SPSS皮尔逊相关分析实例操作步骤
SPSS皮尔逊相关分析实例操作步骤精选文档

S P S S皮尔逊相关分析实例操作步骤精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-SPSS皮尔逊相关分析实例操作步骤选题:对某地29名13岁男童的身高(cm)、体重(kg),运用相关分析法来分析其身高与体重是否相关。
实验目的:任何事物的存在都不是孤立的,而是相互联系、相互制约的。
相关分析可对变量进行相关关系的分析,计算29名13岁男童的身高(cm)、体重(kg),以判断两个变量之间相互关系的密切程度。
实验变量:编号Number,身高height(cm),体重weight(kg)原始数据:实Array Array验方法:尔逊相关分析法软件:spss19.0操作过程与结果分析: 第一步:导入Excel 数据文件?1.open data document ——open data ——open ;2. Opening excel data source ——OK.第二步:分析身高(cm )与体重(kg )是否具有相关性1. 在最上面菜单里面选中Analyze ——correlate ——bivariate?,首先使用Pearson ,two-tailed ,勾选flag significant correlations 进入如下界面:2. 点击右侧options ,勾选Statistics ,默认Missing Values ,点击Continue 输出结果:图为基本的描述性统计量的输出表格,其中身高的均值(mean )为152.576cm 、标准差(standarddeviation )为8.3622、样本容量(number of cases )为29;体重的均值为37.65kg 、标准差为5.746、样本容量为29。
两者的平均值和标准差值得差距不显着。
Descriptive Statistics Mean Std. Deviation N身高(cm ) 152.576 8.3622 29体重(kg) 37.65 5.746 29Correlations身高(cm )体重(kg)身高(cm )Pearson Correlation 1.719** Sig. (2-tailed).000Sum of Squares and Cross-products 1957.953967.816Covariance 69.92734.565N29 29 体重(kg)Pearson Correlation .719** 1Sig. (2-tailed).000 Sum of Squares and Cross-products967.816924.312析结果表,从表中可以看出体重和身高之间的皮尔逊相关系数为0.719,即|r|=0.719,表示体重与身高呈正相关关系,且两变量是显着相关的。
SPSS分析技术:Pearson相关、Spearman相关及Kendall相关

SPSS分析技术:Pearson相关、Spearman相关及Kendall相关基础回顾常用的相关性分析包括:皮尔逊(Pearson)相关、斯皮尔曼(Spearman)相关、肯德尔(Kendall)相关和偏相关。
下面介绍前三种相关分析技术,并用实际案例说明如何用SPSS使用这三种相关性分析技术。
三种相关性检验技术,Pearson相关性的精确度最高,但对原始数据的要求最高。
Spearman等级相关和Kendall一致性相关的使用范围更广,但精确度较差。
Pearson相关皮尔逊相关是利用相关系数来判定数据之间的线性相关性,相关系数r的公式如下:数据要求•正态分布的定距变量;•两个数据序列的数据要一一对应,等间距等比例。
数据序列通常来自对同一组样本的多次测量或不同视角的测量。
结论分析在皮尔逊相关性分析中,能够得到两个数值:相关系数(r)和检验概率(Sig.)。
对于相关系数r,有以下判定惯例:当r的绝对值大于0.6,表示高度相关;在0.4到0.6之间,表示相关;小于0.4,表示不相关。
r大于0,表示正相关;r小于0,表示负相关。
虽然相关系数能够判别数据的相关性,但是还是要结合检验概率和实际情况进行判定,当检验概率小于0.05时,表示两列数据之间存在相关性。
Spearman相关当定距数据不满足正态分布,不能使用皮尔逊相关分析,这时,可以在相关分析中引入秩分,借助秩分实现相关性检验,即先分别计算两个序列的秩分,然后以秩分值代替原始数据,代入到皮尔逊相关系数公式中,得到斯皮尔曼相关系数公式:数据要求•不明分布类型的定距数据;•两个数据序列的数据一一对应,等间距等比例。
数据序列通常来自对同一组样本的多次测量或不同视角的测量。
结论分析在斯皮尔曼相关性分析中,也能够得到相关系数(r)和检验概率(Sig.),当检验概率小于0.05时,表示两列数据之间存在相关性。
Kendall相关当既不满足正态分布,也不是等间距的定距数据,而是不明分布的定序数据时,不能使用Pearson相关和Spearman相关。
SPSS相关分析实例操作步骤-SPSS做相关分析

