知识点191根据实际问题列一次函数关系式(解答题)

合集下载

一次函数生活中的实际应用题目

一次函数生活中的实际应用题目

一次函数生活中的实际应用题目一次函数是数学中的一种函数类型,表示为 y = kx + b 的形式,其中 k 是函数的增减速度,b 是函数的零点。

一次函数在生活中有许多实际应用,以下是一些实际问题的例子:1. 温度计:一次函数可以用来描述温度的变化情况。

当温度上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示温度变化的水平方向。

例如,在摄氏 0 度和 100 度之间,温度每增加 1 度,温度计上的指针会上升多少格,就可以用一次函数来描述。

2. 流量控制:一次函数在流量控制中被广泛应用,特别是在水管和发动机的设计之中。

当水流量为恒定值时,一次函数可以用来描述水流量和水压之间的关系。

例如,如果想控制水流量为一定值,可以通过调节水管中的阀门大小来控制水压,从而实现流量的控制。

3. 存款利率:一次函数可以用来描述存款利率的变化情况。

当利率上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示利率变化的水平方向。

例如,如果利率上升 1%,银行的存款利率会相应上涨多少元,就可以用一次函数来描述。

4. 股票价格:一次函数可以用来描述股票价格的变化情况。

当股票价格上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示股票价格变化的水平方向。

例如,如果股票价格上升 1%,投资者获得的回报率会相应上涨多少个百分点,就可以用一次函数来描述。

5. 植物生长:一次函数可以用来描述植物的生长情况。

当植物的生长速度加快或减缓时,一次函数的斜率会发生变化,而常数 b 则表示植物的生长速度保持不变的水平方向。

例如,如果想预测植物在未来几天内的生长速度,可以使用一次函数来计算。

八年级数学《一次函数》知识点归纳与例题

八年级数学《一次函数》知识点归纳与例题

八年级数学《一次函数》知识点归纳与例题一、知识点总结1、一次函数与正比例函数的定义:例如:y =kx +b (k ,b 是常数,k ≠0)那么y 叫做x 的一次函数,特别地当b =0时,一次函数y =kx +b 就成为y =kx (k 是常数,k ≠0)这时,y 叫做x 的正比例函数。

2、一次函数的图象与性质(形状、位置、特殊点、增减性)①、形状:一次函数的图象是一条 ;画法:确定两个点就可以画一次函数图象。

②、位置:直线的位置是由k 、b 当k 0时,图象经过一、三象限; 当k 0时,图象经过二、四象限。

当b 0时,图象与y 轴相交于正半轴; 当b 0时,图象与y 轴相交于负半轴; 当b 0时,图象经过坐标原点。

x 轴和y 轴交点分别是④、性质:一次函数)0(≠+=k b kx y ,当k 0y 的值随x 值的增大而增大;当k 0y 的值随x 值的增大而减小。

3、待定系数法求函数解析式在一次函数y =kx +b (k ≠0)中有两个未知数k 和b ,所以,要确定其关系式,一般需要两个条件,常见的是已知两点坐标P 1(a 1,b 1),P 2(a 2,b 2)代入得⎩⎨⎧b 1=a 1k +b ,b 2=a 2k +b ,求出k ,b 的值即可,这种方法叫做__________.4、一次函数与方程、方程组及不等式的关系 ①、y =kx +b 与kx +b =0直线y =kx +b 与x 轴交点的横坐标是方程kx +b =0的解,方程kx +b =0的解是直线y =kx +b 与x 轴交点的横坐标. ②、y =kx +b 与不等式kx +b >0从函数值的角度看,不等式kx +b >0的解集为使函数值大于零(即kx +b >0)的x 的取值范围;从图象的角度看,由于一次函数的图象在x 轴上方时,y >0,因此kx +b >0的解集为一次函数在x 轴上方的图象所对应的x 的取值范围. ③、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点. 【知识拓展】1、两条直线的位置关系设直线 1和 2的解析式为y =k 1x +b 1和y 2=k 2x +b 2则它们的位置关系由系数关系确定:① k 1≠k 2⇔ 1与 2相交;② k 1=k 2,b 1≠b 2⇔ 1与 2平行;+b一次函数)0(≠+=k b kx y 的图象 如图,判断k 、b 符号。

