北京大学弹性力学讲义

合集下载

弹性力学讲义

弹性力学讲义
zx
yz
标轴的负方向为负。
yx y 负面:截面上的外法线 B 沿坐标轴的负方向
A
z
O
负面上的应力以沿坐标 y 轴的负方向为正,沿坐
(不考虑位置, 把应力当作均匀应力)标轴的正方向为负。
x 正应力符号规定与材力同,切应力与材力不相同。
连接前后两面中心的直线 z
ab作为矩轴,列出力矩平 衡方程,得
z
fz
F f
S
fy
f : 极限矢量,即物体在P点所受面力 的集度。方向就是F的极限方向。
fx P
fx , fy , fz:体力分量。
o
y 符号规定:
x
lim F f
V 0 S
沿坐标正方向为正,沿坐标负 方向为负。
量纲:N/m2=kg∙m/s2∙m2=kg/m∙s2
即:L-1MT-2
(4)各向同性 — 假定物体是各向同性的.
符合以上四个假定的物体,就成为理想弹性体.
(5)小变形假定 — 假定位移和形变是微小的. 它包含两个含义: ⅰ 假定应变分量 <<1. 例如:普通梁中的正应变 <<10-3 << 1,切应变 << 1;
ⅱ 假定物体的位移<<物体尺寸.
例如:梁中挠度 << 梁的高度
弹性力学在土木、水利、机械、航空等工程学科 中占有重要的地位。许多非杆件形状的结构必须用 弹性力学方法进行分析。例如,大坝,桥梁等。
§1.2 弹性力学中的几个基本概念
弹性力学的基本概念: 外力、应力、形变和位移
1. 外力:体积力和表面力,简称体力和面力
体力:分布在物体体积内的力,例如重力和惯性力。
2 yzzx

弹性力学5PPT课件

弹性力学5PPT课件
在小变形条件下,一个复杂载荷可以等效为几个简单载荷的叠加,每个简单载荷引起的 位移、应变和应力可以分别计算,然后叠加得到复杂载荷下的结果。
叠加原理的适用范围
适用于线弹性范围内的小变形问题,对于非线性问题或大变形问题,叠加原理不再适用。
叠加原理的应用举例
利用叠加原理求解复杂载荷下的梁的弯曲问题,可以将复杂载荷分解为几个简单载荷, 分别求出每个简单载荷下的弯曲变形,然后叠加得到最终结果。
03
平面问题求解方法
平面应力问题与平面应变问题
平面应力问题
分析薄板在面内荷载作用 下的应力、变形和稳定性。
平面应变问题
研究长柱体或深埋在地下 的结构物,在垂直于轴线 或地面的荷载作用下,其 横截面内的应力和变形。
两者区别
平面应力问题中,垂直于 板面的应力分量可忽略不 计;而平面应变问题中, 该应力分量不可忽略。
功的互等定理与卡氏定理的应用举例
利用功的互等定理可以求解某些复杂结构的位移和应力问题;利用卡氏 定理可以求解某些特殊载荷作用下的应力问题。
虚功原理与最小势能原理
虚功原理的基本内容
在弹性力学中,外力在虚位移上所做的功等于内力在虚应变上所做的功。这里的虚位移和虚应变是指满足几何约束和平衡 条件的任意微小的位移和应变。
复变函数的引入
利用复变函数的性质,可将平面 弹性力学问题中的偏微分方程转 化为复变函数的解析函数问题。
保角变换
通过保角变换,可将复杂形状的 平面区域映射为简单形状的区域, 从而简化问题的求解。
边界条件的处理
在复变函数法中,边界条件的处 理是关键步骤之一,需要根据具 体问题选择合适的处理方法。
差分法和有限元法在平面问题中的应用
边界条件处理
阐述有限元法中边界条件的处理方法, 如固定边界、自由边界、对称边界等。

