流变学 考试复习
流变学复习提纲

复习大纲第一章绪论基本内容:流变学基本概念、流变学研究的重要性重点:流变学的概念;流变学与分子结构、加工、形态、应用等的关系,如分子量、分子量分布及支化程度对聚合物流变性的影响难点:流变学的概念(包轴现象、出口压力降、假塑性流体、粘流活化能、表观剪切粘度、熔融指数、维森堡效应、挤出胀大、可回复形变、触变性流体)第二章聚合物熔体的流动性2.1 聚合物的非牛顿型流动基本内容:高聚物粘流态的特点流动曲线的分类(牛顿流体和非牛顿流体,非牛顿流体分为宾汉流体、假塑性流体和胀塑性流体)幂律方程及影响非牛顿指数的因素掌握影响聚合物剪切粘度的分子链结构因素、加工条件及配方因素重点:流动曲线的分类机每种流动曲线特征难点:非牛顿指数的物理意义流动曲线的分类,每种流动曲线特点并举例:如:非牛顿指数、假塑性流体的流动曲线、表观粘度、剪切粘度和拉伸粘度、熔体破碎现象、聚合物弹性效应2.2影响聚合物剪切粘度的因素2.3关于剪切变稀行为的说明基本内容:从链结构出发,学习链结构、分子量及分布、支化、交联对黏度的影响从温度、剪切速率、压力等方面,学习加工条件对黏度的影响从配方方面,学习碳黑、碳酸钙、增塑剂对黏度的影响重点:影响黏度的各种因素难点:剪切变稀行为2.4高聚物熔体的弹性基本内容:高聚物弹性的几个物理量的表征松弛时间的概念挤出胀大现象,原因,影响因素熔体破裂现象、种类、原因及措施重点:挤出胀大现象,原因,影响因素熔体破裂现象、种类、原因及措施难点:松弛时间的概念熔体破裂原因2.5拉伸流动基本内容:拉伸粘度概念,与剪切粘度的比较,应用重点:与剪切粘度的比较难点:拉伸粘度的概念第三章流变性能测定3.1 引言3.2 毛细管流变仪基本内容:毛细管流变仪设备基本结构及测量原理入口校正原理及方法应用重点:毛细管流变仪测试原理难点:毛细管流变仪测试原理3.3 转矩流变仪基本内容:转矩流变仪基本结构测试原理校正原理及方法应用重点:转矩流变仪测试原理难点:转矩流变仪测试原理3.4 熔融指数测量仪3.5 其它流变仪(haake流变仪的原理与应用)3.6 拉伸粘度测试基本内容:拉伸粘度测试原理及应用重点:拉伸粘度测试原理难点:拉伸粘度测试原理第四章基本物理量、流变基础方程及本构方程4.1 基本物理量4.2 连续性方程4.3 动量方程基本内容:基本物理量直角坐标系中的连续性方程直角坐标系中的动量方程重点:直角坐标系中的连续性和动量方程难点:应力张量的概念第五章流变学基础方程的初步应用5.1 拖曳流流场分析5.2 压力流流场分析基本内容:推导两平板间牛顿流体拖曳流温度计速度分布计算公式推导牛顿与幂律流体压力流温度及速度分布计算公式重点:拖曳流与压力流速度及温度分布计算公式难点:拖曳流与压力流速度及温度分布计算公式第六章开炼机的加工过程6.2 流变分析6.3 生胶在辊筒上的行为基本内容:推导两辊筒间压力及速度分布计算公式,生胶在辊筒上的加工行为重点:两辊筒间压力及速度分布计算公式难点:两辊筒间压力及速度分布计算公式第七章挤出过程7.1 概述7.2 在计量段螺槽中的流动7.3 在机头口型中的流动7.4 稳定挤出基本内容:挤出过程、计量段螺槽中的流动、在机头口型中的流动和稳定挤出。
聚合物流变学复习题参考答案

聚合物流变学复习题一、名词解释(任选5小题,每小题2分,共10分):1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。
应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。
或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象。
2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT 将 某一温度下测定的力学数据变成另一温度下的力学数据。