一次函数实际应用题归纳

一次函数实际应用题归纳

一次函数实际应用题归纳一次函数,听起来有点学术,但其实在生活中随处可见。

就像你和朋友约好一起去吃饭,路上那条长长的直线,车速一快,距离一缩,这就是一次函数的魅力呀!简单来说,一次函数就是一种线性关系。

说得直白点,就是“走得越快,离目的地越近”,这不就是咱们每天都在经历的事情吗?想象一下,你跟朋友去咖啡店,点了两杯拿铁,结果发现一杯要25块,另一杯也是25块。

那你们的总花费就是两杯乘以单价,哎呀,这不就是简单的数学嘛!我们常常说“钱没了就没了”,但这个公式却让我们轻松搞定了账单。

其实生活中的许多场景都能用一次函数来解释,比如说你每天上班的路程。

如果你骑自行车,骑得快一点,路上不堵车,那你很快就能到达公司,反之就得在车流中慢慢等。

再说说购物的事儿。

谁不喜欢逛街呢?你去超市买苹果,标价每斤10块,结果你一买就是三斤,嘿嘿,这个时候你就知道,三斤苹果的价格是30块。

这就是一次函数在你买买买的瞬间大显身手。

真是让人感慨万千,花钱的速度和回家的距离,都是成正比的嘛。

再聊聊你请朋友吃饭的故事。

大家一起聚餐,点了满桌的菜,最后结账的时候,常常是一人一半。

如果你们一共花了400块,那每个人就是200块。

简单吧?这就像是在学校学的数学题,虽然一开始可能会觉得复杂,但慢慢琢磨,就会觉得原来真没那么难。

就像“好事成双”,花钱的同时也收获了友情,这才是最重要的。

说到这里,我们不得不提一下交通。

你在高速公路上开车,车速越快,油耗越高。

一次函数在这里也同样适用。

你开了120公里的速度,油表一下子就掉得快,等到油箱见底,你就得停下来加油。

这种直线的关系,让你无时无刻不在感受到生活的规律。

朋友们总说,开车上路,别急,慢慢来,其实也是在告诉我们,有时候慢就是快,心态才最重要。

当然了,生活中还有许多有趣的例子。

比如说你做运动,越勤奋,越能瘦下来。

一次函数也告诉我们,努力和成果成正比。

每天跑步半小时,体重就能慢慢下降,这种感觉可比买到打折商品还要爽。

八年级数学一次函数知识点总结及练习题大全(含答案)

八年级数学一次函数知识点总结及练习题大全(含答案)
题: (1)分别求出 y甲 , y乙 关于 x 的函数关系式; ( 2)现厂家分配该商品 800 件给甲商场, 400 件给乙商场,当甲乙商场售完这批商品 后,厂家可获得总利润是多少元?
y/乙 y乙 y乙
480 400
O
200
600
x/乙
[考题评析] 1、解:(1)对于 y=
3 x+ 3 ,令 x=0,则 y= 3 ,∴A 的坐标为(0, 3 ),∴AO= 3 .
一次函数
一、命题趋势 本讲内容主要有:正比例函数的图象和性质,一次函数的图象和性质,图象的平移, 用待定系数法求解析式,一次函数与一次方程(组) 、一次不等式(组)的关系以及实际应 用等。作为初中阶段的重点内容,测试中一般以选择、填空为主,也有作为与其他内容融 合的综合题型出现。 (一)、一次函数 y=kx+b 的图象和性质 [考点归纳] k、b 的符号 图像的大致 位置 第________象限 y 随 x 的增大而 ______ 第 ________象 限 y随 x的增大 而______ 第 ________象 第 ________象 限 限 y随 x的增大 y随 x的增大 而______ 而______ k>0 ,b>0 k>0 ,b<0 k<0 ,b>0 k<0,b<0
[考题评析] 1、解:根据题意,设 t>2 时 S=kt+b, 将 t=4,S=1200 和 t=5,S=1650 分别代入上式,得
4k b 1200 k 450 ,解得 ,∴S=450t-600. 5k b 1650 b 600
当 t=2 时,S=450×2-600=300, v=300÷2=150(m2/h) . 故选择 B. 2、解:根据题意△ADP 的面积 y 与 P 的运动路程为 x 的关系式是 y =