弹性力学讲义

弹性力学讲义

2. 公式推导以正的 物理量表示
3. 应力和体力应乘 以其面积和体积, 得出合力
xy
yx
y
4. 连续性、小变形 假设
y
第二章
平面问题的基本理论(2-2)
§2-2 平衡微分方程
静力平衡微分方程公式推导
过中心C平行z 轴列力矩的平衡方程
M
C
0 :
xy dx dx xy x dx dy 1 2 xy dy 1 2
第二章
平面问题的基本理论(2-1)
§2-1 平面应力问题与平面应变问题
平面应变问题——
只有平面应变分量存在
xy , 且仅为 x, y ,
x,y 的函数的弹性力学问题。
平面问题思考题:
1.设有厚度很大(即z向很长)的基础梁放 置在地基上,力学工作者想把它近似地简 化为平面问题处理,问应如何考虑?
平面应变问题 柱形体 位移 应变 应力 很长
任一横截面都可以看作是对称面
w 0, u, v
z 0, zx zy 0, x , y , xy
zy yz 0 zx xz 0
x , y , xy , z
因此,只剩下平行于x y 面的三个形变分量!
yx
y
第二章
平面问题的基本理论(2-2)
§2-2 平衡微分方程
静力平衡微分方程公式推导
以x 轴为投影轴,列出投影的平衡方程
F
x
0
x dxdy 1 x dy 1 x x
yx yx y dy dx 1 yx dx 1 f x dxdy 1 0

弹性力学基础知识PPT课件

弹性力学基础知识PPT课件
应力矩阵
应变矩阵
19
20
弹性体变形实际上是弹性体内质点的位置变化,质点位置 的改变称为位移(displacement)。位移可分解为x、y、z 三个坐标轴上的投影,称为位移分量。沿坐标轴正方向的 位移分量为正,反之为负。
位移的矩阵表示为 弹性体发生变形时,各质点的位移不一定相同,因此位移
也是x、y、z的函数。
• 完全弹性分为线性和非线性弹性,弹性力学研究限于线性 的应力与应变关系。
• 研究对象的材料弹性常数不随应力或应变的变化而改变。
8
1 弹性力学的基本假设
5. 小变形假设
——假设在外力或者其他外界因素(如温度等)的影响下, 物体的变形与物体自身几何尺寸相比属于高阶小量。
——在弹性体的平衡等问题讨论时,可以不考虑因变形所引 起的尺寸变化。
• —— 物体的弹性性质处处都是相同的。
• 工程材料,例如混凝土颗粒远远小于物体的的几何形状, 并且在物体内部均匀分布,从宏观意义上讲,也可以视为 均匀材料。
• 对于环氧树脂基碳纤维复合材料,不能处理为均匀材料 6
1 弹性力学的基本假设 3. 各向同性假设
• ——假定物体在各个不同的方向上具有相同的物理性质, 这就是说物体的弹性常数将不随坐标方向的改变而变化。
17
z
oy x
τyz
τyx
σy
应力分量
符号规定: 图示单元体面的法线为y,称为y面,应力分量垂直于单元 体面的应力称为正应力。 正应力记为 ,沿y轴的正向为正,其下标表示所沿坐标轴 的方向。 平行于单元体面的应力称为切应力,用τyx 、τyz表示,其
第一下标y表示所在的平面,第二下标x、y分别表示沿
1,没有正应力,没有正应变 2,没有正应变,没有正应力 3,没有应变,没有位移 4,没有位移,没有应变

弹性力学专题知识宣讲培训课件

弹性力学专题知识宣讲培训课件
(3)材料简化
根据各向同性、连续、均匀等假设进行 简化。
二、建模过程中注意的问题
(1)线性化
对高阶小量进行处理,能进行线性化的, 进行线性化。
(2)实验验证
模型建立以后,对计算的结果进行分析 整理,返回实际问题进行验证,一般主要通 过实验进行。
§1-2 弹性力学的内容
• 弹性力学:又称为弹性理论,是固体力学 的一个分支,它是研究在外力或其他因素 (如温度变化、支座沉陷等)作用下弹性 体内产生应力、应变和位移的一般规律的 学科。
力学的分类
一般力学

