AD的取值范围.小明在组内和同学们合作交流后,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB,依据是 ;A.SSSB.AASC.SASD.HL(2)由“三角形的三边关系”,可求得AD的取值范围是 .解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.[初步运用](3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求线段BF的长.[灵活运用](4)如图3,在△ABC中,∠A=90°,D为BC中点,DE⊥DF,DE交AB于点E,DF 交AC于点F,连接EF,试猜想线段BE、CF、EF三者之间的等量关系,直接写出你的结论.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.2.解:A、若添BC=EC即可根据SAS判定全等;B、若添∠A=∠D即可根据ASA判定全等;C、若添DE=AB则是SSA,不能判定全等;D、若添∠DEC=∠ABC即可根据AAS判定全等.故选:C.3.解:根据题意,①当12是腰长与腰长一半时,AC+AC=15,解得AC=10,所以腰长为4;②当9是腰长与腰长一半时,AC+AC=9,解得AC=6,所以腰长为12,∵6+6=12,∴不符合题意.故腰长等于4.故选:B.4.解:A、=﹣=﹣2,正确;B、原式=﹣=﹣,错误;C、原式=|﹣3|=3,错误;D、原式=6,错误,故选:A.5.解:当5为直角边时,第三边的平方为:42+52=41;当5为斜边时,第三边的平方为:52﹣42=9.故第三边的平方为9或41,故选:C.6.解:A.任何命题都有逆命题,所以A选项不符合题意;B.真命题的逆命题不一定是正确的,所以B选项不符合题意;C.任何定理不一定有逆定理,所以C选项符合题意;D.一个定理若存在逆定理,则这个逆定理一定是正确的,所以D选项不符合题意;故选:C.7.解:如图所示:,最多可以画出4个.故选:C.8.解:设该等腰三角形的底角是x;①如图1,当过顶角的顶点的直线把它分成了两个等腰三角形,则AC=BC,AD=CD=BD,设∠A=x°,则∠ACD=∠A=x°,∠B=∠A=x°,∴∠BCD=∠B=x°,∵∠A+∠ACB+∠B=180°,∴x+x+x+x=180,解得x=45,则顶角是90°;②如图2,AC=BC=BD,AD=CD,设∠B=x°,∵AC=BC,∴∠A=∠B=x°,∵AD=CD,∴∠ACD=∠A=x°,∴∠BDC=∠A+∠ACD=2x°,∵BC=BD,∴∠BCD=∠BDC=2x°,∴∠ACB=3x°,∴x+x+3x=180,x=36°,则顶角是108°.③如图3,当过底角的角平分线把它分成了两个等腰三角形,则有AC=BC,AB=AD=CD,设∠C=x°,∵AD=CD,∴∠CAD=∠C=x°,∴∠ADB=∠CAD+∠C=2x°,∵AD=AB,∴∠B=∠ADB=2x°,∵AC=BC,∴∠CAB=∠B=2x°,∵∠CAB+∠B+∠C=180°,∴x+2x+2x=180,x=36°,则顶角是36°.④如图4,当∠A=x°,∠ABC=∠ACB=3x°时,也符合,AD=BD,BC=DC,∠A=∠ABD=x,∠DBC=∠BDC=2x,则x+3x+3x=180°,x=,因此等腰三角形顶角的度数为36°或90°或108°或,故选:C.二.填空题(共8小题,满分24分,每小题3分)9.解:5的平方根是±,0.027的立方根是0.3,故答案为:,0.3.10.解:如图1所示:当DA=DC时,∵∠A=40°,∴∠ABD=40°,∴∠ADB=180°﹣40°×2=100°,∴∠BDC=180°﹣100°=80°,当BD=BC1时,∠BC1D=∠BDC1=80°;当DB=DC2时,∠DBC2=∠DC2B=(180°﹣80°)÷2=50°;当BC3=DC3时,∠BC2D=180°﹣80°×2=20°;如图2所示:当AB=AD时,∵∠A=40°,∴∠ABD=∠ADB=(180°﹣40°)÷2=70°,∴∠BDC=180°﹣70°=110°,当DB=DC4时,∠DBC4=∠DC4B=(180°﹣110°)÷2=35°;如图3所示:当AB=DB时,∵∠A=40°,∴∠ADB=40°,∴∠BDC=180°﹣40°=140°,当DB=DC5时,∠DBC5=∠DC5B=(180°﹣140°)÷2=20°.综上所述,∠C的度数可能是80°或50°或20°或35°或20°.故答案为:80°或50°或20°或35°或20°.11.解:由角平分线性质可知:三角形的三条角平分线交于一点,这点到三角形的三边的距离相等,故所给命题是假命题.故本题答案为:×.12.解:∵△ABC中,AB=7,AC=24,BC=25,∴72+242=252即BC2=AB2+AC2,∴三角形ABC是直角三角形.∴∠A=90°.13.解:直角△AA1O和直角△OBA中,利用勾股定理可以得到OA1=OB=,在直角△A1AB中,利用勾股定理得A1B=,过点O作高,交A1B与M,连接AM,则△AOM是直角三角形,则AM=A1B=,OM==,∴△OA1B的面积是.14.解:(1)∵点E、N分别是AB、AC边的垂直平分线与BC的交点,∴BE=AE,AN=CN.∴△AEN的周长=AE+AN+EN=BE+NC+EN=BC+2NE=12+12=24;故答案为2415.解:8是斜边时,第三边长=2cm;8是直角边时,第三边长=10cm.故第三边应该是10或2cm.16.解:过B作BG⊥BC,且BG=BA,连接GE,∵AD⊥BC,∴GB∥AD,∴∠GBA=∠BAD,∵GB=AB,BE=AF,∴△GBE≌△BAF(SAS),∴GE=BF,∴BF+CE=GE+CE≥GC,∴当G、E、C三点共线时,BF+CE=GC最小,∵AB=AC=5,BC=6,在Rt△BCG中,GC=,故答案为.三.解答题(共9小题,满分72分)17.解:(1)如图所示:(2)如图所示,点B的坐标为(﹣3,1),点C的坐标为(1,1);(3)如图所示,△A′B′C′即为所求.18.解:(1)上述四个条件中,①③,①④,②③,②④组合可判定△ABC是等腰三角形.(2)选择①③证明.∵∠DBO=∠ECO,BD=CE,∠DOB=∠EOC,∴△DOB≌△EOC,∴OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形;(3)∵∠A=60°,∴∠ABC=∠ACB=60°,∵BE平分∠B,CD平分∠C,∴∠OBC=∠OBC=30°,∴∠BOC=180﹣30﹣30=120°,答:∠BOC的度数为120°.19.解:图中的有4个直角三角形,它们为Rt△ADE,Rt△ABF,Rt△CEF,Rt△AEF.理由如下:∵四边形ABCD为正方形,∴∠D=∠B=∠C=90°,AD=BC=AB=CD=4,∴△ADE、△ABF和△CEF都为直角三角形,∵E是CD的中点,∴DE=CE=2,∵CF=1,∴BF=3,在Rt△ADE中,AE2=22+42=20,在Rt△CEF中,EF2=22+12=5,在Rt△ABF中,AF2=32+42=25,∵AE2+EF2=AF2,∴△AEF为直角三角形.20.解:(1)依题意,解得:;(2)x2+y2=36+64=100,100的平方根是±10.21.解:(1)线段DF与AD的数量关系为:AD=2DF,理由如下:延长DF至点M,使DF=FM,连接BM、AM,如图1所示:∵点F为BE的中点,∴BF=EF,在△BFM和△EFD中,,∴△BFM≌△EFD(SAS),∴BM=DE,∠MBF=∠DEF,∴BM∥DE,∵线段CD绕点D逆时针旋转120°得到线段DE,∴CD=DE=BM,∠BDE=120°,∴∠MBD=180°﹣120°=60°,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∴∠ABM=∠ABC+∠MBD=60°+60°=120°,∵∠ACD=180°﹣∠ACB=180°﹣60°=120°,∴∠ABM=∠ACD,在△ABM和△ACD中,,∴△ABM≌△ACD(SAS),∴AM=AD,∠BAM=∠CAD,∴∠MAD=∠MAC+∠CAD=∠MAC+∠BAM=∠BAC=60°,∴△AMD是等边三角形,∴AD=DM=2DF;(2)连接CE,取BC的中点N,连接作射线NF,如图2所示:∵△CDE为等腰三角形,∠CDE=120°,∴∠DCE=30°,∵点N为BC的中点,点F为BE的中点,∴NF是△BCE的中位线,∴NF∥CE,∴∠CNF=∠DCE=30°,∴点F的轨迹为射线NF,且∠CNF=30°,当CF⊥NF时,CF最短,∵AB=BC=4,∴CN=2,在Rt△CNF中,∠CNF=30°,∴CF=CN=1,∴线段CF长度的最小值为1.22.解:(1)根据勾股定理:所以梯子距离地面的高度为:AO===8(米);答:这个梯子的顶端距地面有8米高;(2)梯子下滑了2米即梯子距离地面的高度为OA′=8﹣2=6(米),根据勾股定理:OB′===8(米),∴BB′=OB′﹣OB=8﹣6=2(米),答:当梯子的顶端下滑2米时,梯子的底端水平后移了2米.23.(1)证明:如图,连接BE、EC,∵ED⊥BC,D为BC中点,∴BE=EC,∵EF⊥ABEG⊥AG,且AE平分∠FAG,∴FE=EG,在Rt△BFE和Rt△CGE中,,∴Rt△BFE≌Rt△CGE(HL),∴BF=CG.(2)解:在Rt△AEF和Rt△AEG中,,∴Rt△AEF≌Rt△AEG(HL),∴AF=AG,∵Rt△BFE≌Rt△CGE(HL),∴BF=CG,∴AB+AC=AF+BF+AG﹣CG=2AF,∴2AF=8,∴AF=4.24.解:(1)EC=AC,理由如下:由旋转得ED=AD,∠ADE=90°,当点D与点B重合时,则EB=AB,∠ABE=90°,∵∠BAC=90°,AB=AC,∴∠BAC+∠ABE=180°,∴AC∥BE,AC=EB,∴四边形ABEC是正方形,∴EC=AC.(2)AC﹣EC=DC,理由如下:如图2,作DF⊥BC交AC于点F,则∠CDF=90°,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°,∴∠DFC=∠DCF=45°,∴DF=DC,∵∠ADF=∠EDC=90°﹣∠EDF,AD=ED,∴△ADF≌△EDC(SAS),∴AF=EC,∴AC﹣EC=AC﹣AF=FC,∵FC===DC,∴AC﹣EC=DC.