3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。
挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。
4、熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。
5、非牛顿流体:凡不服从牛顿粘性定律的流体。
牛顿流体:服从牛顿粘性定律的流体。
6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。
膨胀性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观“体积”略有膨胀的的流体。
7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。
8、极限粘度η∞:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。
9、断裂韧性K 1C :表征材料阻止裂纹扩展的能力,是材料抵抗脆性破坏能力的韧性指标,s b C E c K γπσ21==,其中,σ b 为脆性材料的拉伸强度;C 为半裂纹长度;E 为材料的弹性模量;s γ为单位表面的表面能。
10、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。
或拉伸流动:质点速度仅沿流动方向发生变化的流动。
药剂学流变学基础复习指南

第七章流变学基础学习要点一、概述(一)流变学1、定义:流变学(rheology)就是研究物质变形与流动的科学。
变形就是固体的固有性质,流动就是液体的固有性质。
2、研究对象:(1) 具有固体与液体两方面性质的物质。
(2) 乳剂、混悬剂、软膏、硬膏、粉体等。
(二)变形与流动1、变形就是指对某一物体施加外力时,其内部各部分的形状与体积发生变化的过程。
2、应力就是指对固体施加外力,则固体内部存在一种与外力相对抗而使固体保持原状的单位面积上的力。
3、流动:对液体施加外力,液体发生变形,即流动。
(三)弹性与黏性1、弹性就是指物体在外力的作用下发生变形,当解除外力后恢复原来状态的性质。
可逆性变形----弹性变形。
不可逆变形----塑性变形2、黏性就是流体在外力的作用下质点间相对运动而产生的阻力。
3、剪切应力(S):单位液层面积上所施加的使各液层发生相对运动的外力,FSA=。
4、剪切速度(D):液体流动时各层之间形成的速度梯度,dvDdx=。
5、黏度:η,面积为1cm2时两液层间的内摩擦力,单位Pa·s,SDη=。
(四)黏弹性1、黏弹性就是指物体具有黏性与弹性的双重特征,具有这样性质的物体称为黏弹体。
2、 应力松弛就是指试样瞬时变形后,在不变形的情况下,试样内部的应力随时间而减小的过程,即,外形不变,内应力发生变化。
3、 蠕变就是指把一定大小的应力施加于黏弹体时,物体的形变随时间而逐渐增加的现象,即,应力不变,外形发生变化。
二、流体的基本性质图7-1 各种类型的液体流动曲线 (一)牛顿流体: 1、 特征 (1) 剪切速度与剪切应力成正比,S=F/A=ηD 或1S D η=。
(2) 黏度η:在一定温度下为常数,不随剪切速度的变化而变化。
2、 应用纯液体、低分子溶液或高分子稀溶液。
(二)非牛顿流体 1、 特征:(1) 剪切应力与剪切速度的关系不符合牛顿定律。
(2) 黏度不就是一个常数,随剪切速率的变化而变化。
流变学复习重点

• 典型高分子液体的流动曲线如上图,当流动很慢时, 剪切粘度保持为常数,随剪切速率的增大,剪切粘 度反而减少。图中曲线大致可分为三个区域,
•
•
OA段,剪切速率γ→0,η→ γ呈线性关系,流动 性质与牛顿型流体相仿,粘度趋于常数,称零剪切 粘度η0.这一区域称第一牛顿区。