固体力学

流体力学
一般力学也叫刚体力学:是以受力后不变形的 绝对刚体为研究对象。包括:理论力学、分析 力学、机械振动、非完整系统等。
固体力学:是以受力后产生微小变形的固体 为研究对象。包括材料力学、结构力学、弹性 力学、塑性力学、岩石力学、土力学等。
流体力学:是以受力后产生较大变形的流体 为研究对象。包括理论流体力学、工程流体力 学、流变学等。
任务一样为什么分三门课?
区别:研究范围、研究对象、研究方法
1)研究范围:
材力研究外力作用下。 弹力不仅研究外力作用下还有其它因素,包括温 度变化、制作沉陷等。
2)研究对象:
a.形状: 材力研究的是杆件。 弹力即可研究杆件还可研究非杆状 实物结构,如板、壳、块等。
b.受力情况: 材力研究杆件时受力情况多受限制。
19世纪20年代。Navier和Cauchy建立了弹性力学的数学 理论之后,才使它成为一门独立的分支。
1822—1828年间,Cauchy明确提出了应力和应变的概 念.建立了弹性力学的平衡(运动)微分方程、几何方程 和各向同性的广义Hooke定律;

弹性力学基础教学课件PPT

弹性力学基础教学课件PPT
弹性力学基础教学课 件
目录
• 引言 • 弹性力学基本概念 • 弹性力学基本方程 • 弹性力学问题解法 • 弹性力学应用实例 • 总结与展望
01
引言
课程简介
弹性力学基础是一门介绍弹性力学基本原理和方法的课程,旨在为学生提供解决 工程问题中弹性力学问题的能力。
本课程将介绍弹性力学的基本概念、基本原理、基本方法以及在工程实践中的应 用,帮助学生建立对弹性力学的基本认识,培养其解决实际问题的能力。
弹性力学基本方程
平衡方程
静力平衡方程
描述了弹性体在力的作用下保持平衡的状态,表达了物体内 部各点的应力与外力之间的关系。
运动平衡方程
在考虑了物体运动的情况下,描述了弹性体在力的作用下保 持运动的平衡状态,涉及到速度和加速度。
几何方程
应变与位移关系
描述了物体在受力变形过程中,位移 与应变之间的关系。
应变与速度关系
描述了物体在受力变形过程中,速度 与应变之间的关系。
本构方程
弹性本构方程
描述了弹性体在受力变形过程中,应力与应变之间的关系,涉及到弹性模量和泊松比等 参数。
塑性本构方程
描述了塑性体在受力变形过程中,应力与应变之间的关系,涉及到屈服准则和流动法则 等参数。
04
弹性力学问题解法
总结词
弹性梁的弯曲问题
总结词
实际工程应用
详细描述
在建筑工程、机械工程和航空航天工程等领域,弹性梁的弯曲问题具有广泛的应用。例如,在桥梁和建筑结构中, 梁是主要的承载构件,其弯曲变形会影响结构的稳定性和安全性。通过掌握弹性力学的基本原理和方法,可以更 加准确地分析梁的弯曲问题,优化梁的设计和计算。
弹性薄板的弯曲问题
越广泛。未来可以进一步研究和发展更加高效、精确的数值计算方法,

