复变函数第6章

合集下载

复变函数-第6章

复变函数-第6章

光滑曲线 Γ : w = f ( z (t )) (t0 ≤ t ≤ t1 ) 切向量 w′(t ) = f ′( z0 ) z ′(t0 ) ≠ 0 切向量辐角ψ = arg w′(t0 )
= arg f ′( z0 ) + arg z ′(t0 ) = arg f ′( z0 ) + ϕ
7
假设 | f ′( z0 ) |= r , arg f ′( z0 ) = α , 即 f ′( z0 ) = reiα , 则
| f ′( z0 ) | . | f ′( z ) − f ′( z0 ) |≤ 2 如果 z1 , z 2 ∈ D, 并且 Γ 是连接 z1 和 z 2 的线段, 则有
| f ( z1 ) − f ( z 2 ) |=

Γ
f ′( z )dz =

Γ
f ′( z0 )dz − ∫ ( f ′( z0 ) − f ′( z ))dz
f ′( z ) ≠ 0
单叶(单射)解析
局部单叶(单射)
解析且 f ′( z0 ) ≠ 0
定理 6.1.1 若 f (z )在 z0 解析, 且 f ′( z0 ) ≠ 0, 故存在以 z0为心 的圆盘 D 使得 f (z ) 在 D 上的单射(单叶).
3
定理 6.1.2 (保域定理) 若 w = f (z ) 为在区域 D 内解析的非常 数函数, 则它的值域 (像) G = f ( D) = {w | w = f ( z ), z ∈ D} 也是一个区域. 证明: 区域是连通的开集. (1) 证明 G 是一个开集, 即 G 内的每一点都是内点.
∀w0 ∈ G,
∃z0 ∈ D, s.t. w0 = f ( z0 ).

复变函数第六章

复变函数第六章

推论6.3 设a为f(z)的一阶极点,f (z) (z) ,
za
则 Re s f (z) (a) lim(z a) f (z).
za
推论6.4
za
设a为f(z)的二阶极点,f (z)
(z)
z a2
,
则 Re s f (z) (a) lim[(z a)2 f (z)].
za
za
定理6.5 设a为 f (z) (z) 的一级极点 ,其中(z),
1. 留数的定义及留数定理
若f(z)在点a解析,周线C包围a,则:C f zdz 0. 若a为 f(z)的孤立奇点,周线C包围a,则:C f zdz一般不为0.
定义6.1 设f(z)以有限点a为孤立奇点,即 f(z)在点a
的某去心邻域0<|z-a|<R内解析,则称积分
1
2i
f
zdz
( :| z a | ,0 R)
f
1 (z
)以点a为m阶零点.
定理5.5 f(z)的孤立奇点a为极点 lim f (z) . za
5. 本性奇点的性质
定理5.6 f(z)的孤立奇点a为本性奇点
lim
za
f
(z)
b(有

数),
即lim za
f
( z )广 义 不 存 在.
第六章 留数理论及其应用 第一节 留数
1. 留数的定义及留数定理 2. 留数的求法 3. 函数在无穷远点的留数
D 内且两两不相交,取逆时针方向,则由柯西积
分定理有
n
f z
n
f zdz 2 i Re s f z.
c
i 1 k
k1 zak
注 留数定理的重要意义在于把复变函数的闭合曲线积分转

复变函数小结

复变函数小结
f (0) 0,
C 0.
数学学院
例2 设f ( z )在 | z | 1内解析,在 | z | 1上连续,且在 | z | 1上 1 | f ( z ) z || z | 证明: | f ( ) | 8 2 1 f (z) dz 证明 f ( z0 ) 2 2 i |z|1 ( z z0 ) y (z) C 1 1 | f (z) z | | z | | f ( ) | ds 1 1 2 2 2 |z|1 |z | 2 x 2 o 1 2 ds 8. 2 |z|1 ( 1 )2 2
z1 ae
3 i 4
.
1 i 3 4z
z z0
1 3 4 z z z1
3 i i 4 4 ae ae i 4 4 4 a 4 a