一次函数应用题知识点总结

一次函数应用题知识点总结

一次函数应用题知识点总结一次函数是数学中的基础函数之一,其形式为y = kx + b,其中k和b为常数,x为自变量,y为因变量。

一次函数的图像是一条直线,其特点是斜率为k,截距为b。

在生活中,一次函数具有丰富的应用场景,例如经济学中的成本和收益分析、物理学中的速度和加速度问题、工程学中的线性规划问题等。

因此,掌握一次函数的知识对于解决实际问题具有重要意义。

本文将对一次函数的应用进行详细总结,包括经济学、物理学、工程学等方面的具体应用案例和解题方法。

经济学中的应用1. 成本和收益分析在经济学中,企业通常需要对生产成本和收益进行分析,以便制定合理的生产策略。

一次函数可以用来描述成本和收益的关系,其中斜率代表每单位产量的成本变化率,截距代表固定成本。

假设某企业生产某种产品,设生产成本C与产量x之间的关系为C = kx + b,其中k为单位产量成本,b为固定成本。

企业的总成本可以表示为C = kx + b,总收益可以表示为R = px,其中p为产品的售价。

则企业的利润为P = R - C = px - (kx + b) = (p - k)x - b,由于p - k为单位产量利润,因此利润与产量的关系是一次函数。

企业如果要最大化利润,可以通过求解一次函数的最大值来确定最优产量。

假设一次函数P = (p - k)x - b,当x达到最大值时,利润P也达到最大值。

2. 税收和福利分析在宏观经济学中,政府税收政策对社会福利的影响是一个重要的研究课题。

一次函数可以用来描述税收和福利之间的关系,其中斜率代表福利变化率,截距代表固定福利。

假设政府对某种商品征税,税收收入T与商品销量x之间的关系为T = kx + b,其中k为单位销量税收,b为固定税收。

利用一次函数可以进行福利分析,例如探讨税收调整对社会福利的影响。

物理学中的应用1. 速度和加速度问题在物理学中,一次函数可以描述物体的运动情况。

假设某物体在t时刻的位移为s(t),速度为v(t),加速度为a(t),则s(t)、v(t)和a(t)之间的关系可以用一次函数来描述。

一次函数实际问题

一次函数实际问题

一次函数实际问题一次函数,也叫做线性函数,是数学中最简单的函数之一。

它的一般形式为Y = aX + b,其中a和b是常数,X和Y分别表示自变量和因变量。

一次函数在实际问题中的应用非常广泛,下面我将为你列举几种常见的实际问题,并给出参考内容。

1.汽车租赁问题:假设一辆汽车的租金为每天100元,另外还需要支付一定的保证金。

我们可以用一次函数来表示汽车租赁费用与租用天数之间的关系。

设X表示租用天数,Y表示总费用(包括租金和保证金)。

则一次函数可以表示为Y = 100X + b。

其中,b表示保证金。

通常情况下,保证金是定值,不随租用天数的增加而变化。

2.收入问题:假设某公司的月薪为3,000元,每个月还有一定的奖金作为额外收入。

我们可以用一次函数来表示每个月的收入与奖金的关系。

设X表示奖金数额,Y表示总收入。

则一次函数可以表示为Y = 3000 + aX。

其中,3000为基本薪水,a为奖金的倍数。

3.物体运动问题:假设一个物体在相同的力作用下以恒定的速度匀速运动。

我们可以用一次函数来表示物体在不同时间点的位置。

设X表示时间,Y表示距离。

则一次函数可以表示为Y = aX + b。

其中,a为速度,b为起始位置。

4.销售问题:假设某商品的售价为每个100元,销量与售价存在一定的线性关系。

我们可以用一次函数来表示销售额与售价之间的关系。

设X表示售价,Y表示销售额。

则一次函数可以表示为Y = aX。

其中,a表示每个商品的销量。

5.水果购买问题:假设某水果店卖橙子的价格为每斤5元,我们可以用一次函数来表示购买橙子的费用与购买重量之间的关系。

设X表示购买重量(单位:斤),Y表示总费用。

则一次函数可以表示为Y = 5X。

以上只是一些常见的实际问题,一次函数还可以应用于更多领域,如金融、生产等等。

在实际问题中,我们可以通过确定函数的参数来解决具体的计算和分析问题。

一次函数的简洁性和直观性,使它成为了数学中最基础、最常用的函数之一。

一次函数一二元一次方程组的关系(知识点+例题)

一次函数一二元一次方程组的关系(知识点+例题)