弹性力学讲义

弹性力学讲义

弹性力学01绪论1.1弹性力学的内容1.2弹性力学的几个基本概念 1.3弹性力学中的基本假定。

1.1、弹性力学的内容弹性力学:研究弹性体由于受外力、边界约束或温度等原因而发生的应力、变形和位移。

研究弹性体的力学:有材料力学、结构力学、弹性力学。

它们的研究对象分别如下: ①材料力学:研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题。

②结构力学:在材料力学基础上研究杆系结构(如桁架、钢架等)③弹性力学:研究各种形状的弹性体,如杆件、平面体、空间体、板壳、薄壁结构等问题。

在研究方法上,弹性力学和材料力学也有区别:弹力研究方法:在区域V 内严格考虑静力学、几何学和物理学三方面条件,建立三套方程;在边界s 上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。

材力也考虑这几方面的条件,但不是十分严格的:常常引用近似的计算假设(如平面截面假设)来简化问题,并在许多方面进行了近似的处理。

因此材料力学建立的是近似理论,得出的是近似的解答。

从其精度来看,材料力学解法只能适用于杆件。

例如:材料力学:研究直梁在横向载荷作用下的平面弯曲,引用了平面假设,结果:横截面上的正应力按直线分布。

()zM x yI σ⋅=弹性力学:梁的深度并不远小于梁的跨度,而是同等大小的,那么,横截面的正应力并不按直线分布,而是按曲线变化的。

22()345z M x y y y q I h h σ⎛⎫⋅=+- ⎪⎝⎭这时,材料力学中给出的最大正应力将具有很大的误差。

弹性力学在力学学科和工程学科中,具有重要的地位:弹性力学是其他固体力学分支学科的基础。

弹性力学是工程结构分析的重要手段。

尤其对于安全性和经济性要求很高的近代大型工程结构,须用弹力方法进行分析。

工科学生学习弹力的目的:1)理解和掌握弹力的基本理论; 2)能阅读和应用弹力文献;3)能用弹力近似解法(变分法、差分法和有限单元法)解决工程实际问题: 4)为进一步学习其他固体力学分支学科打下基础。

2024年度-弹性力学讲课文档

2024年度-弹性力学讲课文档

弹性力学讲课文档contents •弹性力学基本概念与原理•弹性力学分析方法•一维问题求解方法与应用•二维问题求解方法与应用•三维问题求解方法与应用•弹性力学在工程中应用案例目录01弹性力学基本概念与原理弹性力学定义及研究对象定义弹性力学是研究弹性体在外力作用下产生变形和内部应力分布规律的科学。

研究对象主要研究弹性体(如金属、岩石、橡胶等)在小变形条件下的力学行为。

弹性体基本假设与约束条件基本假设连续性假设、完全弹性假设、小变形假设、无初始应力假设。

约束条件弹性体在变形过程中,必须满足几何约束(如位移连续、无重叠等)和物理约束(如应力平衡、应变协调等)。

应力单位面积上的内力,表示物体内部各部分之间的相互挤压或拉伸作用。

应变物体在外力作用下产生的形状和尺寸的变化,反映物体变形的程度。

位移物体上某一点在变形前后位置的变化,描述物体的整体移动。

关系应力与应变之间存在线性关系(胡克定律),位移是应变的积分结果。

应力、应变及位移关系弹性力学中能量原理能量守恒原理弹性体在变形过程中,外力所做的功等于弹性体内部应变能的增加。

最小势能原理在所有可能的位移场中,真实位移场使系统总势能取最小值。

虚功原理外力在虚位移上所做的虚功等于内力在相应虚应变上所做的虚功。

02弹性力学分析方法解析法分离变量法通过分离偏微分方程的变量,将其转化为常微分方程进行求解。

积分变换法利用积分变换(如傅里叶变换、拉普拉斯变换等)将偏微分方程转化为常微分方程或代数方程进行求解。

复变函数法引入复变函数,将弹性力学问题转化为复平面上的问题,利用复变函数的性质进行求解。

将连续问题离散化,用差分方程近似代替微分方程进行求解。

有限差分法有限元法边界元法将连续体划分为有限个单元,对每个单元进行分析并建立单元刚度矩阵,然后组装成整体刚度矩阵进行求解。

将边界划分为有限个单元,利用边界积分方程进行求解,适用于处理无限域和复杂边界问题。

半解析法有限体积法将计算区域划分为一系列控制体积,将待解的微分方程对每一个控制体积积分得出离散方程进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“弹性力学”课程是北京大学力学与工程科学系的主干基础课,三年级开设,一学期的课程,力学班周学时为5,工程班为3。