AB段,当剪切速率超过某一临界值γ后,材料 流动性质出现非牛顿性,剪切粘度(实际上是表现 剪切粘度η,即η与γ曲线上一点与原点连线的斜率, 后面将详细介绍)随剪切速率γ增大而逐渐下降, 出现“剪切变稀”行为,这一区域是高分子材料加 工的典型流动区。 BC段,剪切速率非常高时, γ →∞时,剪切粘 度又趋于另一个定值η ∞,称无穷剪切粘度,这一区 域称第二牛顿区,通常实验达不到该区域,因为在 此之前,流动已变得极不稳定,甚至被破坏。 绝大多数高聚物熔体的η 0, η a, η ∞有如下大小 顺序η 0> η a> η ∞
• 二、高聚物粘流特点
• 高聚物分子链细而长,流动过程中其分子受力 形式与小分子不同,因而导致高聚物的粘性流动有 如下特点: 1. 流动机理是链段相继跃迁 小分子液体的流动可以用简单的孔穴模型说明, 该模型假设,液体中存在许多孔穴,小分子液体的 孔穴与分子尺寸相等,当受外力时,分子热运动无 规则跃迁,和孔穴不断变换位置,发生分子扩散应 力,在存在外力的情况下,分子沿外力方向从优跃 迁,即通过分子间的孔穴相继向某一方向移动,形 成宏观流动。温度升高,分子热运动能量增加,孔 穴增加和膨胀,流动阻力减小,粘度和温度关系服 从Arrhenius定律
•
此外,从上图可见,牛顿流体的粘度不随γ而 变化,但假塑性体粘度随γ而变化。正由于假塑性 体的粘度随γ和η而变化,为了方便起见,对非牛顿 流体可用“表观粘度”描述其流动时的粘稠性,表 观粘度η a定义流动曲线上某一点η与γ的比值,即
流变学复习仅供参考

聚合物加工流变学复习:流变学:研究材料流动及变形规律的科学。
熔融指数:在一定的温度和负荷下,聚合物熔体每10min通过规定的标准口模的质量,单位g/10min。
假塑性流体:指无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体。
可回复形变:先对流变仪中的液体施以一定的外力,使其形变,然后在一定时间内维持该形变保持恒定,而后撤去外力,使形变自然恢复。
韦森堡效应&爬杆现象&包轴现象:当圆棒插入容器中的高分子液体中旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,出现沿棒向上爬的“爬杆”现象。
巴拉斯效应&挤出胀大&弹性记忆效应:指高分子被强迫挤出口模时,挤出物尺寸要大于口模尺寸,截面形状也发生变化的现象。
冷冻皮层:熔体进入冷模后,贴近模壁的熔体很快凝固,速度锐减,形成冷冻皮层法向应力效应:聚合物材料在口模流动中,由于自身的黏弹特性,大分子链的剪切或拉伸取向导致其力学性能的各向异性,产生法向应力效应。
松弛时间:是指物体受力变形,外力解除后材料恢复正常状态所需的时间。
Deborah数:松弛时间与实验观察时间之比。
残余应力:构件在制造过程中,将受到来自各种工艺等因素的作用与影响;当这些因素消失之后,若构件所受到的上述作用于影响不能随之而完全消失,仍有部分作用与影响残留在构件内,则这种残留的作用与影响称为残余应力。
表观粘度:非牛顿型流体流动时剪切应力和剪切速率的比值。
表观剪切黏度:表观粘度定义流动曲线上某一点τ与γ的比值。
入口校正:对于粘弹性流体,当从料筒进入毛细管时,由于存在一个很大的入口压力损失,因此需要通过测压力差来计算压力梯度时所进行的校正。
驻点:两辊筒间物料的速度分布中,在x’*处,物料流速分布中,中心处的速度=0,称驻点。
本构方程:描述应力分量与形变分量或形变速率分量之间关系的方程,是描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程. 反映流变过程中材料本身的结构特性。
中国石油大学(北京)工业流变学考试要点

第一章习题1. 简述流变学的定义流变学是研究材料在外力作用下流动与形变规律的科学。
材料包括固体和流体,外力为动力,流动与形变称为动力的响应。