一次函数与二元一次方程(组)【教学目标】1. 理解一次函数与二元一次方程组的关系,会用图象法解二元一次方程组; 2. 学习用函数的观点看待方程组的方法,进一步感受数形结合的思想方法;【重点难点】1. 对应关系的理解及实际问题的探究2.二元一次方程组的解与两直线交点坐标之间的对应关系的理解【教学内容】一、提出问题,y =3x+1是什么? 一次函数,二元一次方程. 从而引入新课. 二、新课讲解1.探究一次函数与二元一次方程的关系 (1)对于方程358x y +=,如何用x 表示y ? 3855y x =-+(2)是不是任意的二元一次方程都能进行这样的转化呢?① 30x y -= ②11=623x y + 3y x = 3182y x =-+你对二元一次方程与一次函数的解析式之间的关系有什么看法?一一对应(3) 直线3855y x =-+上每一点的坐标,)x y (都是方程358x y +=的解吗? 是(4)你对二元一次方程与一次函数的图像之间的关系有什么看法? 总结:一次函数与二元一次方程的关系以二元一次方程的解为坐标的点都在相应的一次函数图象上. 反过来:一次函数图象上的点的坐标都适合相应的二元一次方程. 即每个二元一次方程都对应一个一次函数,于是也对应一条直线.2.探究一次函数与二元一次方程组的关系 (1)在同一直角坐标系中画一次函数3855y x =-+ 与21y x =-的图象, 它们有交点吗?交点坐标是多少?是方程组385521y x y x ⎧=-+⎪⎨⎪=+⎩的解吗?为什么?(2)当自变量x 取何值时,函数3855y x =-+ 与21y x =-的值相等,这个值是多少?1y 1x ==时它们的值相等, 我们已经学会了如何求一个二元一次方程组的解的方法,比如可以用代人法,也可以用加减法.我们如何用函数的观点去看待方程组的解呢?首先,任何一个方程组都可以看成是两个一次函数的组合.比如⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧-=+-=⇔=-=+125853152853x y x y y x y x ①对于①,根据方程组解的意义和函数的观点,就是求当x取什么数值时,两个—次函数的y 值相等?它反映在图象上,就是求直线5853+-=x y 和直线12-=x y 的交点坐标. 教师点拨:根据方程组解的意义和函数的观点,解方程组就是求当x 取何值时,两个函数的y 值相等;从图象上看就是求两条直线的交点坐标.我们可以从数形两个方面归纳一次函数与二元一次方程组的关系.渗透数形结合思想. 一次函数与二元一次方程组的关系:+58从数的角度看:从形的角度看:求二元一次方程组的解求二元一次方程组的解是确定两条直线交点的坐标x 为何值时,两个函数的值相等3.例题讲解例3 一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0.05元的价格按上网时间计费.上网时间为多少分时,两种方式的计费相等?分析:计费与上网时间有关,所以可设上网时间为 x 分,分别写出两种计费方式的函数模型,然后再考虑自变量为何值时两个函数的值相等.解:设上网时间为x 分,方式A 的计费为0.1y x =元,方式B的计费为0.0520y x =+元. 方法1.