所谓弹性是指外力消失后,物体恢复原状的特性。

弹性力学是研究弹性体在外界因素影响下,其内部所生成的位移和应力分布的学科。

弹性力学是众多工程学科的基础,此课程十分重要,力学系本科的许多后续课程都建立在弹性力学的基础之上。

授课教案详见王敏中等编著的《弹性力学教程》。

目前网上给出如下一些教案示例:1.“第一章矢量与张量”2.“第二章应变分析”3.“第三章应力分析4.“第六章 Saint-venant 问题” (§1-§5)5.“第七章弹性力学平面问题的直角坐标解法” (§1-§4)弹性――外力消失后,物体恢复原状的特性。

弹性体――仅仅有弹性性质的一种理想物体。

弹性力学――研究弹性体在外界因素影响下,其内部所生成的位移和应力分布的学科。

人类利用物体的弹性可以追溯到无穷久远的年代,但是弹性力学作为一门科学却是伴随着工业革命而诞生的,并被广泛应用于土木、航空、船舶、机械等工程领域。

弹性力学迄今已有三百余年的发展历史,1678年Hooke提出变形与外力成正比的定律,1821年Navier和1823年Cauchy建立了关于应力的平衡方程,形成了弹性力学的初步理论;Saint-Venant(1855)关于扭转与弯曲的解答,Мусхелишвили(1933)的复变解法是弹性理论发展中的经典之作;二十世纪下半叶,弹性理论进一步深化和扩展,许多基本概念和基本问题被深入和细致的研究,并与其它物理因素相互耦合出现了许多交叉领域,诸如热弹性力学、粘弹性力学、磁弹性力学、压电介质弹性力学、微孔介质弹性力学、微极弹性力学、非局部弹性力学、准晶弹性力学等,极大地丰富了弹性力学的研究范围。

本书主要介绍弹性力学的基本理论、典型方法、著名问题、重要结果,希望能反映出这门既古老又年青、既理论又实用的学科的面貌,作为进一步研究弹性力学和固体力学其它分支的起点。

第一章矢量与张量本章介绍向量与张量的代数运算和分析运算,作为后面章节的数学准备。

§1 向量代数1.1向量的定义从几何观点来看,向量定义为有向线段。

在三维欧氏空间中,建立直角坐标系,沿坐标方向的单位向量为,即其标架为。

设从坐标原点至点的向量为,它在所述坐标系中的坐标为,那么可写成(1.1)设在中有另一个坐标系,其标架为,它与之间的关系为(1.2)由于单位向量之间互相正交,之间也互相正交,因此矩阵(1.3)将是正交矩阵,即有,其中上标表示转置。

从(1.2)可反解出(1.4)向量在新坐标系中的分解记为(1.5)将(1.4)代入(1.1),得到(1.6)公式(1.6)是向量的新坐标和旧坐标之间的关系,它是坐标变换系数的一次齐次式。

这个式子应该是有向线段的几何客观性质(如:长度、角度)不随坐标的人为主观选取而变化的一种代数反映。

可以说,公式(1.6)表示了向量在坐标变换下的不变性。

这样,我们就从向量的几何定义,得到了向量的代数定义:一个有序数组,如果在坐标变换下为关于变换系数由(1.6)所示的一次齐次式,则称之为向量。

1.2 Einstein约定求和用求和号,可将(1.1)写成(1.7)所谓Einstein约定求和就是略去求和式中的求和号,例如(1.7)可写成(1.8)在此规则中两个相同指标就表示求和,而不管指标是什么字母,例如(1.8)也可写成(1.9)有时亦称求和的指标为“哑指标”。