SPSS相关分析实例操作步骤-SPSS做相关分析SPSS(Statistical Product and Service Solutions)是目前在工业、商业、学术研究等领域中广泛应用的统计学软件包之一。
Correlation是SPSS的一个功能模块,可以用于分析两个或多个变量之间的关系。
下面是SPSS进行相关分析的具体步骤:1. 打开SPSS软件,选择“变量视图”(Variable View),输入相关的变量名,包括数字型变量和分类变量。
2. 进入“数据视图”(Data View),输入数据,并保存数据集。
3. 打开菜单栏中的“分析”(Analyze),选择“相关”(Correlate),再选择“双变量”(Bivariate)。
4. 在双变量窗口中,选择包含需要分析的变量的变量名,并将其移至右侧窗口中的变量框(Variables)。
5. 如果需要控制其他变量的影响,可以选择“控制变量”(Options)。
6. 点击“确定”(OK)按钮后,SPSS将输出结果,并将其显示在输出窗口中。
相关系数(Correlation Coefficient)介于-1和1之间,可以用来衡量两个变量之间的线性关系的强度。
7. 如果需要对结果进行图形化展示,可以选择“图”(Plots),并选择适当的图形类型。
需要注意的是,进行相关分析时需要确保变量之间存在线性关系。
如果变量之间存在非线性关系,建议使用其他统计方法进行分析。
同时,SPSS进行相关分析的结果只能描述变量之间的关系,不能用于说明因果关系。
以上是SPSS做相关分析的具体步骤,希望能对大家进行SPSS 数据分析有所帮助。
spss相关分析的原理及应用

SPSS相关分析的原理及应用1. 简介SPSS(Statistical Package for the Social Sciences)是一种常用的数据统计和分析软件,广泛应用于社会科学、教育、医学等领域。
其相关分析功能是SPSS的重要组成部分,可用于研究数据中变量之间的关系以及预测未来的趋势。
本文将介绍SPSS相关分析的原理和应用。
2. 原理2.1 相关分析的基本概念相关分析用于研究两个或多个变量之间的关系。
其中最常用的是皮尔逊相关系数(Pearson correlation coefficient),用于衡量连续变量之间的线性相关性。
皮尔逊相关系数的取值范围为-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无相关。
2.2 相关分析的假设在进行相关分析之前,需要满足一定的假设条件。
这些假设包括: - 变量是正态分布的; - 变量之间的关系是线性的; - 变量具有线性相关性。
2.3 相关系数的计算方法在SPSS中,可以使用相关分析功能来计算皮尔逊相关系数。
该功能可以同时计算多个变量之间的相关系数,并自动生成相关矩阵。
相关矩阵展示了所有变量两两之间的相关性,便于进一步分析和解释。
3. 应用3.1 研究变量之间的关系相关分析在社会科学研究中经常用于分析变量之间的关系。
例如,研究人员可以使用相关分析来研究收入与教育水平之间的关系,分析变量之间的相关性可以帮助研究者发现潜在的模式和趋势。
3.2 预测未来的趋势相关分析可用于预测未来的趋势。
例如,一个公司可以使用历史销售数据和市场营销费用作为变量,通过相关分析来预测未来销售额与市场营销费用之间的关系。
这可以帮助公司制定更有效的市场策略和预算安排。
3.3 评估变量之间的相关性相关分析可以帮助研究者评估变量之间的相关性。
例如,在医学研究中,研究人员可以使用相关分析来评估不同药物剂量与患者疾病症状之间的相关性。
这可以帮助研究人员确定最佳药物剂量,并了解不同剂量的效果差异。
SPSS相关性分析 Pearson相关与偏相关分析的实现 步骤