解方程组0.10.0520y x y x =⎧⎨=+⎩的解为40040x y =⎧⎨=⎩方法2.这表示当(1)则方程组(2的解为x y ⎧⎨⎩(3)由图可以得出方程组320x y x y -=-⎧⎨+=⎩的解为21x y =-⎧⎨=⎩(4) 直线24y x =-+和243y x =+的交点坐标为 (3,-2) . 分析:求两条直线的交点坐标可转化为求相应的方程组242312x y x y +=⎧⎨-=⎩的解.我们很快可以解得方程组的解为32x y =⎧⎨=-⎩,所以可得交点坐标为(3,-2)(5)解方程组025x y x y -=⎧⎨+=⎩,你有哪些方法?一般用代数方法. (6)已知方程组125x y x y -=⎧⎨+=⎩ 的解为21x y =⎧⎨=⎩ ,那么直线25y x =-+与直线1y x =-的交点坐标为(2,1).分析:一个方程组对应两个一次函数,即对应两条直线. (7)直线210y x =+与54y x =+的交点坐标为(2,14). 分析:求方程组21054y x y x =+⎧⎨=+⎩的解即可.【拓展训练】一家电信公司给顾客提供两种上网收费方式: 方式以每分元的价格按上网时间计费;方式除收月基费20元外再以每分0.05元的价格按上网时间计费.如何选择计费方式使上网者更合算?分别从数和形两个方面思考问题.法1,解不等式;法2,画出两个函数图象,从图象上得出.课堂小结1. 一次函数与二元一次方程的关系以二元一次方程的解为坐标的点都在相应的一次函数图象上. 反过来:一次函数图象上的点的坐标都适合相应的二元一次方程. 即每个二元一次方程都对应一个一次函数,于是也对应一条直线. 2.一次函数和二元一次方程组的关系3.图象法解方程组的步骤:①将方程组中各方程化为)b ax y +=的形式; ②画出各个一次函数的图象; ③由交点坐标得出方程组的解.【课后作业】数形结合题型:在同一坐标系中直线y =2x +10与y =5x +4的图象如图,请根据图象回答下列问题:(1)方程组21054x y x y -=-⎧⎨-=-⎩的解为(2)不等式2x+10<0的解集为(3)不等式2x +10<5x +4的解集为从数的角度看:从形的角度看:求二元一次方程组的解求二元一次方程组的解是确定两条直线交点的坐标x 为何值时,两个函数的值相等+10答案:(1)214x y =⎧⎨=⎩(2)x <-5 (3)x >2。

知识点191 根据实际问题列一次函数关系式(解答题)

知识点191  根据实际问题列一次函数关系式(解答题)

一、解答题1、已知等腰三角形的周长为12cm,若底边长为y cm,一腰长为x cm.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.考点:根据实际问题列一次函数关系式;等腰三角形的性质。

专题:几何图形问题。

分析:(1)底边长=周长﹣2×腰长;(2)根据三角形三边关系定理:三角形任意两边之和大于第三边来进行解答.解答:解:(1)依题意有:y=12﹣2x,故y与x的函数关系式为:y=12﹣2x;(2)依题意有:,即,解得:3<x<6.故自变量x的取值范围为3<x<6.点评:本题的难点在于根据三角形三边关系定理得到自变量的取值范围.考点:根据实际问题列一次函数关系式。