(3)如图3,点D在线段BC上,作DF⊥BC交AC于点F,EG⊥BC交BC的延长线于点G,由(2)得∠DFC=45°,△ADF≌△EDC,AC﹣EC=CD,∴∠ECD=∠AFD=180°﹣∠DFC=135°,∴∠GCE=180°﹣∠ECD=45°,∵AB=AC=4,CD=1,∴EC=AC﹣DC=4﹣×1=3,∵∠CGE=90°,∴EG=EC•sin∠GCE=EC•sin45°=3×=3,∴S△DCE=CD•EG=×1×3=;如图4,点D在线段BC的延长线上,作DF⊥BC交AC的延长线于点F,EG⊥BC交BC 的延长线于点G,∵∠CDF=90°,∠DCF=∠ACB=45°,∴∠F=∠DCF=45°,∴FD=CD,∵∠ADF=∠EDC=90°+∠ADC,AD=ED,∴△ADF≌△EDC(SAS),∴EC=AF,∠DCE=∠F=45°,∵FC===DC,∴EC=AF=AC+CF=4+×1=5,∵∠CGE=90°,∴EG=EC•sin∠GCE=EC•sin45°=5×=5,∴S△DCE=CD•EG=×1×5=,综上所述,△DCE的面为或.25.解:(1)∵AD是BC边上的中线,∴CD=BD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故答案为:C;(2)∵AB﹣BE<AE<AB+BE,即6﹣4<AE<6+4,∴2<AE<10,∵AD=AE,∴1<AD<5,故答案为:1<AD<5;(3)延长AD到M,使AD=DM,连接BM,如图2所示:∵AE=EF.EF=3,∴AC=AE+EC=3+2=5,∵AD是△ABC中线,∴CD=BD,在△ADC和△MDB中,,∴△ADC≌△MDB(SAS),∴BM=AC,∠CAD=∠M,∵AE=EF,∴∠CAD=∠AFE,∵∠AFE=∠BFD,∴∠BFD=∠CAD=∠M,∴BF=BM=AC,即BF=5,故线段BF的长为5;(4)线段BE、CF、EF之间的等量关系为:BE2+CF2=EF2,理由如下:延长ED到点G,使DG=ED,连接GF、GC,如图3所示:∵ED⊥DF,∴EF=GF,∵D是BC的中点,∴BD=CD,在△BDE和△CDG中,,∴△DBE≌△DCG(SAS),∴BE=CG,∠B=∠GCD,∵∠A=90°,∴∠B+∠ACB=90°,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt△CFG中,CG2+CF2=GF2,∴BE2+CF2=EF2.。
苏科版八年级上册数学期中考试试卷含答案

苏科版八年级上册数学期中考试试题一、单选题1.2022年冬奥会将在北京举行,以下历届冬奥会会徽是轴对称图形的是()A .B .C .D .2.在﹣0.101101110111,22,72π0中,无理数的个数是()A .1个B .2个C .3个D .4个3.下列各式中,正确的是()A4=±B .(24=C 5=-D 3=-4.已知等腰三角形中的一个内角为40°,则这个等腰三角形的顶角为()A .40°B .100°C .40°或100°D .40°或80°5.如图,在等腰三角形ABC 中,AB =AC ,∠A =50°,直线MN 垂直平分边AC ,分别交AB ,AC 于点D ,E ,则∠BCD =()A .10°B .15°C .20°D .25°6.在下列各组条件中,不能说明△ABC ≌△DEF 的是()A .AB =DE ,∠B =∠E ,∠C =∠F B .AB =DE ,BC =EF ,AC =DF C .AB =DE ,∠B =∠E ,BC =EFD .AC =DF ,∠B =∠F ,∠A =∠D7.下列说法中:①关于某直线成轴对称的两个图形一定能完全重合;②线段是轴对称图形;③有一条公共边的两个全等三角形一定关于公共边所在直线对称;④关于某条直线对称的两个图形一定分别位于该直线的两侧.正确的有()A .1个B .2个C .3个D .4个8.如图,在△ABC 中,∠BAC 为钝角,AF 、CE 都是这个三角形的高,P 为AC 的中点,若∠B =40°,则∠EPF 的度数为()A .90°B .95°C .100°D .105°9.在等边ABC 中,D ,E 分别为,AB AC 边上的动点,2BD AE =,连接DE ,以DE 为边在ABC 内作等边DEF ,连接CF ,当D 从点A 向B 运动(不与点B 重合)时,ECF ∠的变化情况是()A .不变B .变小C .变大D .先变大后变小10.如图,在△ABC 中,∠BAC 和∠ABC 的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F ,过点O 作OD ⊥BC 于D ,下列四个结论:①∠AOB =90°+12∠C ;②当∠C =60°时,AF+BE =AB ;③若OD =a ,AB+BC+CA =2b ,则S △ABC =ab .其中正确的是()A .①②B .②③C .①②③D .①③二、填空题11.9的平方根是_________.12.已知:如图,CAB DBA ∠=∠,只需补充条件_______,就可以根据“SAS ”得到ABC BAD ∆≅∆.13.数据1.44×106是四舍五入得到的近似数,其精确的数位是____.14.等腰三角形的两边长分别为2和4,则其周长为_____.15.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,若△ABC 的面积为9,DE=2,AB=5,则AC 长是_________.16.等腰三角形一腰上的高与另一腰的夹角为45︒,则其底角为______度.17.如图,ABC 中,AB AC =,DE 垂直平分AB ,BE AC ⊥,EF BF =,则∠=EFC _________︒.18.如图,在△ABC 中,∠ABC =45°,AD ,BE 分别为DC ,AC 边上的高,连接DE ,过点D 作DF ⊥DE 交BE 于点F ,G 为BE 中点,连接AF ,DG .则AF ,DG 关系是____.三、解答题19.计算(111(2-+;(2)221-+-20.如图,点B 、D 、C 在一条直线上,AB =AD ,AC =AE ,∠BAD =∠EAC ;(1)求证:BC =DE ;(2)若∠B =70°,求∠EDC .21.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求:A 与A 1,B 与B 1,C 与C 1相对应)(2)若有一格点P 到点A 、B 的距离相等(PA =PB ),则网格中满足条件的点P 共有个;(3)在直线l 上找一点Q ,使QB+QC 的值最小.22.如图,在△ABC 中,∠B =90°,AB =16cm ,BC =12cm ,AC =20cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿A→B 方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B→C→A 方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?(2)当点Q在边CA上运动时,出发几秒后,△BCQ是以BC或BQ为底边的等腰三角形?23.如图,点D是△ABC中∠BAC的平分线和边BC的垂直平分线DE的交点,DG⊥AB 于点G,DH⊥AC交AC的延长线于点H.(1)求证:BG=CH;(2)若AB=12,AC=8,求BG的长.24.以△ABC的AB、AC为边作△ABD和△ACE,且AE=AB,AC=AD,CE与BD相交于M,∠EAB=∠CAD=α.(1)如图1,若α=40°,求∠EMB的度数;(2)如图2,若G、H分别是EC、BD的中点,求∠AHG的度数(用含α式子表示)(3)如图3,连接AM,直接写出∠AMC与α的数量关系是.25.(1)如图①,△ABC是等边三角形,M为边BC的中点,连接AM,将线段AM顺时针旋转120°,得到线段AD,连接BD;点N在BC的延长线上,且CN=MC,连接AN.求证:BD=AN.(2)若将问题(1)中的条件“M为边BC的中点”改为“M为边BC上的任意一点”,其他条件不变,结论还成立吗?若成立,请画出图形并给出证明;若不成立,请举反例.参考答案1.C【解析】【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;B、不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;C 、能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,符合题意;D 、不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;故选:C .【点睛】此题主要考查了轴对称图形,熟知轴对称图形的定义是解题的关键.2.B 【解析】【分析】根据无理数的定义,即无限不循环小数叫无理数判断即可【详解】,2π是无理数;故选B .【点睛】本题主要考查了无理数的判断,准确分析求解是解题的关键.3.D 【解析】【分析】根据算术平方根的定义、立方根的定义进行判断即可.【详解】解:A 4=,本选项错误;B 、(222==,本选项错误;C 5==,本选项错误;D3=-,本选项正确,故选:D .【点睛】本题考查算术平方根和立方根的定义及性质,熟练掌握定义和性质是解答的关键.4.C【解析】【分析】根据等腰三角形的性质分类计算即可;【详解】∵已知三角形是等腰三角形,∴当40°是底角时,顶角的度数为1804040100︒-︒-︒=︒;当40°是顶角时,符合题意;∴顶角的度数是40°或100°.故选C.【点睛】本题主要考查了等腰三角形的定义,准确计算是解题的关键.5.B【解析】【分析】由AB=AC,∠A=50°得出∠ACB=65°,根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AD=CD,推出∠ACD=∠A=50°,即可得出∠BCD=15°.【详解】解:∵AB=AC,∠A=50°,∴∠ACB=∠B18050652︒-︒==︒,∵直线MN垂直平分边AC,∴AD=CD,∴∠ACD=∠A=50°,∴∠BCD=∠ACB﹣∠ACD=15°,故选:B.【点睛】此题考查了等腰三角形以及垂直平分线的性质,熟练掌握相关基本性质是解题的关键.6.D【解析】【分析】根据三角形全等的判定方法逐项判断即可求解.【详解】解:A.AB=DE,∠B=∠E,∠C=∠F,根据“角角边”即可判断△ABC≌△DEF,不合题意;B.AB=DE,BC=EF,AC=DF,根据“边边边”即可判断△ABC≌△DEF,不合题意;C.AB=DE,∠B=∠E,BC=EF,根据“边角边”即可判断△ABC≌△DEF,不合题意;D.AC=DF,∠B=∠F,∠A=∠D,无法判断△ABC≌△DEF,符合题意.