2. 何为本构方程?流变方程或本构方程:在不同物理条件下(如温度、压力、湿度、辐射、电磁场等),以应力、应变和时间的物理变量来定量描述材料的状态的方程3. 流变学有哪几类分类原则?按各分类原则共有哪几个流变学分支?(1)根据研究方法分类①实验流变学——通过现代实验技术来揭示材料的流变规律●建立材料的经验或半经验流变模型,解决工程中的流变学问题●揭示材料在各种条件下流变性的物理本质●研究测量原理和测试技术,用以研制或改进测试仪器和测试手段②理论流变学——应用数学、力学、物理等基本理论与方法,研究材料质的流变现象。
建立能够充分描述材料内部结构与材料力学特性之间关系的流变模型,揭示材料流动与形变的本质与规律性。
(2)根据研究尺度①宏观流变学——用连续介质力学方法来研究材料的流变性(连续介质流变学、唯象流变学)②结构流变学——从分子、微观出发,研究材料流变性与材料结构(包括化学结构、物理结构和形态结构)的关系。
结构流变学还常被称为分子流变学或微观流变学。
(3)根据工程应用分类聚合物流变学——研究对象为聚合物材料(聚合物固体、熔体和溶液)生物流变学——研究对象为生物流体(如血液、粘液、关节液等)和生物物质(如肌肉、心脏、膀胱、其它软组织、软骨等)地质流变学——研究对象为岩石、地层等石油工程流变学——研究对象为原油、天然气、钻井液、完井液、压裂液、驱油剂、调剖剂冶金流变学,土壤流变学等4. 试分析内摩擦力(切应力)产生的机理及其对流体宏观流动的影响。
(1)产生的机理:①以不同速度运动的两层间分子热运动引起的动量交换②两层相邻的流体分子之间的附着力(2)对流体的影响:①对较高速的层流动是阻力;阻滞高速层的流体。
②对低速分子为动力;使速度较低的流体层加速。
5. 牛顿本构方程所描述的流体流变性的基本特点是什么?流体在做平行直线运动时,相邻流体层之间的切应力与该处的剪切速率成线性关系。
(完整word版)流变学复习重点(word文档良心出品)

流变学复习重点一.名词解释:1.震凝性:在等温条件下,液体流动粘度随外力作用时间变大称震凝性,或称反触变形。
发生触变效应时,可以认为液体内部有某种结构遭到破坏,或者认为在外力作用下体系内某种结构的破坏率大于其恢复速率。
2.零剪切粘度:当剪切速率r →0时,σ-r 呈线性关系,流体流动性质与牛顿流体相仿,粘度趋于常数0η,成为零剪切粘度0η。
3.挤出胀大比:聚合物熔体完全松弛的挤出物直径与口型直径比。
4.WFL 方程:12()()lg lg ()()S T S C T T T a T C T T ηη∙-==-∙-时温等效原理中计算平移因子的方程,其适用温度范围为材料的Tg~Tgg100℃(Tg 为材料玻璃化转变温度)。
5.本构方程:又称状态方程,是描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程。
二.简答:1.四种无时间依赖性的流体的流动曲线以及基本特征。
①Bingham 塑性体:主要流动特征是存在屈服应力σy ,因此具有塑性体的可塑性质。
只有当外界施加的应力超过屈服应力时,物体才能流动。
②假塑性流体 主要流动特征是当流动很慢时,剪切粘度保持为常数,而随着剪切速率的增大,剪切粘度反常地减少。
③胀流行流体:主要特征是剪切速率很慢时,流动行为基本上同牛顿流体;剪切速率超过某一个临界值后,剪切粘度不是随剪切速率的增大而减小,恰恰相反,剪切速率越大,粘度越大,呈剪切变稠效应。
④牛顿流体:粘度随剪切速率呈正比关系。
2.Bagley 修正 重心思想是保持压力梯度P Z∂∂不变,将毛细管(其实是完全发展流动区)虚拟地延长,并将入口的压力降等价为在虚拟延长长度上的压力降。
3.熔体破裂定义:当外力作用速率很大时,外界赋予液体的形变能远远超出了液体的承受的极限时,多余的能量将以其他形式表现出来,其中产生小表面,消耗表面能是一种形式,而发生熔体破裂。
分类:LDPE 型和HDPE 型。
机理:与熔体的非线性粘弹性,与分子链在剪切流场找那个的取向和解取向,缠结和解缠结及外部工艺条件有关。
流变学 考试复习