专题:应用题。

分析:当摄氏温度每次增加10℃,华氏温度每次就增加18℉,由此判断是一次函数关系式,设一次函数解析式,用“两点法”求解.解答:解:根据表格可知,y与x是一次函数关系,设y=kx+b,把x=0,y=32和x=10,y=50代入函数关系式得:,解得:.所以:y=1.8x+32.点评:本题关键是根据表格确定函数关系式,再代值求函数关系式.3、某汽车加油站储油45000升,每天给汽车加油1500升,那么储油量y(升)与加油x(天)之间的关系式是什么?并指出自变量的取值范围.考点:根据实际问题列一次函数关系式。

专题:应用题。

分析:直接根据题意可求得储油量y(升)与加油x(天)之间的关系式是:储油量=45000﹣1500×加油天数.自变量根据1500x≤45000和天数是非负整数列不等式组即可求解.解答:解:根据题意得储油量y(升)与加油x(天)之间的关系式是:y=45000﹣1500x,∵1500x≤45000,x≥0,∴0≤x≤30,即y=45000﹣1500x(0≤x≤30).点评:读懂题意,根据实际意义列出关于两个变量之间的等式是求得函数关系式的关键.自变量取值范围要结合实际意义列不等式求解.4、某商人进货时,进价已按原价a扣去了25%.他打算对此货订一新价销售,以便按新价让利20%销售后,还可获得售价的25%的利润.试写出此商人经销这种货物时按新价让利总额与货物售出件数之间的函数关系式.考点:根据实际问题列一次函数关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、解答题1、已知等腰三角形的周长为12cm,若底边长为y cm,一腰长为x cm.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.考点:根据实际问题列一次函数关系式;等腰三角形的性质。

专题:几何图形问题。

分析:(1)底边长=周长﹣2×腰长;(2)根据三角形三边关系定理:三角形任意两边之和大于第三边来进行解答.解答:解:(1)依题意有:y=12﹣2x,故y与x的函数关系式为:y=12﹣2x;(2)依题意有:,即,解得:3<x<6.故自变量x的取值范围为3<x<6.点评:本题的难点在于根据三角形三边关系定理得到自变量的取值范围.2、已知摄氏温度x(℃)与华氏温度y(℉)之间存在下表关系:摄氏温度(℃)0 10 20 30 4050 …华氏温度(℉) 32 50 68 86 104 122…根据表中提供的信息,写出y与x之间的函数关系式.考点:根据实际问题列一次函数关系式。

专题:应用题。

分析:当摄氏温度每次增加10℃,华氏温度每次就增加18℉,由此判断是一次函数关系式,设一次函数解析式,用“两点法”求解.解答:解:根据表格可知,y与x是一次函数关系,设y=kx+b,把x=0,y=32和x=10,y=50代入函数关系式得:,解得:.所以:y=+32.点评:本题关键是根据表格确定函数关系式,再代值求函数关系式.3、某汽车加油站储油45000升,每天给汽车加油1500升,那么储油量y(升)与加油x(天)之间的关系式是什么并指出自变量的取值范围.考点:根据实际问题列一次函数关系式。

专题:应用题。

分析:直接根据题意可求得储油量y(升)与加油x(天)之间的关系式是:储油量=45000﹣1500×加油天数.自变量根据1500x≤45000和天数是非负整数列不等式组即可求解.解答:解:根据题意得储油量y(升)与加油x(天)之间的关系式是:y=45000﹣1500x,∵1500x≤45000,x≥0,∴0≤x≤30,即y=45000﹣1500x(0≤x≤30).点评:读懂题意,根据实际意义列出关于两个变量之间的等式是求得函数关系式的关键.自变量取值范围要结合实际意义列不等式求解.4、某商人进货时,进价已按原价a扣去了25%.他打算对此货订一新价销售,以便按新价让利20%销售后,还可获得售价的25%的利润.试写出此商人经销这种货物时按新价让利总额与货物售出件数之间的函数关系式.考点:根据实际问题列一次函数关系式。