故选:D【点睛】本题考查了三角形全等的判定,熟知全等三角形的判定定理并根据题意灵活应用是解题关键.7.B【解析】【分析】根据轴对称的定义求解即可.轴对称:两个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这两个图形成轴对称.【详解】①关于某直线成轴对称的两个图形一定能完全重合,选项正确,符合题意;②线段是轴对称图形,选项正确,符合题意;③有一条公共边的两个全等三角形不一定关于公共边所在直线对称,选项错误,不符合题意;④关于某条直线对称的两个图形不一定分别位于该直线的两侧,选项错误,不符合题意.∴正确的个数是2个,故选:B.【点睛】此题考查了轴对称的定义,解题的关键是熟练掌握轴对称的定义.轴对称:两个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这两个图形成轴对称.8.C【解析】【分析】根据三角形内角和定理求出BCE ∠,根据直角三角形的性质得到12PF AC PC ==,12PE AC PC ==,根据等腰三角形的性质、三角形的外角的性质计算即可.【详解】解:CE BA ⊥Q ,40B ∠=︒,50BCE ∴∠=︒,AF BC ⊥Q ,CE BA ⊥,P 为AC 的中点,12PF AC PC ∴==,12PE AC PC ==,PFC PCF ∴∠=∠,PEC PCE ∠=∠,222100EPF PCF PCE BCE ∴∠=∠+∠=∠=︒,故选:C .【点睛】本题考查的是直角三角形的性质,三角形外角定理,等腰三角形性质等知识,熟知在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.9.A 【解析】【分析】在AC 上截取=CN AE ,连接FN ,根据等边三角形的性质证明()SAS ≌ADE NEF ,即可得到结论;【详解】如图,在AC 上截取=CN AE ,连接FN .∵ABC 是等边三角形,∴60A ∠=︒,AB AC =.∵2BD AE =,∴AD EN =.∵DEF 是等边三角形,∴DE EF =,60DEF ∠=︒.∵180********∠=︒-∠-∠=︒-︒-∠=︒-∠ADE A AED AED AED ,180********∠=︒-∠-∠=︒-︒-∠=︒-∠NEF DEF AED AED AED ,∴∠=∠ADE NEF .在ADE 和NEF 中,∵,,,AD EN ADE NEF ED EF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ≌ADE NEF ,∴,60=∠=∠=︒AE FN FNE A ,∴=FN CN ,∴∠=∠NCF NFC .∵60∠=∠+∠=︒FNE NCF NFC ,∴30∠=︒NCF ,即30ECF ∠=︒,∴ECF ∠的大小不变,故选A.【点睛】本题主要考查了等边三角形的性质,结合三角形全等求解是解题的关键.10.C【解析】【分析】由角平分线的定义结合三角形的内角和的可求解∠AOB 与∠C 的关系,进而判定①;在AB 上取一点H ,使BH =BE ,证得△HBO ≌△EBO ,得到∠BOH =∠BOE =60°,再证得△HBO ≌△EBO ,得到AF =AH ,进而判定②正确;作OH ⊥AC 于H ,OM ⊥AB 于M ,根据三角形的面积可证得③正确.【详解】解:∵∠BAC 和∠ABC 的平分线相交于点O ,∴∠OBA =12∠CBA ,∠OAB =12∠CAB ,∴∠AOB =180°﹣∠OBA ﹣∠OAB =180°﹣12∠CBA ﹣12∠CAB =180°﹣12(180°﹣∠C )=90°+12∠C,①正确;∵∠C=60°,∴∠BAC+∠ABC=120°,∵AE,BF分别是∠BAC与ABC的平分线,∴∠OAB+∠OBA=12(∠BAC+∠ABC)=60°,∴∠AOB=120°,∴∠AOF=60°,∴∠BOE=60°,如图,在AB上取一点H,使BH=BE,∵BF是∠ABC的角平分线,∴∠HBO=∠EBO,在△HBO和△EBO中,BH BE HBO EBOBO BO=⎧⎪∠=∠⎨⎪=⎩,∴△HBO≌△EBO(SAS),∴∠BOH=∠BOE=60°,∴∠AOH=180°﹣60°﹣60°=60°,∴∠AOH=∠AOF,在△HBO和△EBO中,HAO FAOAO AO AOH AOF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HBO≌△EBO(ASA),∴AF=AH,∴AB=BH+AH=BE+AF,故②正确;作OH⊥AC于H,OM⊥AB于M,∵∠BAC和∠ABC的平分线相交于点O,∴点O在∠C的平分线上,∴OH=OM=OD=a,∵AB+AC+BC=2b∴S△ABC =12×AB×OM+12×AC×OH+12×BC×OD=12(AB+AC+BC)•a=ab,④正确.故选:C.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,三角形全等的性质和判定,正确作出辅助线证得△HBO≌△EBO,得到∠BOH=∠BOE=60°,是解决问题的关键.11.±3【解析】【分析】根据平方根的定义解答即可.【详解】解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.AC BD=【解析】【分析】已知AB BA=和CAB DBA∠=∠,需要根据“SAS”证明三角形全等,只能补充AC=BD的条件.【详解】解:补充条件AC=BD ,在ABC 和BAD 中,AB BA CAB DBA AC BD =⎧⎪∠=∠⎨⎪=⎩,∴()ABC BAD SAS ≅ .故答案是:AC=BD .【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的判定方法.13.万位【解析】【分析】把题目中数据1.44×106还原为1440000,从而可以得到题目中的数据精确到万位,问题得解.【详解】解:因为1.44×106=1440000,∴近似数01.44×106精确到万位.故答案为:万位.【点睛】本题考查了近似数和科学记数法,熟知近似数的意义并准确将近似数还原为原数是解题关键.14.10【解析】【分析】根据等腰三角形的性质可分两种情况讨论:①当2为腰时②当4为腰时;再根据三角形的三边关系确定是否能构成三角形,再计算三角形的周长,即可完成.【详解】①当2为腰时,另两边为2、4,2+2=4,不能构成三角形,舍去;②当4为腰时,另两边为2、4,2+4>4,能构成三角形,此时三角形的周长为4+2+4=10故答案为10【点睛】本题主要考查等腰三角形的性质,还涉及了三角形三边的关系,熟练掌握以上知识点是解题关键.15.4【解析】【分析】根据角平分线性质求出DF,根据三角形面积公式求出△ABD的面积,求出△ADC面积,即可求出答案.【详解】解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∵S△ADB=12AB×DE=12×5×2=5,∵△ABC的面积为9,∴△ADC的面积为9-5=4,∴12AC×DF=4,∴12AC×2=4,∴AC=4故答案为4.【点睛】本题考查了角平分线性质,解题的关键是作出辅助线.16.67.5或22.5【解析】【分析】根据题意可知等腰三角形需要分类讨论,分为锐角三角形和钝角三角形,画出图形解答即可.【详解】解:①如图1所示,当等腰三角形是锐角三角形时,根据题意,45ABM ∠=︒,又∵BM 是AC 边上的高,∴90AMB ∠=︒,∴904545A ∠=︒-︒=︒,∴1(18045)67.52C ∠=︒-︒=︒②如图2,当等腰三角形是钝角三角形时,根据题意,45DEN ∠=︒,∵EN 是DF 边上的高∴90N ∠=︒,∴904545EDN ∠=︒-︒=︒,∴122.52F EDN ∠=∠=︒故答案为67.5或22.5【点睛】本题考查了等腰三角形的分类讨论问题,涉及了三角形内角和和外角和的性质,解题的关键是能够画出图形,根据数形结合的思想求出答案.17.45【解析】【分析】根据线段垂直平分线的性质,由DE 垂直平分AB 可得AE =BE ,又由BE ⊥AC ,可求得∠A =∠ABE =45°,然后由AB =AC ,BF =EF 即可求得答案.【详解】解:∵DE 垂直平分AB ,∴AE =BE ,∴∠A =∠ABE ,∵BE ⊥AC ,∴∠AEB =90°,∴∠A =∠ABE =45°,∵AB =AC ,∴∠ABC =∠C =(180-∠A)÷2=67.5°,∴∠EBC =∠ABC ﹣∠ABE =22.5°,∵BF =EF ,∴∠BEF =∠EBC =22.5°,∴∠EFC =∠EBC+∠BEF =45°.故答案为:45.【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.18.2AF DG =,AF DG ⊥##AF DG ⊥,2AF DG=【解析】【分析】延长DG 至M ,使GM DG =,交AF 于H ,连接BM ,根据题意证明DAE DBF ∆≅∆,推出45DEF DFE ∠=∠=︒,利用SAS 证明()BGM EGD SAS ∆∆≌,得出45MBE FED EFD ∠=∠=︒=∠,BM DE DF ==,再利用SAS 证明()BDM DAF SAS ∆∆≌,得出2DM AF DG ==,FAD BDM ∠=∠,证出90AHD ∠=︒,即可得出结论.