《化工流变学概论》复习参考题型选择填空简单综合仅供参考第一章:绪论1.何谓流变学(Rheology)?流变学是研究和揭示物质或材料流动和变形规律的科学。
是化学、力学和工程学交叉的交叉学科。
2.流变学分支和方法论地位流变学分支:高分子流变学、石油工程流变学、食品流变学、悬浮液流变学、地质流变学、泥石流流变学、固体流变学(金属加工流变学、岩石流变学)、非牛顿流体流变学、分形体流变学、生物流变学和血液流变学,光、电、磁流变学、日用化工流变学、表面活性剂流变学、界面流变学(至少记住5个P1)方法论地位:流变学本身即体现出朴素的辩证观点,具有方法论作用,可与多种学科交叉,形成新的学科分支。
?3.流变学主要研究对象:非牛顿流体的流变特性、粘弹性材料的流变特性、流变测量技术、流变状态方程,即本构方程(揭示物质受力和变形的本质规律。
例:牛顿粘性定律、胡克定律)。
4.流变学与化学工程的关系/流变学与日用化工(轻化工?)的关系化学工程:单体聚合反应、高分子加工、乳化过程与流体的流变行为密切相关。
要研究其传递和反应过程、设计反应器、工程放大,必须对流变特性有明确认识。
流变学提供材料的流变状态方程,用于解决非牛顿流体的动量传递问题,并进一步为非牛顿流体的热质传递和反应工程提供基础。
流变学是非牛顿流体化学工程的重要理论基础之一。
日用化工:日用化学品(膏霜、乳液)为多组分、多相态的非牛顿流体。
日用化工过程为非牛顿流体的制造过程。
1)乳液、泡沫的稳定性:包括热稳定性、耐剪切稳定性、储存稳定性等(表面粘度、表面弹性)2)产品的涂布性:均匀性和涂布难易性能3)挤出能力,屈服应力4)增稠性:各种流变性调节剂(粘多糖、聚丙烯酸等)5)流平性指甲油等6)触变性膏霜、牙膏7)流动控制能力在洗衣粉料浆中加入适量甲苯磺酸钠,调节降低粘度,使之易于喷粉成型。
5.非牛顿流体的特殊性质:剪切变稀、剪切增稠、屈服应力、触变性、粘弹性、爬竿效应、湍流减阻效应(Toms效应)、无管虹吸现象、挤出胀大6.非牛顿流体的触变性:若流体的应力或粘度随剪切时间的增大而减小,并最终达到平衡粘度,该特性称为正触变性,简称触变性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《化工流变学概论》复习参考题型选择填空简单综合仅供参考第一章:绪论1.何谓流变学(Rheology)?流变学是研究和揭示物质或材料流动和变形规律的科学。
是化学、力学和工程学交叉的交叉学科。
2.流变学分支和方法论地位流变学分支:高分子流变学、石油工程流变学、食品流变学、悬浮液流变学、地质流变学、泥石流流变学、固体流变学(金属加工流变学、岩石流变学)、非牛顿流体流变学、分形体流变学、生物流变学和血液流变学,光、电、磁流变学、日用化工流变学、表面活性剂流变学、界面流变学(至少记住5个P1)方法论地位:流变学本身即体现出朴素的辩证观点,具有方法论作用,可与多种学科交叉,形成新的学科分支。
?3.流变学主要研究对象:非牛顿流体的流变特性、粘弹性材料的流变特性、流变测量技术、流变状态方程,即本构方程(揭示物质受力和变形的本质规律。
例:牛顿粘性定律、胡克定律)。
4.流变学与化学工程的关系/流变学与日用化工(轻化工?)的关系化学工程:单体聚合反应、高分子加工、乳化过程与流体的流变行为密切相关。
要研究其传递和反应过程、设计反应器、工程放大,必须对流变特性有明确认识。
流变学提供材料的流变状态方程,用于解决非牛顿流体的动量传递问题,并进一步为非牛顿流体的热质传递和反应工程提供基础。
流变学是非牛顿流体化学工程的重要理论基础之一。
日用化工:日用化学品(膏霜、乳液)为多组分、多相态的非牛顿流体。
日用化工过程为非牛顿流体的制造过程。
1)乳液、泡沫的稳定性:包括热稳定性、耐剪切稳定性、储存稳定性等(表面粘度、表面弹性)2)产品的涂布性:均匀性和涂布难易性能3)挤出能力,屈服应力4)增稠性:各种流变性调节剂(粘多糖、聚丙烯酸等)5)流平性指甲油等6)触变性膏霜、牙膏7)流动控制能力在洗衣粉料浆中加入适量甲苯磺酸钠,调节降低粘度,使之易于喷粉成型。