专题:函数思想。

分析:题中等量关系为:按新价让利总额=新价×20%×售出件数,根据等量关系列出函数关系式即可.解答:解:设新价为b元,则销售价为(1﹣20%)b,进价为a(1﹣25%),(1﹣20%)b﹣(1﹣25%)a是每件的纯利.∴(1﹣20%)b﹣(1﹣25%)a=(1﹣20%)b×25%则b﹣a=b∴b= a设新价让利总额为y(元),售出货物为x件,则y=20%bx=20%×ax=ax.故此商人经销这种货物时按新价让利总额与货物售出件数之间的函数关系式为y=ax.点评:本题主要考查对与一次函数的应用,要注意找好题中的等量关系.找准新价,销售价,进价,每件的纯利的关系,即新价与原价的关系是解题的关键.5、根据《中华人民共和国个人所得税》规定四川省从2006年起实施新的个人所得税征收方案,公民的月工资、薪金所得不超过1600元的部分不必纳税,超过1600元的部分为全月应纳税所得额.些项税款按下表(《第华西都市报》2005年10月22日)累进计算:个人所得税税率表:(工资、薪金所得适用)级数全月应纳税所得额税率(%)1不超过500元的部分52超过500元至2000的部分103超过2000元至5000的部分154超过5000元至20000的部分205超过2000元至40000的部分256超过40000元至60000的部分307超过60000元至80000的部分358超过80000元至100000的部分409超过100000的部分45(应纳税税额=应纳税所得额×对应的税率)按此规定解答下列问题:(1)设某人的月工资、薪金所得为x元(1900<x<3600),需要交的所得税款为y元,试写出y与x的关系式;(2)若某人当月缴纳的所得税款为405元,那么他当月的工资、薪金是多少元(结果保留到个位)考点:根据实际问题列一次函数关系式;一元一次方程的应用。

专题:计算题。

分析:(1)∵1900<x<3600,∴300<x﹣1600<2000,根据图表即可列出等式;(2)根据405=(x﹣2000)×15%+(2000﹣500)×10%+500×5%即可求出某人当月缴纳的所得额,从而可求出他当月的工资、薪金.解答:解:(1)∵1900<x<3600,∴300<x﹣1600<2000,∴y=(x﹣1600﹣500)×10%+500×5%,即y=﹣105;(2)某人当月缴纳的所得额x应在2000至5000之间,即405=(x﹣2000)×15%+(2000﹣500)×10%+500×5%,解得:x=3533,∴他当月的工资、薪金是1600+3533=5133元.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.6、用解析式表示下列函数关系.(1)某种苹果的单价是元/kg,当购买x(kg)苹果时,花费y(元),y(元)与x(kg)之间的函数关系.y=(x≥0);(2)汽车的速度为20km/h,汽车所走的路程s(km)和时间t(h)之间的关系.s=20t(t≥0).考点:根据实际问题列一次函数关系式。

专题:应用题。

分析:(1)根据总花费=单价×质量可得答案.(2)根据路程=速度×时间可得答案.解答:解:由题意得:(1)y=(x≥0);(2)s=20t(t≥0).点评:找到所求量的等量关系是解决问题的关键,本题比较简单.7、甲、乙两地相距520km,一辆汽车以80km/h的速度从甲地开往乙地,行驶t(h)后停车在途中加水.(1)写出汽车距乙地路程s(km)与行驶时间t(h)之间的函数关系式s=520﹣80t ;(2)请写出自变量t的取值范围0<t<.考点:根据实际问题列一次函数关系式。