本书以后如无相反的说明,相同的英文指标总表示从1 至3 求和。

按约定求和规则,(1.2)、(1.4)可写成(1.10)(1.11)将(1.11)代入(1.8),得(1.12)由此就得到了(1.6)式的约定求和写法,(1.13)今引入Kronecker记号,(1.14)例如。

应用,单位向量之间的内积可写成(1.15)向量和向量之间的内积可写成(1.16)上式中最后一个等号是因为只有时,才不等于零,在这里的作用似乎是将换成了,因而也称为“换标记号”。

再引入Levi-Civita记号,(1.17)其中分别取1,2,3中的某一个值。

例如,,,…。

利用,向量之间的外积可写为(1.18)(1.19)1.3与之间的关系Kronecker 记号与Levi-Civita 记号之间有如下关系(1.20)证明1 穷举法,先列出所有可能的81种取值情况,情形123┆ 1 1 1 1 1 1 1 2 1 1 1 3┆┆┆┆然后逐个情形证明,例如,情形1,,故此情形(1.20)成立,…。

证明2 我们有双重外积公式(1.21)将代入(1.21)左右两边,得到将上述两式代入(1.21)两边,移项,得(1.22)由于的任意性,从(1.22)即得欲证之(1.20)式。

证明3 利用Lagrange公式(1.23)按证明2 类似的步骤,从(1.23)可导出(1.20)。

证明4 从(1.18)和向量混合乘积的行列式表示,有(1.24)其中分别为向量在中的坐标。

按行列式的乘积法则,有(1.25)其中第二个等式应用了等关系。

将(1.25)最后一个行列式展开,得(1.26)注意到,以及换标记号和的意义,从(1.26)即得(1.20)。

证毕。

§2 张量代数2.1张量的定义设(2.1)其中称为并矢基,它们共有9个,(2.2)在坐标变换(1.11)之下,(2.1)成为(2.3)于是(2.4)从(2.4)可引出张量的定义:一个二阶有序数组,在坐标变换下,关于变换系数为二次齐次式,则称为张量,也记作。

为其指标记号,为其整体记号。

张量在并矢基下的9个分量,有一个矩阵与之对应,记作(2.5)同一个张量在另一组并矢基下所对应的矩阵为,(2.6)按(2.4)可知,张量在不同坐标系下所对应的矩阵服从矩阵的合同变换,(2.7)其中为坐标变换矩阵(1.3)。

附注:上述张量的定义可以推广:一个阶有序数组 ,在坐标变换(1.10)下,若服从的次齐次式,(2.8)则称之为阶张量。

按照这种定义,标量可认为是零阶张量,向量可认为是一阶张量,(2.1)所述的张量为二阶张量,也可证明Levi-Civita记号为三阶张量。

(2.8)式中的下标和取值范围也可不必限于从1到3,也可从1到,那么(2.8)式所定义的张量称为维空间中的阶张量。

本书所述张量,以后如不作说明均为三维二阶张量。

2.2张量的运算张量与张量的和与差记为,(2.9)张量的转置记为,(2.10)不难验证,和也是张量。

例如,(2.11)一个张量称为对称张量,如果(2.12)与对称张量所对应的矩阵为对称矩阵。

一个张量称为反对称张量,如果(2.13)与反对称张量所对应的矩阵为反对称矩阵,我们将反对称矩阵记成(2.14)从(2.14)可以得出,(2.15)(2.16)不难验证,由(2.16)所定义的为向量,它称为相应于反对称张量的轴向量。