2 2 2 3 i i . 3 4a 2 2 2 2 2 2a
积分存在的 条件及计算
Cauchy积分定理
复合 闭路 定理
Cauchy 积分公式 高阶导数 公式
数学学院
第四章小结
n 为复常数
n n 1

n 为函数 f n ( z )
复数项级数
复数列
收敛半径的计算 函数项级数
收敛条件
充 要 条 件
收敛半径R
运算与性质
绝 对 收 敛 条 件 收 敛
数学学院
例13 设函数 f ( z ) 在分段光滑曲线 C 及其内部解析, 且在 C 上无零点,则 1 f ( z ) dz N , 2 i C f ( z ) 其中 N 表示 f ( z ) 在 C 的内部零点的总数。 (约定k级零点按k个零点计算).

复变函数与积分变换答案-第6章共形映射

复变函数与积分变换答案-第6章共形映射

第六章 共形映射习题详解1、(1)21,2则'=+=w z w z ;伸缩率()22'==w i i ,旋转角()2'=A r g wi π;伸缩率()22'-=-=w i i ,旋转角()2'-=-Argw i π;(2)4=w z,则34'=w z ,伸缩率(1)4'=w ,旋转角()10'=Argw ;伸缩率()()()3(1)41421882'+=+=+=-=w i ii i i ()314'+=Argw i π。

2、21365,66,16w z z w z z '=--=-->部分被放大了,116z -<部分被缩小了。

3、43,41,w z z w z '=+=+具有伸缩率与旋转角不变性。

4、(1)1232,,1===-z z i z 分别映射成1233,1,0,w i w w =-=-=由30+32121::10111得+---+==++----w i i z zw i w z i i z; (2)123,1,0=∞==z z z 分别映射成1230,1,,w w w ==-=∞由-01111::11101得==-+--w w w z z; (3)1232,0,1===z z z 分别映射成1231,1,,w w w =-==∞由112121::110101得+--==----w z w w z z; (4)1230,,2===-z z i z 分别映射成1233,,1,w i w i w ===由3130206::1232得------==------w i i z z iw w i i z i i iz 。

5、由分式的分子与分母同乘以(或除以)非零复数后这些值不变化得:把系数,,,a b c d 加以整合有1ad bc -=。

6、(1)设(),az b f z cz d +=+由0()(0)0,()10,1,0()a b a i bf f i i i c d c i d ⋅+⋅-+=-=-==-⋅+⋅-+得解之0,2ab c d ===,故2();11122z z f z z z ==++(2)设(),az b f z cz d +=+由1(0)1,()(42)5==+f f i i ,得 ()0()11,420()5⋅+⋅+==+⋅+⋅+a b a i b i c d c i d ,解之()()11,(42)()424255=+=++=-++⎡⎤⎣⎦b d ai d i ci d d c i c d 05420,154222=⎧=+=⎧⎧⎪⇒⇒⇒⎨⎨⎨=-=-=-⎩⎩⎪⎩a a c d a d d c d c c d故 2()22==--+d f z dzz d 。

浙江大学宁波理工学院复变函数与积分变换-第6章(傅里叶变换)

浙江大学宁波理工学院复变函数与积分变换-第6章(傅里叶变换)
n
cn

1 T
T
2 T
2
fT (t)e jn0t dt

1 T
T
2 T
fT (t)e jntdt, n 0, 1, 2, 3,...
2
这里n n0.这样傅里叶级数可写为:
傅里叶级数的复指


fT (t) c0 (cne jnt cne jnt )
cne jnt .
数形式。称为连续
n1
信息科n学 与工程学院傅里叶级数变换
SCHOOL OF INFORMATION SCIENCE AND ENGINEERING
复变函数与 积分变换
§6.1 傅里叶变换的概念
傅里叶级数
傅里叶级数的物理含义
在傅里叶级数的三角形式fT
(t)

a0 2
1829年狄利克雷第一个给出了收敛条件。
信息科学与工程学院
SCHOOL OF INFORMATION SCIENCE AND ENGINEERING
复变函数与 积分变换
§6.1 傅里叶变换的概念
傅里叶级数
傅里叶级数的三角形式
[定理]设周期为T的实值函数fT
(t
)在[
T 2
,
T 2
]上满足狄利克雷条件:(1)连续或只有
在复变函数各章节中 采用i作为虚数单位, 而在积分变换中一般 采用j作为虚数单位
信息科学与工程学院
SCHOOL OF INFORMATION SCIENCE AND ENGINEERING
复变函数与 积分变换
§6.1 傅里叶变换的概念
傅里叶级数
傅里叶级数的复指数表示
1 T