【详解】解:2AF DG =,且AF DG ⊥;理由如下:如图,延长DG 至M ,使GM GD =,交AF 于H ,连接BM ,AD ,BE 分别为BC ,AC 边上的高,90BEA ADB ∴∠=∠=︒,45ABC ∠=︒ ,ABD ∴∆是等腰直角三角形,AD BD ∴=,90DAC C DBE C ∠+∠=∠+∠=︒ ,DAC DBE ∴∠=∠,即DAE DBF ∠=∠,90ADB FDE ∠=∠=︒ ,ADB ADF FDE ADF ∴∠-∠=∠-∠,即BDF ADE ∠=∠,在DAE ∆和DBF ∆中,DAE DBF AD BD ADE BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()DAE DBF ASA ∴∆∆≌,DE DF ∴=,FDE ∴∆是等腰直角三角形,45DEF DFE ∴∠=∠=︒,G 为BE 中点,BG EG ∴=,在BGM ∆和EGD ∆中,BG EG BGM DGE GM GD =⎧⎪∠=∠⎨⎪=⎩,()BGM EGD SAS ∴∆∆≌,45MBE DEF DFE ∴∠=∠=︒=∠,BM DE DF ==,DAC DBE ∠=∠ ,45MBD MBE DBE DBE ∴∠=∠+∠=︒+∠,45EFD DBE BDF ∠=︒=∠+∠,45BDF DBE ∴∠=︒-∠,ADE BDF ∠=∠ ,9045ADF BDF DBE MBD ∴∠=︒-∠=︒+∠=∠,在BDM ∆和DAF ∆中,BM DF MBD ADF BD AD =⎧⎪∠=∠⎨⎪=⎩,()BDM DAF SAS ∴∆∆≌,2DM AF DG ∴==,FAD BDM ∠=∠,90BDM MDA ∠+∠=︒ ,90MDA FAD ∴∠+∠=︒,∠90AHD ∴=︒,AF DG ∴⊥,2AF DG ∴=,且AF DG ⊥.故答案为:2AF DG =,AF DG ⊥.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.19.(1)6;(24-【解析】【分析】(1)由题意根据算术平方根和立方根性质以及负指数幂的运算法则进行计算即可;(2)由题意根据乘方、二次根式以及去绝对值的运算规则进行计算即可.【详解】解:(111(2-523=-+6=(2)221-++4312=-++-4=【点睛】本题考查实数的运算,熟练掌握算术平方根和立方根性质以及负指数幂的运算法则,乘方、二次根式以及去绝对值的运算规则是解题的关键.20.(1)见详解;(2)40°.【解析】【分析】(1)先证明∠BAC =∠DAE ,再证明△ABC ≌ADE ,问题得证;(2)根据△ABC ≌ADE ,得到∠B=∠ADE=70°,AB=AD ,进而得到∠B=∠ADB=70°,根据平角的定义即可求解.【详解】解:(1)∵∠BAD =∠EAC ,∴∠BAD+∠DAC =∠EAC+∠DAC ,即∠BAC =∠DAE ,在△ABC 和△ADE 中,===AB AD BAC DAE AC AE ⎧⎪∠∠⎨⎪⎩∴△ABC ≌△ADE ,∴BC=DE ;(2)∵△ABC ≌△ADE ,∴∠B=∠ADE=70°,AB=AD ,∴∠B=∠ADB=70°,∴∠EDC=180°-∠ADB-∠ADE=180°-70°-70°=40°.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质等知识,根据题意证明△ABC ≌△ADE 是解题关键.21.(1)见解析;(2)4;(3)见解析.【分析】(1)分别作出A,B,C的对应点A1,B1,C1,再顺次连接即可;(2)在线段AB的垂直平分线性质格点即可;(3)连接BC1交直线l于点Q,连接CQ,此时BQ+CQ的值最小.【详解】解:(1)如图,△A1B1C1即为所求.(2)如图,满足条件的点P有4个,故答案为:4.(3)如图,点Q即为所求.【点睛】本题考查作图-轴对称变换,线段的垂直平分线的性质,轴对称最短问题等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.(1)163;(2)11秒或12秒.【解析】【分析】(1)由题意用t可分别表示出BP和BQ,根据等腰三角形的性质可得到BP=BQ,可得到关于t的方程,即可求得t;(2)根据题意用t分别表示出BQ和CQ,利用等腰三角形的性质可分CQ=BC和BQ=CQ 三种情况,分别得到关于t的方程,即可求得t的值.【详解】解:(1)由题意可知AP=t,BQ=2t,∴BP=AB-AP=16-t,当△PQB为等腰三角形时,则有BP=BQ,即16-t=2t,解得t=16 3,∴出发163秒后△PQB能形成等腰三角形;(2)①当△BCQ是以BC为底边的等腰三角形时:CQ=BQ,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10(cm),∴BC+CQ=22(cm),∴t=22÷2=11(秒).②当,△BCQ是以BQ为底边的等腰三角形时:CQ=BC,如图2所示,则BC+CQ=24(cm),∴t=24÷2=12(秒).综上所述:当t为11秒或12秒时,△BCQ是以BC或BQ为底边的等腰三角形.本题考查等腰三角形的性质、方程思想及分类讨论思想等知识.掌握用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意结合方程思想进行分析.23.(1)见详解;(2)10【解析】【分析】(1)根据题意连接BD 、CD ,根据线段垂直平分线的性质可得DB=DC ;依据角平分线的性质可得DG=DH ;依据HL 定理可判断出Rt △BDG ≌Rt △CDH ,根据全等三角形的性质即可得出结论;(2)由题意可得Rt △ADG ≌Rt △ADH (HL ),得出AG=AH ,进而得出答案.【详解】解:(1)证明:如图,连接BD 、CD ,∵D 是线段BC 垂直平分线上的点,∴BD=DC ,∵D 是∠BAC 平分线上的点,DG ⊥AB ,DH ⊥AC∴DG=DH ,∠DGB=∠H=90°,在Rt △BDG 与Rt △CDH 中,DG DH BD DC=⎧⎨=⎩,∴Rt △BDG ≌Rt △CDH (HL ),∴BG=CH ;(2)在Rt △ADG 与Rt △ADH 中,∵DG=DH ,AD=AD ,∴Rt △ADG ≌Rt △ADH (HL ),∴AB-AC=AG+BG-(AH-CH )=2BG=12-8=4,∴BG=2,∴AG=AB-BG=12-2=10.【点睛】本题考查线段垂直平分线及角平分线的性质和直角三角形全等的判定定理及性质,解答此题的关键是作出辅助线,构造出直角三角形.24.(1)40°;(2)1902α︒-;(3)1902AMC α∠=︒+.【解析】【分析】(1)由“SAS ”可证AEC ABD ∆∆≌,可得AEC ABD ∠=∠,由外角的性质可得结论;(2)由“SAS ”可证ACG ADH ∆∆≌,可得AG AH =,CAG DAH ∠=∠,即可求解;(3)连接AM ,过点A 作AP EC ⊥于P ,AN BD ⊥于N ,由全等三角形的性质可得ACG ADH S S ∆∆=,EC BD =,由面积法可求AP AN =,由角平分线的性质可求AMD ∠,即可求解.【详解】解:(1)EAB CAD α∠=∠= ,EAC BAD ∴∠=∠,在AEC ∆和ABD ∆中,AE AB EAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩,()AEC ABD SAS ∴∆∆≌,AEC ABD ∴∠=∠,AEC EAB ABD EMB ∠+∠=∠+∠ ,40EMB EAB ∴∠=∠=︒;(2)连接AG ,由(1)可得:EC BD =,ACE ADB ∠=∠,G 、H 分别是EC 、BD 的中点,在ACG ∆和ADH ∆中,AC AD ACE ADB CG DH =⎧⎪∠=∠⎨⎪=⎩,()ACG ADH SAS ∴∆∆≌,AG AH ∴=,CAG DAH ∠=∠,AGH AHG ∴∠=∠,CAG CAH DAH CAH ∠-∠=∠-∠,GAH DAC ∴∠=∠,DAC α∠=∵,GAH α∴∠=,180GAH AHG AGH ∠+∠+∠=︒ ,1902AHG α∴∠=︒-;(3)如图3,连接AM ,过点A 作AP EC ⊥于P ,AN BD ⊥于N ,ACE ADB ∆∆ ≌,ACE ADB S S ∆∆∴=,EC BD =, 1122EC AP BD AN ⨯=⨯⨯,AP AN ∴=,又AP EC ⊥ ,AN BD ⊥,1802AME AMD α︒-∴∠=∠=,1902AMC AMD DMC α∴∠=∠+∠=︒+.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的判定,掌握全等三角形的判定定理是本题的关键.25.(1)证明过程见解析;(2)成立,理由见解析【解析】【分析】(1)根据等边三角形的性质得到60ABC BAC ACB ∠=∠=∠=︒,AB BC AC ==,再根据中点得到90AMB AMN ∠=∠=︒,22BC BM MC ==,30BAM BAC ∠=∠=︒,再根据旋转的性质得到2MN MC BC AB ===,证明DBA ANM ≅△△,即可得解;(2)当12BM BC >,过点A 、点D 作AG BM ⊥,DH BA ⊥,再证明DAH AMG ≅△△,得到DH AG =,AH GM =,再根据等边三角形的性质得到BG GC =,证明DBH ANG ≅△△即可得解;当12BM BC <,根据相同的方法证明即可;【详解】(1)∵△ABC 是等边三角形,∴60ABC BAC ACB ∠=∠=∠=︒,AB BC AC ==,又∵M 为边BC 的中点,∴90AMB AMN ∠=∠=︒,22BC BM MC ==,30BAM BAC ∠=∠=︒,∵AM 顺时针旋转120°得到线段AD ,∴120MAD ∠=︒,AD AM =,∴1203090BAD MAD BAM ∠=∠-∠=︒-︒=︒,∴90BAD AMN ∠=∠=︒,∵MC CN =,∴2MN MC BC AB ===,在DBA 和ANM 中,AB MN BAD AMB AD AM =⎧⎪∠=∠⎨⎪=⎩,∴DBA ANM ≅△△,∴BD AN =;(2)结论成立,理由如下:如图,当12BM BC >时,过点A 、点D 作AG BM ⊥,DH BA ⊥,∴90DHA AGM =∠=︒,∵180AMG BAM ABC ∠+∠+∠=︒,60ABC ∠=︒,∴180120AMG ABC BAM BAM ∠=︒-∠-∠=︒-∠,∵AM 顺时针旋转120°得到线段AD ,∴120MAD ∠=︒,AD AM =,∴120DAB BAM ∠=︒-∠,∴DAB AMB ∠=∠,在DAH 和AMG 中,DHA AGM DAH AMG AD AM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DAH AMG ≅△△,∴DH AG =,AH GM =,又∵△ABC 是等边三角形,AG BM ⊥,∴BG GC =,∴GN GC CN GC CM BG GC GM BC GM =+=+=+-=-,又∵BH AB HA =-,AH GM =,AB BC =,∴BH GN =,∵DH AG =,90DHA AGM ∠=∠=︒,BH GN =,在DBH △和ANG 中,DH AG DHB AGM BH GN =⎧⎪∠=∠⎨⎪=⎩,∴DBH ANG ≅△△,∴BD AN =;当12BM BC <时,过点A 、点D 作AE BM ⊥,DF BA ⊥,∴90DFA AEM =∠=︒,∵180AME BAM ABC ∠+∠+∠=︒,60ABC ∠=︒,∴180120AME ABC BAM BAM ∠=︒-∠-∠=︒-∠,∵AM 顺时针旋转120°得到线段AD ,∴120MAD ∠=︒,AD AM =,∴120DAB BAM ∠=︒-∠,∴DAB AMB ∠=∠,在DAF △和AME △中,DFA AEM DAF AME AD AM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DAF AME ≅△△,∴DF AE =,AF EM =,又∵△ABC 是等边三角形,AE BM ⊥,∴BE EC =,∴EN EC CN EC CM BE EC EM BC EM =+=+=+-=-,又∵BF AB FA =-,AF EM =,AB BC =,∴BF EN =,∵DF AE =,90DFA AEM ∠=∠=︒,BF EN =,在DBF 和ANE 中,DF AE DFB AEM BF EN =⎧⎪∠=∠⎨⎪=⎩,∴DBF ANE ≅△△,∴BD AN =;。