由于所以(2.17)为一张量,称之为单位张量。

张量的迹定义为(2.18)2.3张量与向量之间的运算张量与向量有左右两种内积,(2.19)(2.20)从(2.19) (2.19),可得左右两种内积之间有关系式(2.21)如果为反对称张量,由(2.19) (2.15),得(2.22)张量与向量有左右两种外积,(2.23)(2.24)张量与两个向量和之间有四种运算,2.4 张量与张量之间的运算两个张量与之间的内积和外积如下两个张量与之间有四种双重运算对于双重运算,先将外层的两个基和按下面的符号进行运算,再将内层的两个基和按上面的符号进行运算。

从双重运算可得两个有用的公式,(2.25)(2.26) 此外,尚有关系式(2.27)(2.28)利用(2.25)(2.26),能得到两个有用的定理定理2.1 对称证明从(2.25)立即得到所需的结论。

定理2.2证明首先,如果,那么,从(2.26)得到。

其次,如果,(2.26)给出(2.29)对(2.29)取迹,得(2.30)将(2.30)代回(2.29),即得。

证毕。

§3 向量分析3.1 Hamilton 算子记(3.1)由于(3.2)可知算子服从向量的定义。

设为三维区域中的标量场,关于的左右梯度为,其中,下标中的逗号表示对其后坐标的微商,。

从上述两式可以看出标量的左右梯度相等。

设为三维区域中的向量场,关于的左右散度为,从上面两式可以看出向量的左右散度相等。

关于向量场的左右旋度为,对于的左右旋度,有关系式。

标量场的Laplace算子为,向量场的Gauss公式为(3.3)其中为区域的边界曲面,,为上的单位外法向量。

向量场的Stokes公式为(3.4)这里为任意曲面,为的边界曲线,在边界上积分的环向与的外法向依右手定向规则:指向观察者,从观察者来看,曲线沿反时针为正。

3.2无旋场与标量势对任意标量场有下述关系(3.5)上式用到了关系,因为本书总假定所出现的函数具有所需的各阶连续导数。

(3.5)说明有势场是无旋场,其逆命题一般也成立,即有,定理3.1 设为单连通区域上的任意向量场,则存在,使得 (3.6) 证明充分性由(3.5)即得。

现证必要性,若,令(3.7)这里为中的某个定点。

不难验证,即合所求。

首先,(3.7)中的线积分由于无旋假定而与路径无关,即仅为位置的函数。

其次,从(3.7)可算出。

证毕。

如果区域是多连通的尚需加上单值性条件。

3.3无源场与向量势对任意的向量场有如下公式,(3.8)上式说明,具向量势的向量场其散度为零,即为无源场。

此命题的逆命题也成立。

定理3.2 对区域上的任意向量场 ,有存在,使得 (3.9) 证明充分性由(3.8)即得。

关于必要性,下述的即合所求,(3.10)其中,为中的定点。

证毕。

附注:定理3.2的证明中引用了定积分,因此区域必须具备凸性才可使定积分得以进行。

关于一般区域中的证明参见Stevenson(1954)的论文,此文还指出定理3.2一般只对具有单边界的区域成立,对于有多边界的区域还需补充一些条件。

3.4 Helmholtz分解对任意的向量场,它的二重旋度有如下表示(3.11)利用(3.11)可得下面的重要定理定理3.3 (向量的Helmholtz分解) 对区域上的任意向量场,总存在标量势和向量势,使得,且 (3.12)证明令(3.13)其中,从(3.13),按Newton位势,有(3.14)将(3.11)代入(3.14),得(3.15)设,从(3.15)即得欲证之(3.12)式。

证毕。

§4 张量分析4.1向量的梯度向量的左右梯度均为张量(4.1)相应于向量左右梯度的矩阵为(4.2)从(4.1),或(4.2),可得(4.3)(4.4)4.2张量的散度和旋度张量的左右梯度均为向量(4.5)从(4.5)看出,(4.6)对于特殊的张量,其左右梯度为(4.7)张量的左右旋度仍为张量(4.8)(4.9) 与张量的旋度所相应的矩阵为(4.10)也可列出所相应的矩阵。

相关文档
最新文档