SPSS相关性分析Pearson相关与偏相关分析的实现步骤
一、Pearson相关分析
二、偏相关分析
方法一正规步骤,但就是麻烦
1、分析——相关——偏相关。
2、选择变量,导入右侧框。
再点击选项,选择零阶相关系数(可选可不选,零阶先关系数就就是pearson相关系数,选了偏于对比查瞧)。
继续——确定。
3、结果分析:总磷Pearson相关不显著,但偏相关显著。
Pearson相关系数,显著性P值为0、416>0、05,相关性不显著。
偏相关,显著性P值为0、001<o、o1,极显著相关。
(显著性瞧sig、P值,
P<0、05,“*”显著;
P<0、01,“**”极显著)
方法二:简便方法,快捷迅速,不用挨个分析偏相关,可以一下子出来。
1、分析——回归——线性。
2、“溶解氧、氨氮、总磷、总氮、水温”与“叶绿素”的偏相关分析。
如图,先选择变量,再选择“统计量”。
“统计量”一定要选择“部分相关与偏相关性”。
其她的可以不选。
继续—确定。
3、结果分析,分别瞧Sig、显著性,与偏相关系数。
以总磷为例,与之前单独做“偏相关”分析结果就是一样的。
其她变量与叶绿素的偏相关关系也可以在上表瞧出来。
2020年SPSS相关性分析Pearson相关与偏相关分析的实现步骤(实用)

SPSS相关性分析Pearson 相关与偏相关分析的实现
步骤
SPSS相关性分析Pearso n相关与偏相关分析的实现
步骤
一、Pearson相关分析
二、偏相关分析
方法一正规步骤,但是麻烦
1、分析——相关——偏相关。
2、选择变量,导入右侧框.再点击选项,选择零阶相关系数(可选可不选,零阶先关系数就是pearson相关系数,选了偏于对比查看)。
继续--确定。
3、结果分析:总磷Pearson相关不显著,但偏相关显著.
Pearson相关系数,显著性P值为0。
416〉0.05,相关性不显著。
偏相关,显著性P值为0.001<o.o1,极显
著相关。
(显著性看 sig。
P值,
P<0。
05,“*"显著;
P〈0.01,“**"极显著)
方法二:简便方法,快捷迅速,不用挨个分析偏相关,可以一下子出来.
1、分析——回归——线性.
2、“溶解氧、氨氮、总磷、总氮、水温”与“叶绿素”的偏相关分析。
如图,先选择变量,再选择“统计量”。
“统计量”一定要选择“部分相关和偏相关性”。
其他的可以不选。
继续—确定。
3、结果分析,分别看Sig。
显著性,和偏相关系数。
以总磷为例,与之前单独做“偏相关”分析结果是一样的.其他变量与叶绿素的偏相关关系也可以在上表看出来。
...谢阅...。
SPSS相关性分析 Pearson相关与偏相关分析的实现 步骤

SPSS相干性剖析 Pearson相干与偏相干剖
析的实现步调
一、Pearson相干剖析
二、偏相干剖析
办法一正规步调,但是麻烦
1.剖析——相干——偏相干.
2.选择变量,导入右侧框.再点击选项,选择零阶相干系数(可选可不选,零阶先关系数就是pearson相干系数,选了偏于比较检讨).持续——肯定.
3.成果剖析:总磷Pearson相干不明显,但偏相干明显.
Pearson相干系数,明显性P值为0.416>0.05,相干性不明显.偏相干,明显性P值为0.001<o.o1,极明显相干.
(明显性看 sig. P值,
P<0.05,“*”明显;
P<0.01,“**”极明显)
办法二:轻便办法,快捷敏捷,不必挨个剖析偏相干,可以一会儿出来.
1.剖析——回归——线性.
2.“消融氧.氨氮.总磷.总氮.水温”与“叶绿素”的偏相干剖析.如图,先选择变量,再选择“统计量”.“统计量”必定要选择“部分相干和偏相干性”.其他的可以不选.持续—肯定.
3.成果剖析,分离看Sig. 明显性,和偏相干系数.
以总磷为例,与之前单独做“偏相干”剖析成果是一样的.其他变量与叶绿素的偏相干关系也可以在上表看出来.。
利用SPSS软件分析变量间的相关性