苏科版八年级上册数学期中考试试题及答案

苏科版八年级上册数学期中考试试卷一、单选题1.下列图形中,不能通过其中一个四边形平移得到的是()A .B .C .D .2.下列运算正确的是()A .236a a a⋅=B .853a a a+=C .325)aa =(D .551a a ÷=(a≠0)3.已知三角形的两边长分别为4和9,则此三角形的第三边长可能为()A .9B .4C .5D .134.如图,60,55A B ∠=︒∠=︒.下列条件中能使//DE BC 的是()A .135BDE ∠=︒B .65DEA ∠=︒C .125DEC ∠=︒D .65ADE ∠=︒5.下列说法中,正确的个数有()①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,④两个角的两边分别平行,则这两个角相等A .1个B .2个C .3个D .4个6.若(2x+3y)(mx-ny)=9y 2-4x 2,则m 、n 的值为()A .m=2,n=3B .m=-2,n=-3C .m=2,n=-3D .m=-2,n=37.如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a ∥b )的一边b 上,若∠1=30°,则三角板的斜边与长尺的另一边a 的夹角∠2的度数为()A .10°B .15°C .30°D .35°8.若22(23)(23)a b a b N -=++,则N 表示的代数式是()A .12abB .12ab-C .24abD .24ab-9.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度数是()A .1902α-B .1902α︒+C .12αD .15402α︒-10.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠DFB =12∠CGE ;③∠ADC =∠GCD ;④CA 平分∠BCG ;其中正确的个数是()A .1B .2C .3D .4二、填空题11.最薄的金箔的厚度为0.000000091m ,用科学记数法表示为________m .12.计算:2017201852((2)125-⨯=__________.13.已知32,2mn aa ==,则2m n a +=______.14.长、宽分别为a 、b 的长方形,它的周长为16,面积为10,则22a b ab +的值为____.15.已知(x -1)(x +2)=ax 2+bx +c ,则代数式4a -2b +c 的值为________.16.已知4s t+=则228s t t -+=____.17.如图,在△ABC 中,∠C=90°,BC=8cm ,AC=6cm ,点E 是BC 的中点,动点P 从A 点出发以每秒2cm 的速度沿A→C→B 运动,设点P 运动的时间是t 秒,那么当t=____,△APE 的面积等于6.三、解答题18.计算:(1)1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭;(2)()()()3243652aa a +-∙-.(3)(2)()3()a b a b a a b ++-+(4)(3a+2)2(3a -2)219.因式分解:(1)x 2﹣36;(2)﹣3a 2+6ab ﹣3b 2(3)3x (a -b )-6y (b -a );(4)222(1)6(1)9y y ---+20.先化简,再求值:(a+2b)(a-2b)+(a+2b)2-4ab的值,其中a=1,b=12018.21.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上,将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A,B,C,;(2)再在图中画出△ABC的高CD;中线BM(3)△ABC的面积S△ABC=PBC的格点P的个数有个(点P异于A)(4)在图中能使S△ABC=S△22.已知a+b=2,ab=-1,求(1)5a2+5b2,(2)(a-b)2的值.23.如图,∠1=70°,∠2=110°,∠C=∠D,试探索∠A与∠F有怎样的数量关系,并说明理由.24.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.如果∠1=∠2,且∠3=115°,求∠ACB的度数.25.已知:如图①,直线MN ⊥直线PQ ,垂足为O ,点A 在射线OP 上,点B 在射线OQ 上(A 、B 不与O 点重合),点C 在射线ON 上且2OC =,过点C 作直线//l PQ .点D 在点C 的左边且3CD =(1)直接写出的BCD ∆面积;(2)如图②,若AC BC ⊥,作CBA ∠的平分线交OC 于E ,交AC 于F ,试说明CEF CFE ∠=∠;(3)如图③,若ADC DAC ∠=∠,点B 在射线OQ 上运动,ACB ∠的平分线交DA 的延长线于点H ,在点B 运动过程中HABC∠∠的值是否变化?若不变,求出其值;若变化,求出变化范围.26.如图1,有A型、B型正方形卡片和C型长方形卡片各若干张.(1)用1张A型卡片,1张B型卡片,2张C型卡片拼成一个正方形,如图2,用两种方法计算这个正方形面积,可以得到一个等式,请你写出这个等式____;(2)选取1张A型卡片,10张C型卡片,____张B型卡片,可以拼成一个正方形,这个正方形的边长用含a,b的代数式表示为____;(3)如图3,两个正方形边长分别为m、n,m+n=10,mn=19,求阴影部分的面积.参考答案1.D【解析】【分析】根据平移与旋转的性质得出.【详解】解:A.能通过其中一个四边形平移得到,故本选项不符合题意;B.能通过其中一个四边形平移得到,故本选项不符合题意;C.能通过其中一个四边形平移得到,故本选项不符合题意;D.不能通过其中一个四边形平移得到,需要一个四边形旋转得到,故本选项符合题意.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,导致误选.2.D【解析】【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【详解】解:A.同底数幂相乘,底数不变,指数相加,故A错误;B.系数相加字母及指数不变,故B错误;C.幂的乘方,底数不变,指数相乘,故C错误;D.同底数幂相除,底数不变,指数相减,故D正确.故选D.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.A【解析】【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】设这个三角形的第三边为x.根据三角形的三边关系定理,得:9-4<x<9+4,解得5<x<13.故选:A.【点睛】本题考查了三角形的三边关系定理.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.4.B【解析】利用三角形的内角和等于180°列式求出∠C,再根据同位角相等,两直线平行和同旁内角互补两直线平行对各选项分析判断利用排除法求解.【详解】解:∵∠A=60°,∠B=55°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣55°=65°.A.∠BDE=135°时,∠BDE+∠B=135°+55°=190°,DE与BC不平行,故本选项错误;B.∠DEA=65°时,∠DEA=∠C=65°,DE∥BC,故本选项正确;C.∠DEC=125°时,∠DEC+∠C=125°+65°=190°,DE与BC不平行,故本选项错误;D.∠ADE=65°时,∠ADE≠∠B,DE与BC不平行,故本选项错误.故选B.【点睛】本题考查了平行线的判定,三角形的内角和定理,熟练掌握平行线的判定方法是解题的关键.5.A【解析】【分析】根据同位角的定义、三角形垂心的定义及多边形内角和公式、平行线的性质逐一判断可得.【详解】解:①只有两平行直线被第三条直线所截时,同位角才相等,故此结论错误;②只有锐角三角形的三条高在三角形的内部,故此结论错误;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,此结论正确;④两个角的两边分别平行,则这两个角可能相等,也可能互补,故此结论错误.故选A.【点睛】本题主要考查同位角、三角形垂心及多边形内角和、平行线的性质,熟练掌握基本定义和性质是解题的关键.6.B【解析】【分析】先把等式左边利用多项式乘多项式的法则展开并整理,根据对应项系数相等列出等式,求解即可.解:将(2x+3y)(mx-ny)展开,得2mx2-2nxy+3mxy-3ny2,根据题意可得2mx2-2nxy+3mxy-3ny2=9y2-4x2,根据多项式相等,则对应项及其系数相等,可得2m=-4,-3n=9,解得m=-2,n=-3故选B.【点睛】本题是一道有关多项式乘法的题目,明确多项式的乘法法则是解题的关键.7.B【解析】【详解】∠1与它的同位角相等,它的同位角+∠2=45°所以∠2=45°-30°=15°,故选B8.D【解析】【分析】根据完全平方公式即可求出N的代数式.