5.非牛顿流体的特殊性质:剪切变稀、剪切增稠、屈服应力、触变性、粘弹性、爬竿效应、湍流减阻效应(Toms效应)、无管虹吸现象、挤出胀大6.非牛顿流体的触变性:若流体的应力或粘度随剪切时间的增大而减小,并最终达到平衡粘度,该特性称为正触变性,简称触变性。
涂料、牙膏等具有触变性。
若流体的应力或粘度随剪切时间的增大而增大,并最终达到平衡粘度,该特性称为反触变性。
7.粘弹性: 材料同时具有粘性和弹性的属性,称为粘弹性。
高分子一般能够体现粘弹性。
8. Deborah准数:De=t/Tt 为物质的特征时间T 为观察物质运动的时间物理意义:De 准数越大,则弹性越强, De 准数越小,则流动性越强。
9.触变性与剪切变稀的区别:触变性与剪切变稀的区别在于,材料的触变性和剪切变稀特性是两个不同的概念。
前者是黏度随受剪切时间的变化关系,后者是指稳态剪切黏度随剪切速率的变化关系。
(材料的反触变性和剪切增稠也是两个不同的概念,不可混淆)10.滞后环分类:黏弹环、,正触变滞后环、含黏弹环和正触变环的滞后环,含应力过冲和正触变环的滞后环,含黏弹环、应力过冲和正触变环的滞后环,含黏弹环、正触变环和反触变环的滞后环。
第三章:流变测量学1.材料函数N1为第一法向应力差;N2为第二法向应力差,与材料的弹性相关。
称为第一法向应力差系数称为第二法向应力差系数2. 在稳态剪切流场中获得的流变参数1)稳态粘度2)流动曲线:获得粘度随剪切速率的变化曲线3)剪切速率扫描4)应力增长、应力松弛剪切速率随时间按矩形波变化,施加于材料上,测量材料的应力随时间的变化。
用于分析材料的结构和触变性5)触变环测试剪切速率随时间按三角波或梯形波变化并施加于材料上,测量材料的应力随时间的变化。
获得滞后环面积和过程变化曲线,可用于分析材料的结构变化和触变性。
6)温度扫描⎪⎩⎪⎨⎧=-==-==2233222212211112)()()(γγϕττγγϕττγγητNN)(γη)(1γϕ)(2γϕ称为表观粘度在一定剪切速率或应力条件下,考察材料的粘度或粘弹性指标随温度的变化, 获得温度触变环。
3. 在稳态剪切流场中获得的流变参数与小振幅振荡流场获得的参数有何关系? Cox-Merz 规则 :4. 库特(Couette )旋转粘度计5.小振幅震荡流场的10个流变学指标及其意义(P24~26)第四章 广义牛顿流体本构方程 1.何谓广义牛顿流体?流变状态方程的形式与牛顿粘性定律相似的流体 ,称为广义牛顿流体2.典型广义牛顿流体本构方程3.幂律模型(power ’s Law model ) (不含屈服应力) K-稠度系数 n-流型参数 ( P39)当n>1时,黏度随剪切速率的增加而增大,变现为剪切增稠特性,即为胀塑性流体;当n=1时,黏度不随剪切速率变化,退化为牛顿流体; 当0<n<1时,黏度随剪切速率的增加而减小,表现为剪切变稀特性,即为拟塑性流体; 广义牛顿流体本构方程(含屈服应力): 4.Bingham 模型 5.Herschel-Bulkley 模型(H-B 模型)6.Casson 模型7.触变性的表征?第五章 线性粘弹性流体本构方程 1.Maxwell 模型 2.Kelvin-V oigt 模型3.Jeffreys 模型4.线性粘弹性本构方程在小振幅振荡流场中的解 Maxwell 模型(P56)、Jeffreys 模型(P60)5.本构方程的筛选原则先通过流变测试,获得粘度随剪切速率的变化曲线(或称流动曲线,flow curves )、粘弹性指标随振荡频率的变化关系。
再根据不同的本构方程在剪切流场和小振幅振荡流场下的解,逐个筛选。
当模型的理论预测值能符合实验结果时,可以筛选该方程。
第二章 张量分析简介 1.哑标与自由标自由标:在一个物理量中,只出现一次的指标为自由标,自由标可分别取1、2、3。