复变函数复习题第6章共形映射

复变函数复习题第6章共形映射

105第6章 保角映射6.1 分式线性映射导数的几何意义是保角映射的理论基础.6-1 映射2w z =在i z =-处的伸缩率k 与旋转角α是( ).(A )π1,2k α==(B )π2,2k α==- (C )π1,2k α==- (D )π2,2k α==解 i i π||2,Arg ()|.2z z k w f z α=-=-''====- 选(B ).平移变换加伸缩反射得相似图形,相似比即||w '.6-2 在映射1w z=下,将|1|1z -<映射为( ).(A )右半平面0u > (B )下半平面0v < (C )半平面12u > (D )12v <- 解1 221i i x y w u v z x y -===++ 2222,xyu v x y x y -==++ 而 2|1|1z -<,即222x y x +<,故 221.2x u x y=>+ 选(C ). 解2 1w z =是分式线性变换,具有保圆性.而|1|1z -=,将0z =变到,2w z =∞=变到1,1i 2w z ==+变到1i 2w +=,故1w z =将圆变为直线12u =,而圆心1z =变到112w =>,故1w z=将|1|1z -<变为半平面12u >. (C ). 6-3 映射1w z=将Im()1z >的区域映射为( ).(A )Im()1w < (B )Re()1w < (C )圆2211()22u v ++< (D )2211()22u v ++>解 由1w z =的保圆性,知1w z=将1y =映射为直线或圆,由z =∞映射为0,1i z =+,映射为1i,1i 2w z -==-+映为1i2--知,将Im()1z =映射为w 平面上的圆: 2211()22u v ++=图6-1而2i z =映射为11i 2i 2=-.故1w z=将Im()1z >映射为圆内. 选(C )1066-4 求将圆||2z <映射到右半平面,且(0)1,arg (0)π/2w w '==的分式线性映射.解 令ax b w z b +=+,则2()ab b w z b -'=+.由πarg (0)2w '=,可令 21(0)i ab b a w b b--'===,得1i a b =+,于是 (1i )b z bw z b++=+.由于圆||2z =应映射为虚轴,故又令(2)i w =得22i 2i i b b b ++=+,解得2(1i)2i 1+ib --== 于是 22i2iw z -+=+(这时圆上点2i z =-映射为∞点,故满足所求). 6-5 求把上半平面Im()0z >映射成单位圆||1w <的分式线性映射,且满足条件(1)()0,(1)1w i w =-=; (2)1(0)1,().2w w i ==解 (1)令z iw cz d-=+ 1i(1)1w c d---==-+,即1i c d --=-+ 令z =∞时,i w =-,得i c =,1d =-,于是得到一个满足要求的映射ii 1z w z -=- (2)由(0)1w =,可令az bw z b+=+ 更令()1w ∞=-,得1a =-,更由1(i)2w =得2(i )i b b -+=+故3i b =-,从而3i3iz w z --=- 要求||1z =时||1w =,故取212z w z λ-=-时,||1,λλ=也可写作i e θ只要定θ即可. 6-6 求将上半平面映射为单位圆||1w <的分式线性变换.解 设az b w cz d +=+,将I m ()0z >映射为||1w <,则它将bz a =-映为圆心0w =.