利用SPSS软件分析变量间的相关性利用SPSS软件分析变量间的相关性简介:在社会科学研究中,了解变量之间的相关性是十分重要的。
它可以帮助我们理解变量之间的关系,并且有助于预测或解释研究现象。
SPSS(Statistical Package for the Social Sciences)软件是一种广泛应用于社会科学研究领域的统计分析软件。
本文将以通过SPSS软件分析变量之间的相关性为主题,介绍相关性概念、相关性的测量和分析方法。
相关性的概念:相关性是指在两个变量之间存在一种关系,当一个变量变化时,另一个变量也会相应地变化。
相关性可以是正相关、负相关或无相关。
正相关表示两个变量随着变化趋势的一致性增加或减少;负相关表示两个变量随着变化趋势的相反性增加或减少;无相关表示两个变量之间没有明显的关系。
相关性的测量方法:常用的相关性测量方法有皮尔逊相关系数和斯皮尔曼等级相关系数。
皮尔逊相关系数适用于度量变量之间的相关性,而斯皮尔曼等级相关系数适用于顺序变量之间的相关性。
SPSS中的相关性分析步骤:下面将以一个虚拟数据集为例,简要介绍在SPSS中进行相关性分析的步骤。
步骤一:打开SPSS软件并导入数据集首先,打开SPSS软件,并导入包含变量的数据集。
数据可以是文本文件、Excel文件或SPSS数据文件。
步骤二:选择相关性分析选项点击菜单栏中的“分析”选项,然后选择“相关性”子菜单。
在弹出的窗口中,选择需要分析的变量,并将它们添加到右侧窗格中。
步骤三:选择相关系数在相关性分析窗口中,选择使用的相关系数类型。
默认情况下,SPSS使用皮尔逊相关系数。
如果变量不符合正态分布的要求,可以选择斯皮尔曼等级相关系数。
步骤四:运行相关性分析点击“确定”按钮,SPSS将生成相关性分析结果。
相关性表将显示出所选变量之间的相关系数。
步骤五:解读结果通过查看相关性表,可以了解每对变量之间的相关系数。
相关系数范围从-1到1,接近1表示强正相关,接近-1表示强负相关,接近0表示无相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS皮尔逊相关分析实例操作步骤
选题:
对某地29名13岁男童的身高(cm)、体重(kg),运用相关分析法来分析其身高与体重是否相关。
实验目的:
任何事物的存在都不是孤立的,而是相互联系、相互制约的。
相关分析可对变量进行相关关系的分析,计算29名13岁男童的身高(cm)、体重(kg),以判断两个变量之间相互关系的密切程度。
实验变量:
编号Number,身高height(cm),体重weight(kg)
原始数据:
实验方法:
皮
尔
逊
相
关
分
析
法
软件:
操作过程与结果分析:
第一步:导入Excel 数据文件
1.open data document ——open data ——open ;
2. Opening excel data source ——OK.
第二步:分析身高(cm )与体重(kg )是否具有相关性
1. 在最上面菜单里面选中Analyze ——correlate ——bivariate ,首先使用Pearson ,two-tailed ,勾选flag significant correlations 进入如下界面:
2. 点击右侧options ,勾选Statistics ,默认Missing Values ,点击Continue 输出结果:
图为基本的描述性统计量的输
出表格,其中身高的均值(mean )
为、标准差(standard deviation )
为、样本容量(number of cases )
为29;体重的均值为、标准差为、
样本容量为29。
两者的平均值和标准差值得差距不显着。
图为相关分析结果表,从表中可以看出体重和身高之间的皮尔逊相关系数为,即
|r|=,表示体重与身高呈正相关关系,且两变量是显着相关的。
另外,
两者之间不相关的双侧检验值为,图中的双星号标
记的相关系数是在显着性水平为以下,认为标记的相关系数是显着的,验证了两者显着相关的关系。
所以可以得出结论:学生的体重与身高存在显着的
Descriptive Statistics
Mean Std. Deviation N
身高(cm ) 29
体重(kg) 29
Correlations
身高(cm )
体重(kg)
身高(cm )
Pearson Correlation 1
.719** Sig. (2-tailed)
.000
Sum
of
Squares
and
Cross-products
Covariance N
29 29 体重(kg)
Pearson Correlation .719** 1
Sig. (2-tailed) .000 Sum
of
Squares
and
Cross-products
Covariance N
29
29
**. Correlation is significant at the level (2-tailed).
正相关性,当体重越高时,身高也越高。
第三步:画散点图:选中Graphs——Legacy Dialogs——Scatter/dot——Simple scatter——define.
得到散点图,如下图:。