哑标:在一个物理量中,出现两次的指标为哑标,哑标可分别取1、2、3之后求和2. 根据自由标和哑标展开3. Einstein 求和约定规则一个指标在公式中可以出现一次(自由标),也可以出现2次(哑标),但不能出现2次以上; 等式两边自由标的个数必须相等;一组“哑标”无论何时出现,均表示对所有项数求和。
“哑标”的名称是不确定的,可以由另外一组“哑标”代替。
为表示二阶张量的分量,不与“哑标”混淆,特规定:表示“哑标”求和;表示张量的第ii 个分量。
4. 张量指标升降:一个张量与一个度规张量和共轭度规张量的内积与该张量相等。
一个一阶协变张量与共轭度规张量的内积,使协变指标上升,成为一个一阶逆变张量。
该过程为升指标运算一个一阶逆变张量与度规张量的内积,使逆变指标下降,成为一个一阶协变张量。
该过程为降指标运算5. 张量的三个不变量(即张量A 对应的矩阵对角线元素之和。
trA 成为张量A 的迹) γωωηγη==)()(*τπτπh r r rh M 222=⋅⋅=22212122τπτπh R h R M ==212221R R =ττ~~~)(γγητ ='1'n n n K K K γγγτηγτ====-或⎪⎩⎪⎨⎧≥+=≤∞=y p y y p ττγηττττη,, ⎪⎩⎪⎨⎧≥+=≤∞=y n y y p K ττγττττη,, c c c ττγηττ≥+=,)(2/12/12/1 γηγγβγβτ +=+=G dt d 10mm dx xz dz ∂∂=αα⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂=∂∂=∂∂+∂∂+∂∂=∂∂=∂∂+∂∂+∂∂=∂∂=333223113333322221122233122111111dxx z dx x z dx x z dx x z dz dxx z dx x z dx x z dx x z dz dxx z dx x z dx x z dx x z dz m m m m m m ~A tr A I ii A ==)]()[(21)(212~2~A tr A tr A A A A II ij ij jj ii A --=--=(即张量A 对应的行列式的值) 第六章 非线性粘弹性流体本构方程 1. 本构方程建立的原则: 1)坐标不变性原理 2)决定性原理 3)客观性原理 4)衰减记忆原理 5)一致性原理2. 物理量A 在Lagrange 坐标系中的普通时间微分,变换到固定坐标系时,对应的是F 坐标系中的物质导数(或随体导数)3. 共转坐标系和共转导数(Jaumann 导数)设F 为固定坐标系,如果动坐标系嵌入到流体微元中,相对于固定坐标系F ,随流体微元以速度V 进行平移、旋转,则该动坐标系称为共转坐标系。
4. 共形变坐标系和共形变导数(Oldroyd 导数) 设F 为固定坐标系,如果动坐标系嵌入到流体微元中,相对于固定坐标系F ,随流体微元以速度V 进行平移、旋转、变形,则该动坐标系称为共形变坐标系。
物理量在共形变坐标系中的普通时间微分,变换到固定坐标系F 时,对应的是F 坐标系中的共形变导数(或Oldroyd 导数)。
5. 由非线性粘弹性本构方程求物质函数(或材料函数)(P77看懂求解过程)6.筛选本构方程的一般步骤1)在剪切流场中,测定材料的粘度、第一法向应力差(或第一法向应力差系数)和第二法向应力差(或第二法向应力差系数)随剪切速率的变化关系;或在小振幅振荡流场中测量线性粘弹性指标(如弹性模量G ’、粘性模量G ”、复模量G*等)随振荡频率的变化关系。
选择一个非线性粘弹性本构方程,求出材料函数的表达式(含有一定量参数);2)将理论值与实验值相拟合,求出模型参数;如果理论值与实验值吻合良好,则可选择该本构方程描述材料的流变特性;如果不能吻合,则重新筛选本构方程,重复步骤2)和步骤3),直到选择合适的本构关系为止。
57和68页请记住这两页。
333231232221131211~det A A A A A A A A A A III A ==。