专题:行程问题。

分析:(1)汽车距乙地路程=520﹣行驶的距离=520﹣速度×时间.(2)已经行驶了t小时,那么t>0,还没有到达,行驶的距离<甲、乙两地相距距离,则80t<520,求出自变量t的取值范围.解答:解:(1)依题意有函数关系式为:s=520﹣80t;(2)依题意有:t>0,80t<520,∴t<,∴自变量t的取值范围为0<t<.点评:根据题意,找到所求量的等量关系是解决问题的关键.应注意根据实际意义求得自变量的取值范围.8、△ABC的底边BC=8cm,当BC边上的高从小到大改变时,△ABC的面积也随之变化.试写出△ABC的面积y(cm2)与高x(cm)的函数解析式y=4x ,请问它是什么函数正比例函数.考点:根据实际问题列一次函数关系式。

专题:几何图形问题。

分析:根据三角形面积=底×高÷2,及正比例的意义得出.解答:解:依题意有y=BC•x=×8×x=4x,它形如y=kx(k≠0,k为常数),故它是正比例函数.点评:根据题意,找到所求量的等量关系是解决问题的关键.本题考查了三角形面积公式.9、矩形的长是10cm,写出面积S与宽acm的关系式.考点:根据实际问题列一次函数关系式。

专题:几何图形问题。

分析:根据矩形面积=长×宽.解答:解:依题意有:S=10a.点评:根据题意,找到所求量的等量关系是解决问题的关键.本题考查了矩形面积公式.10、等腰三角形周长40cm.(1)写出底边长ycm与腰xcm的函数关系式.(2)写出自变量取值范围.考点:根据实际问题列一次函数关系式;等腰三角形的性质。

专题:几何图形问题。

分析:(1)根据:底边长+两腰长=周长,建立等量关系,变形即可;(2)根据三角形两边之和大于第三边及周长的限制,确定自变量的取值范围.解答:解:(1)依题意得2x+y=40,即y=﹣2x+40;(2)根据三角形的三边关系得:,解得:10<x<20.点评:本题考查了等腰三角形三边关系的性质,三角形三边关系定理.11、拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量考点:根据实际问题列一次函数关系式。

专题:应用题。

分析:(1)由油箱中的余油量=原有油量﹣耗油量可求得函数解析式;(2)把自变量的值代入函数解析式求得相对应的函数值.解答:解:(1)由题意可知:Q=40﹣4t(0≤t≤10);(2)把t=5时代入Q=40﹣4t得:油箱的余油量Q=20升.点评:此题由数量关系列出函数解析式,再把自变量的值代入函数解析式求得相对应的函数值,问题解决.12、若正方形ABCD的边长为2,P为DC上一动点,设DP=x,请写出△APD的面积y与x的函数关系式y=x(0<x≤2).考点:根据实际问题列一次函数关系式。

专题:动点型。

分析:根据直角三角形的面积公式可得.解答:解:根据三角形的面积公式得:y=×2x=x(0<x≤2).点评:此题主要考查了一次函数在实际问题的应用,其中解题时要熟悉直角三角形的面积公式,注意数形结合建立函数关系式.13、观察图,先填空,然后回答问题:(1)由上而下第n行,白球有n 个;黑球有2n﹣1 个.(2)若第n行白球与黑球的总数记作y,则请你用含n的代数式表示y,并指出其中n的取值范围.考点:根据实际问题列一次函数关系式。

专题:规律型。

分析:由图中数据,第一行一个白球,一个黑球,第二行2个白球,3个黑球,第三行3个白球,5个黑球,可得,第n行,白球有n个,黑球有2n﹣1个;白球和黑球的总和即n+2n﹣1=3n﹣1,其中n必须是正整数.解答:解:(1)第一行一个白球,一个黑球,第二行2个白球,3个黑球,第三行3个白球,5个黑球,所以可得第n行白球有n个,黑球有2n﹣1个.故填n,2n﹣1;(2)y=n+2n﹣1=3n﹣1(n为正整数)点评:能够根据实际问题列一次函数关系式,会求解一些简单的规律性问题.14、如图所示温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,请找出华氏温度y(℉)与摄氏温度x(℃)之间的一次函数关系式.考点:根据实际问题列一次函数关系式。

相关文档
最新文档