【详解】解:(2a﹣3b)2=4a2﹣12ab+9b2=4a2+12ab+9b2﹣24ab=(2a+3b)2﹣24ab故N=﹣24ab故选D.【点睛】本题考查了完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.9.A【解析】【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α,∴∠BCD+∠CDE=540°-α,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=270°-12α,∴∠P=180°-(270°-12α)=12α-90°.故选:A.【点睛】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.10.C【解析】【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】解:①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC +∠ACB =∠AEB ,∠DCB +∠ABC =∠ADC ,∴∠AEB +∠ADC =90°+12(∠ABC +∠ACB )=135°,∴∠DFE =360°−135°−90°=135°,∴∠DFB =45°=12∠CGE ,故正确.∴正确的为:①②③,故选:C .【点睛】本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.11.89.110-⨯【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000091m 用科学记数法表示为89.110m -⨯.故答案为89.110-⨯.【点睛】考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.12.-125【解析】【分析】根据同底数幂的乘法、积的乘方的逆运算进行计算即可.【详解】2017201720182017201752512125121212()(2)()()()()125125512555⎡⎤-⨯=-⨯⨯=-⨯⨯=-⎢⎥⎣⎦,故填:125-.【点睛】本题考查同底数幂的乘法、积的乘方的逆运算,属于基础题型,牢记法则是关键.13.128【解析】【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则分别计算得出答案.【详解】解:∵am=32,an=2,∴(an)2=4,∴a2n=4,则am+2n=am×(a2n)=32×4=128.故答案为:128.【点睛】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.14.80【解析】【详解】∵长、宽分别为a、b的矩形,它的周长为16,面积为10,∴a+b=16÷2=8,ab=10,∴a²b+ab²=ab(a+b)=10×8=80,故答案为80.15.0【解析】【详解】解:(x﹣1)(x+2)=x2﹣x+2x﹣2=x2+x﹣2=ax2+bx+c,则a=1,b=1,c=﹣2.∴原式=4﹣2﹣2=0.故答案为:0.【点睛】本题考查多项式乘多项式及求代数式的值,掌握多项式乘以多项式运算法则是解题关键.16.16【解析】【分析】先利用平方差公式进行因式分解,再代入题目给出的s+t=4,再提取公因式得到4(s+t),最后得出答案.【详解】原式=(s+t)(s-t)+8t=4(s-t)+8t=4s-4t+8t=4(s+t)=4×4=16;故答案为:16【点睛】本题考查由给定式子值求另一个式子值,考查了平方差公式和提取公因式的运用,掌握求解的方法是解题关键.17.32或5或9.【解析】【分析】分点P在线段AC上和点P在线段CE上和点P在线段EB上三种情况考虑,根据三角形的面积公式分别列出关于t的一元一次方程,解之即可得出结论.【详解】解:∵BC=8cm,点E是BC的中点,∴CE=12BC=4cm,当点P在线段AC上,如图1所示,AP=2t,∵∠C=90°,∴S△APE =12AP•CE=12t42⨯⨯=4t=6,解得:t=3 2;当点P在线段CE上,如图2所示,AC=6cm,PE=4-(t-3)=7-t,∴S△APE =12PE•AC=()17-t62⨯⨯=6,解得:t=5.如图3,当P在线段BE上时,PE=t-3-4=t-7,∴S△APE =12PE•AC=()1t-762⨯⨯=6,解得:t=9,综上所述,t的值为32或5或9;故答案为:32或5或9.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,以及解一元一次方程,和分类讨论的数学思想,解答时灵活运用三角形的面积公式求解是关键.18.(1)-11;(2)12a ;(3)2222a b -+;(4)42817216a a -+【解析】【分析】(1)根据负整数指数幂以及零指数幂即可求出答案.(2)根据积的乘方以及同底数幂的乘法即可求出答案.(3)原式利用多项式乘以多项式,单项式乘以多项式法则计算,去括号合并即可得到结果.(4)原式利用平方差公式和完全平方公式计算即可.【详解】(1)原式=﹣3﹣9+1=﹣11.(2)原式=5a 12﹣4a 6•a 6=a 12.(3)原式=a 2+3ab+2b 2﹣3a 2﹣3ab=﹣2a 2+2b 2.(4)原式=(9a 2-4)2=42817216a a -+.【点睛】本题考查了学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.19.(1)(x ﹣6)(x+6);(2)-3(a-b )2;(3)3(x+2y )(a -b );(4)22(2)(2)y y -+【解析】(1)利用平方差公式因式分解即可;(2)先提取公因式,再利用完全平方公式因式分解即可;(3)利用提取公因式法因式分解即可;(4)将2(1)y -看做一个整体,利用完全平方公式因式分解即可;【详解】解:(1)x 2﹣36=(x ﹣6)(x+6)(2)﹣3a 2+6ab ﹣3b 2=-3(a 2-2ab+b 2)=-3(a-b )2(3)3x (a -b )-6y (b -a )=3x (a -b )+6y (a -b )=(3x+6y )(a -b )=3(x+2y )(a -b )(4)222(1)6(1)9y y ---+=22(y 13)--=22(4)y -=22(2)(2)y y -+【点睛】本题综合考查了提取公因式法、公式法分解因式.掌握因式分解的方法是关键,注意分解要彻底.20.2a²,2【解析】【分析】先算乘法,再合并同类项,最后代入求值即可.【详解】解:原式=a²−4b²+a 2+4ab+4b²−4ab=2a²,当a=1,b=12018时,原式=2×1²=2.【点睛】本题考查了整式的混合运算和求值的应用,主要考查学生的计算能力和化简能力,难度适中.21.(1)见解析;(2)见解析;(3)8;(4)5【解析】【分析】(1)周长A,B,C的对应点A′,B′,C′即可.(2)根据高的定义作出△ABC的高CD即可.(3)利用分割法求出△ABC的面积即可.(4)利用等高模型解决问题即可.【详解】解:(1)△A′B′C′如图所示.(2)△ABC的高CD如图所示.(3)S△ABC=12×4×4=8,故答案为8.(4)如图所示,满足条件的点P有5个.故答案为5.【点睛】本题属于作图-平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(1)30;(2)8【解析】【分析】(1)将a+b=2两边平方,利用完全平方公式展开,把ab的值代入即可求出a2+b2的值,进而求出5a2+5b2的值;(2)所求式子利用完全平方公式展开,将ab及a2+b2的值代入计算即可求出值.【详解】解:(1)将a+b=2两边平方得:(a+b)2=a2+b2+2ab=4,把ab=﹣1代入得:a2+b2=6,则5a2+5b2=5(a2+b2)=30;(2)(a﹣b)2=a2+b2﹣2ab=6+2=8.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解答本题的关键.23.∠A=∠F,理由见解析【解析】【分析】要找∠A与∠F的数量关系,根据平行线的判定,由已知可得∠1+∠2=180°,则CE∥BD;根据平行线的性质,可得∠C=∠ABD,结合已知条件,得∠ABD=∠D,根据平行线的判定,得AC∥DF,从而求得结论.【详解】解:∠A=∠F.理由如下:∵∠1=70°,∠2=110°,∴∠1+∠2=180°,∴CE∥DB,∴∠C=∠ABD.∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠A=∠F.【点睛】本题主要考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.24.115°【解析】【分析】根据垂直的定义可得∠BFE=∠BDC=90°,然后根据同位角相等,两直线平行可得CD//EF,再根据两直线平行,同位角相等可得∠2=∠BCD,然后求出∠1=∠BCD,再根据内错角相等,两直线平行,然后根据两直线平行,同位角相等可得∠3=∠ACB.【详解】解:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF//CD;∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG//BC,∴∠ACB=∠3=115°.【点睛】本题考查了垂直的定义,平行线的性质与判定,是基础题,熟记平行线的性质与判定方法是解题的关键.25.(1)3;(2)见解析;(3)见解析【解析】【分析】(1)因为△BCD的高为OC,所以S△BCD=12 CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.【详解】解:(1)S△BCD=12CD•OC=12×3×2=3.(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分线,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE ,∴∠CEF=∠CFE .(3)如图③,∵直线l ∥PQ ,∴∠ADC=∠PAD .∵∠ADC=∠DAC∴∠CAP=2∠DAC .∵∠ABC+∠ACB=∠CAP ,∴∠ABC+∠ACB=2∠DAC .