而将b z a-=-映为∞,记,b b a aαα-=-=-,而有dc α-=,故变换为.a z w c z αα-=- 由于0z =变到||1w =上一点,即||1a c =,记i e acθ=, 则 i e z w z θαα-=-(其中Im()0α>). θ是待定实数.1076-7 求把上半平面Im()0z >映射成单位圆||1w <的分式线性映射,并满足条件:(1)(i)0;(1)1f f =-=; (2)(i)0,arg (i)0f f '==; (3)(1)1,(i)f f ==解 (1)设i i e i z w z θ-=+,于是i 1i e 11i θ--=-+即i πe i()2θθ= 所求映射为 i i+iz w z -=. (2)设映射为i ie +iz w z θ-= i 22i()e (+i)w z z θ'=故πi()21π(i)e ,22w θθ-'=-=所求映射为 ii iz w z -=+ (3)设i e z w z θαα-=- 由(1)1w =得i i e (1)1(i )(i )θθαααα-=--=-令x iy α=+,上两式相比得)(1)()(1)i αααα--=-- (1)取共轭(i )(1)()(1)i αααα--=-- 上两式两边相乘得225|(1)i ||(1)i |x y x y -+-=-++解得 2231x y y +=- (2) 将(1)式乘开,比较实部与虚部可得1)(1)1)x y -= (3)及221)()1)1)x y x y +=+ (4) 将(2)代入(4),消去22x y +后解得:2,3y x ==, 于是i 21i3e θ==5=12i)3=108 所求映射i )3w =.6-8 求将单位圆||1z <映射为单位圆||1w <的分式线性映射.解 设所求的分式线性变换把||1z <内的点α映射为0w =,那么,它将1α即与α关于||1z =的对称点映射为∞,故所求的映射为1/1z z w z z ααλλααα--==-+-+ 设1z =对应于||1w =上某点,则有11||||1αλαλαα-==-,故i e θλα= 即 i e (||1,1z w zθααθα-=<-是实数) 这时 i 21()e(1)w z z θααα-'=-i 1()e 1w θααα'=-故θ是z α=点变换时的旋转角 同样,将z 平面上||1z <映射为w 平面上||1w >的分式线性变换是 i e (||1,1z w zθααθα-=>-是实数) 6-9 求将右半平面Re()0z >映射为单位圆||1w <的分式线性映射.解1 设z bw z dλ+=+,它将z b =-映为0w =点,而将z d =-映为w =∞点.记a b =-,则Re()0α>,由对称性,()d α-=-.因此,z w z αλα-=+,且|(0)|||||1w αλλα-===,故i e θλ=得i e (Re()0,z w z θααθα-=>+是实数). 解2 由6-13题,先作旋转i z ζ=,将右半平面旋转为上半平面,于是将Im()0ζ>变为||1w <的映射是(见6-13题)i e (Im()0)w θζββζβ-=>- 故 i i i i e e i i z z w z z θθββββ-+==-+ 记 i βα=-,则i (i )ββα=-=而Re()0α>i e z w z θαα-=+与解1的结果同. 利用0w =与w =∞两点是关于两个同心圆皆对称的点而有保对称性.从而知12,z z 皆是实数,及对二圆都有对称性,从而解出1z 和2z . 6-10 求一分式线性映射,把由||9z >与|8|16z -<所确定的区域映射为w 平面上的同心圆环:||1w <与||w r > (01).r <<解 本题关键在设12()0,()w z w z ==∞,由于0、∞关于两个同心圆||1w =与||w r =皆对称;故1z 与2z 应同时与|3|9z -=及|8|16z -=皆对称.从而知12,z z 应在此二圆圆心的联线上,109即1z 与2z 皆是实数,且有221212(3)(3)9,(8)(8)16z z z z --=--=即 212123()99z z z z -+=- 2212128()168z z z z -+=- 得121224,0z z z z +=-=,取120,24z z ==-.