∵∠H+∠HCA=∠DAC ,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH 是,∠ACB 的平分线,∴∠ACB=2∠HCA ,∴∠ABC=2∠H ,∴H ABC∠∠=12.【点睛】本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.26.(1)222()2a b a b ab +=++;(2)25,5a b +;(3)阴影部分的面积为432.【解析】【分析】(1)方法一:先求出这个正方形的边长,再利用正方形的面积公式即可得;方法二:这个正方形的面积等于两个小正方形的面积与两个长方形的面积之和即可得;然后根据方法一与方法二的面积相等可得出所求的等式;21(2)设选取x 张B 型卡片,根据(1)中的方法二求出拼成的正方形的面积,然后利用完全平方公式即可求出x 的值,最后根据正方形的面积公式即可得其边长;(3)先利用阴影部分的面积等于大正方形的面积减去两个直角三角形的面积求出阴影部分的面积,再利用完全平方公式进行变形,然后将已知等式的值代入求解即可.【详解】(1)方法一:这个正方形的边长为a b +,则其面积为2()a b +方法二:这个正方形的面积等于两个小正方形的面积与两个长方形的面积之和则其面积为222a b ab++因此,可以得到一个等式222()2a b a b ab+=++故答案为:222()2a b a b ab +=++;(2)设选取x 张B 型卡片,x 为正整数由(1)的方法二得:拼成的正方形的面积为2210a xb ab++由题意得:2210a xb ab ++是一个完全平方公式则210()252x ==因此,拼成的正方形的面积为2222510(5)a b ab a b ++=+所以其边长为5a b+故答案为:25,5a b +;(3)阴影部分的面积为222211111()22222m m n m n m mn n ---=-+10,19m n mn +== 2222()21021962m n m n mn ∴+=+-=-⨯=则阴影部分的面积为222211111()22222m mn n m n mn-+=+-11621922=⨯-⨯432=答:阴影部分的面积为432.。
苏教版八年级上期中数学试卷及答案(五套).docx

八年级上学期中数学试卷(一)一、选择题(本大题共6小题,每小题2分,共12分)1.在下血的四个京剧脸谱中,不是轴对称图形的是(▲)等腰三角形两边长分别为2和4,则这个等腰三角形的周长为5. 如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是的屮点,AB 绕着点O 上下转 动.当A 端落地时,ZOAC=20。
,跷跷板上下可转动的最大角度(即ZA fOA )是(▲) A. 20°B. 40°C. 60°D. 80°6. 如图,在四边形ABCD 中,AB=AC=BD, AC 与BQ 相交于H,且AC 丄BD.①AB 〃 CD ; ②、ABD^ABAC ;③AB 2+CD 1=AD 1+CB 2;④ ZACB+ ZBDA = 135。
・其屮真命题的个数是(▲) A. 1B. 2C. 3D. 4二、填空题(本大题共10小题,每空2分,共2()分)7. 、代的相反数是一 ▲.8. 一个罐头的质量约为2.026kg,用四舍五入法将2.026kg 精确到0.01kg 可得近似值▲ kg.9. 如图,已知点A, D, C, F 在同一•条直线上,AB=DE, ZB=ZE,要使ZBCQ'DEF,还需要添加一个条件是一 ▲.10. 如图,在RlA ABC 1!', CD 是斜边43上的小线,若AB=2,则—▲2. A. B. C. D.下列长度的三条线段能组成直角三角形的是(▲) A. 1, 2, 3B. 2, 3, 4C. 3, 4, 5D. 5, 6, 73. 4. A. 6B. 8C. 10D. 8或10如图,在数轴上表示实数甫+1的点可能是(▲) A. PB. QC. RD.11.如图,在厶ABC中,AB=AC, ZB=66。
,D, E 分别为AB, BC 上一点,AF//DE.若ZBDE=30°,则ZMC的度数为▲•12.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF =1, CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是一▲・13.如图,△ABC, A/IDE均是等腰直角三角形,BC与DE相交于F点,若AC = AE=\.则四边形AEFC的周长为▲14.如图,AABC是边长为6的等边三角形,D是BC上一点,BD=2, DEVBC交AB于点、E,则AE= A .15.如图,在△ABC中,AB=4, AC=3, BC=5, AD是厶ABC的角平分线,DE丄AB于点E,则DE长是一▲.16.如图,在厶ABC中,ZC=90°, ZA = 34°t D, E 分别为AB, AC 1.一点,将厶BCD,/\ADE沿CD, DE翻折,点A, B恰好重合于点P处,则ZACP=A三、解答题(本大题共10题,共68分)17.(6分)计算(1)(―2)2+^/64—\/4;(2) A /l^+(7t—3)°—11 —18.(6分)求下列各式中的x(1)(兀+2)2=4;(2) 1+(X-1)3=-7.19.(6分)请在下图屮画岀三个以为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,饨角三角形各画一个;2.点C在格点上.)20. (6分)如图,AC丄BC, BD丄AD,垂足分别为C, D, AC=BD.求证BC=AD.21.(6分)如图,在△ ABC中,边AB, 4C的垂直平分线相交于点P.求证PB=PC.22.(6分)如图,已知点P为△ABC边3C上一点.请用直尺和圆规作一条直线EF,使得A关于EF的对称点为P.(保留作图痕迹,不写作法)23.(7分)如图,在长方形ABCD中,AD=IO,点E为BC上一点,将/VIBE沿AE折卷,使点B落在长方形内点F处,且DF=6,求BE的长.24.(8 分)如图,在厶ABC中,AB=AC, ZA=48% 点D、E、F 分别在BC、AB. AC边上,且BE=CF, BD=CE,求ZEDF的度数.25.(8分)阅读理解:求J而的近似值.解:设迈丽=10+x,其中0<x<l,贝ij 107 = (10+x)2, B|J 107=100+20x+x2. 因为0<x<l,所以0<"<i,所以1072100+20X,解Z得兀乏0.35,即丽的近似值为10.35.理解应用:利用上面的方法求帧的近似值(结果精确到0.01).26.(9 分)如图,在四边形ABCD中,AB//CD, ZD=90°,若A£>=3, AB=4, CD=8, 点P为线段CD上的一动点,若氏ABP为等腰三角形,求DP的长.南京市建邺区2017-2018学年度第一学期期中学情试卷八年级数学参考答案及评分标准说明:本评分标准每题给岀了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.一托. 8. 2.23. 9.BC=EF(答案不惟一). 10. 1. 11. 18.12.帧. 13. 2返・14. 2.16.22.三、解答题(本大题共10小题,共计68分)17.(本题6分)解:(1)(—2)+寸丽一甫=4+4-2=6 ............................................................................................................................ 3 分⑵寸為+(兀—3屮一|1一帀|=|+1-(^3-1)=学一羽. ........................................................... 6分18.(本题6分)解:(1)兀—2 = ±2 ........................................................................................................... 1 分兀=±2+2兀=0, X2=4. ........................................................................................................... 3 分(2)................................................................................................................. (X-1)3=-84 分x~\ = ~2..................................................................................................................... 5分x=—1. .................................................................................................................. 6 分19.(本题6分)图略.20.(本题6分)证明:I AC丄BC, BD丄AD f:.ZC=ZD=90°.在RtAABC 和RtABAD 中,AB=BA,AC=BD.・・・BC=AD. ..................................................................................................................... 6分21.(本题6分)证明:・・・边AB, AC的垂直平分线相交于点P,PA = PB, PA = PC.PB=PC.22.(本题6分)图略.23.(本题7分)解:I 将△ABE沿AE折叠,使点B落在长方形内点F处,・•・ ZAFE= ZB=90。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(上)数学期中模拟考试卷班级姓名一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.2.2的算术平方根是()A.B.﹣C.±D.23.在下列四组线段中,能组成直角三角形的是()A.a=2,b=3,c=4 B.a=1,b=2,c=3 C.a=3,b=4,c=5 D.a=7,b=8,c=94.下列各数在2与3之间的是()A.1 B.C.D.5.运算与推理以下是甲、乙两人得到+>的推理过程:(甲)因为>=3,>=2,所以+>3+2=5.又=<=5,所以+>.(乙)作一个直角三角形,两直角边长分别为,.利用勾股定理得斜边长的平方根为,所以+>.对于两个人的推理,下列说法中正确的是()A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确6.如图,在5×5的正方形网格中,每个小正方形的边长为1,在图中找出格点C,使得△ABC是腰长为无理数的等腰三角形,点C的个数为()A.3 B.4 C.5 D.7二、填空题7.16的平方根是.8.小亮的体重为43.95kg,精确到0.1kg所得近似值为.9.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=cm.10.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=.11.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为.12.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.13.如图所示:数轴上点A所表示的数为a,则a的值是.14.已知△ABC中,AB=AC=10,DE垂直平分AB,交AC于E,已知△BEC的周长是16.则△ABC的周长为.15.已知等腰梯形的一个内角为80°,则其余三个内角的度数分别为.16.如图,∠MAN是一钢架,且∠MAN=18°,为了使钢架更加坚固,需在其内部添加一些钢管BC,CD,DE,…添加的钢管长度都与AB相等,则最多能添这样的钢管根.三、计算题17.计算:(1)(﹣3)2﹣+;(2)+(π﹣3)0﹣|1﹣|.18.求下列各式中的x:(1)4x2=81;(2)(x﹣1)3=64.四、解答题19.如图,已知:AB=CB,AD=CD,求证:∠A=∠C.20.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.求证:△ACD≌△BCE.21.如图所示,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,若AB=17,BD=12,(1)求证:△BCD≌△ACE;(2)求DE的长度.22.如图,M是Rt△ABC斜边AB上的中点,D是边BC延长线上一点,∠B=2∠D,AB=16cm,求线段CD的长.23.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得BD长为1.3米,求梯子顶端A下落了多少米?24.如图,在△ABC中,AB=17,BC=16,BC边上的中线AD=15,(1)求AC;(2)若点P在边AC上移动,则BP的最小值是.25.如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处(如图1).(1)若折叠后点D恰为AB的中点(如图2),则θ=;(2)若θ=45°,四边形OABC的直角∠OCB沿直线l折叠后,点B落在点四边形OABC的边AB上的E 处(如图3),求a的值.26.有这样的一个定理:夹在两条平行线间的平行线段相等.下面经历探索与应用的过程.探索:已知:如图1,AD∥BC,AB∥CD.求证:AB=CD.应用此定理进行证明求解.应用一、已知:如图2,AD∥BC,AD<BC,AB=CD.求证:∠B=∠C;应用二、已知:如图3,AD∥BC,AC⊥BD,AC=4,BD=3.求:AD与BC两条线段的和.参考答案一、1.解:A、既是轴对称图形,也是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选:A.2.解:∵2的平方为2,∴2的算术平方根为.故选A.3.解:A、(2)2+(3)2≠(4)2,故不是直角三角形,故本选项错误;B、12+22≠32,故不是直角三角形,故本选项错误;C、32+42=52,故是直角三角形,故本选项正确;D、72+82≠92,故不是直角三角形,故本选项错误.故选C.4.解:∵=2,=3,∴大于而小于的数只有D,故选D.5.解:甲找了一个可作为参照物的第三数值5,+比5大,比5小,所以得出了结论,所以甲是正确的;乙首先得出斜边长的平方,然后利用三角形的两边之和大于第三边,得到+>,也是正确的;所以甲、乙两人都正确.故选A.6.解:等腰三角形ABC1中,腰AC1=AB===2;等腰三角形ABC2中,腰AC2=AB===2;等腰三角形ABC3中,腰AC3=BC3==;等腰三角形ABC4中,腰AC4=BC4==;等腰三角形ABC5中,腰AC5=BC5==;故选C.二、填空题7.解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.8.解:43.95kg精确到0.1kg所得近似值为44.0;故答案为:44.0.9.解:∵∠ACB=90°,D是AB的中点,∴AB=2CD=2×2=4cm.故答案为:4.10.解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.11.解:∵∠ABC=45°,AD⊥BC,∴AD=BD.∵∠1=∠3(同角的余角相等),∠1+∠2=90°,∠3+∠4=90°,∴∠2=∠4.在△ADC和△BDH中,∵,∴△ADC≌△BDH(AAS),∴BH=AC=4.故答案是:4.12.解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故答案为:10.13.解:图中直角三角形的两直角边为1,2,∴斜边长为=,那么﹣1和A之间的距离为,那么a的值是:﹣1+.14.解:如图,∵DE垂直平分AB,∴AE=BE,∵△BEC的周长是16,∴BC+CE+BE=BC+CE+AE=BC+AC=16,∴△ABC的周长为:AB+AC+BC=10+16=26.故答案为:26.15.:解:∵AD∥BC,∴∠A+∠B=180°,∵∠B=80°,∴∠A=100°,∵四边形ABCD是等腰梯形,∴∠A=∠D=100°,∠B=∠C=80°.故答案为:80°,100°,100°.16.解:∵BC=AB,∴∠BCA=∠A=18°,∴∠DBC=∠BCA+∠A=36°.同理,∠CDB=∠DBC=36°,∴∠DCE=∠CDB+∠A=54°,∠DEC=∠DCE=54°,∴∠FDE=∠DEC+∠A=72°,∠DFE=∠FDE=72°,∴∠FEM=∠DFE+∠A=90°.再作与AB相等的线段时,90°的角不能是底角,则最多能作出的线段是:BC、CD、DE、EF共有4条.故答案是:4.17.解:(1)原式=9﹣3+3=12﹣3;(2)原式=﹣1+1﹣+1=1﹣.18.解:(1)两边都除以4,得x=,开平方,得x=;(2)开立方,得x﹣1=4,移项、合并同类项,得x=5.19.证明:如图,连接BD.在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠A=∠C.20.证明:∵C是线段AB的中点∴AC=BC∵CD平分∠ACE,CE平分∠BCD∴∠ACD=∠ECD,∠BCE=∠ECD∴∠ACD=∠BCE在△ACD和△BCE中∴△ACD≌△BCE(SAS).21.(1)证明:∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中∴△BCD≌△ACE(SAS).(2)解:由(1)知△BCD≌△ACE,则∠DBC=∠EAC,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°∵AB=17,BD=12,∴AD=17﹣12=5,∵△BCD≌△ACE,∴AE=BD=12,在Rt△AED中,由勾股定理得:DE===13.22.解:连接CM,∵∠ACB=90°,M为AB的中点,∴CM=BM=AM=8cm,∴∠B=∠MCB=2∠D,∵∠MCB=∠D+∠DMC,∴∠D=∠DMC,∴DC=CM=8cm.答:线段CD的长是8cm.23.解:在Rt△ABC中,AB=2.5米,BC=1.5米,故AC===2.4米,在Rt△ECD中,AB=DE=2.5米,CD=(1.3+0.7)米,故EC===1.5米,故AE=AC﹣CE=2.4﹣1.5=0.9米.答:梯子下滑了0.9米.24.解:(1)∵在△ABC中,AB=17,BC=16,BC边上的中线AD=15,∴BD=CD=BC=8,∵152+82=172,∴△ABD是直角三角形,即∠ADB=90°.∴AC===17;(2)∵当BP⊥AC时,BP最短,∴AC•BP=BC•AD,∴BP===.故答案为:.25. 解:(1)如图2,延长ND交OA的延长线于M,∵四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,∴∠CON=∠DON=θ,∠ODN=∠C=90°,∵点D为AB的中点,∴D点为MN的中点,∴OD垂直平分MN,∴OM=ON,∴∠MOD=∠NOD=θ,∴∠θ+∠θ+∠θ=90°,∴∠θ=30°;故答案为30°;(2)如图3,作ED⊥OA于D,∵四边形OABC的直角∠OCB沿直线l折叠后,点B落在点四边形OABC的边AB 上的E处,∴AB⊥直线l,OD=OC=3,DE=BC=2,∵θ=45°,AB⊥直线l,即直线l平分∠AOC,∴∠A=45°,∴△ADE为等腰直角三角形,∴AD=DE=2,∴OA=OD+AD=3+2=5,∴a=5.26:探索:证明:如图1,连接AC,∵AD∥BC,∴∠DAC=∠BCA∵AB∥CD.∴∠BAC=∠DCA在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD;应用一:证明:如图2,作DE∥AB交BC于点E,∵AD∥BC,∴AB=DE∵AB=CD,∴DE=CD,∴∠DEC=∠C∵DE∥AB,∴∠B=∠DEC,∴∠B=∠C;应用二、解:如图3,作DE∥AC交BC的延长线于点F∵AD∥BC,∴AC=DF、AD=CF,∵DE∥AC,∴∠BDF=∠BEC,∵AC⊥BD,∴∠BDF=∠BEC=90°,在Rt△BDF中,由勾股定理得:BF=5,故BC+AD=BC+CF=BF=5.初中数学试卷马鸣风萧萧。