则 24zw z λ=+ 由于0z =在|3|9z -<内部,故此映射将|3|9z -=映为||w r =,而将|8|16z -=映为||1w =即 i i 2816e ,e 24zz w z ϕθ=+=+ 取1224,0z z =-=,则24z w zλ+= 这时,由124z =-在|8|16z ->内,而0w =在||w r <内,故此映射将|8|16z -=映为||w r =而将|3|9z -=映为||1w =,即令i 39e z ϕ=+便应有i i 279e |||| 1.3+9e w ϕϕλ+==故i 11||,e 33θλλ==所求映射为i 24e 3z w zθ+=. 6.2 几个初等函数所构成的映射按要求一步一步变,注意每一步的要求.6-11 试将由||1z <及|1|1z -<所确定的区域保角地映射为上半平面. 解 如图6.2,我们采取如下步骤作映射.图6.2(1)作分式线性映射,使12映射于原点,而12映射为w =∞点.110 即1ζ=(2)令321ζζ=,则映射成不含2ζ的负实半轴的全平面,22π4π.ϕ≤<(3)令1/232ζζ=,则映射为下半平面.(4)令3w ζ=-,则映射为上半平面,故此映射为3/2w =-6-12 试将由Im()1,||2z z ><所确定的区域保角地映射为上半平面. 解 如图6.3,分以下步骤: (1)将弓形域映射为角形域1ζ=(2)321ζζ=映射为下半平面. (3)2w ζ=-,即为所求也就是3w =-图6.36-13 求把单位圆外部||1z >,且沿虚轴1y >有割痕的域映射为上半平面的一个保角映射.解 分以下步骤:(1)作分式线性映射,将单位圆外部映射为半平面,并使割痕转到实轴,即1i+iz z ζ-=(2)平方且反射,使割痕到22i (1,0),i z z ζ-⎛⎫-=- ⎪+⎝⎭(3)平移后开方得122(1)w ζ=+111即 1/22i 1i z w z ⎡⎤-⎛⎫=-⎢⎥⎪+⎝⎭⎢⎥⎣⎦为所求映射.6-14 将图6.4z 平面中阴影部分所示区域,即由Re()1,||1z z >->所确定区域映射为上半平面.解 分以下步骤:(1)作分式线性映射111z z ζ-=+,则所给域映射为10Re()1ζ<<; (2)旋转伸长,即令21πi ζζ=,得条形域20Im()πζ<<;(3)作指数映射i e w ϕ=即得上半平面.即映射为1i π1ez z w -+=图6.46-15 将如图6.5所示的z 平面区域,即由||2,|1|1z z <->所确定的区域,映射为上半平面.解 (1)作分式线性变换:12zz ζ=-,将|1|1z -=映射为1Re()0ζ=,而将||2z =映射为11Re()2ζ.由此,将已知域映射为带状域.(2)旋转伸缩:212πi ζζ=.映射为20Im()πζ<<(3)取指数函数的映射2e w ζ=便是本题所求,即2πi2ez z w -=.112图6.56-16 将沿虚轴有割痕从0z =至2i z =的上半平面,保角地映射为上半平面.解 (1)将上半平面映射为全平面后并平移,使割痕位于实轴的10ζ=至14ζ=处.214z ζ=+.(2)开方使割痕好似被展平在实轴的(2,2)-上:121w ζ=.即 21/2(4)w z =+.(见图6.7)图6.66-17 图6.7所示的z 平面上单位圆||1z <中有割痕:沿实轴从0z =至1z =的区域,试将其保角地映射为半平面.解(1)开方将圆映射为半圆,割痕仍在x 轴上:121z ζ=; (2)作分式线性映射,将半圆映射为1/4平面:12111ζζζ+=-+; (3)平方22w ζ=即2.w =113图6.76-18 将图6.8所示,由πRe()0,0Im()2z z ><<确定的z 平面上的区域,保角映射为上半平面.解 (1)将其旋转伸缩于第4象限:12z ζ=-(2)取指数函数:12e ζζ=将1ζ中的区域映射为半圆域:222||e 1,Arg 0x ζπζ-=<<< (3)作分式线性映射:23211ζζζ-=+ 将半圆映射为1/4平面.(4)令23w ζ=即为所求的映射,即22e 1e .e 1z z --⎛⎫-= ⎪+⎝⎭图6.86-19 求把实轴上有割痕:112x ≤<的单位圆||1z <映射为||1w <的一个映射.解 (1)令112112z z ζ-=-,使割痕在10Re()1ζ≤<上;114 (2)作2ζ= (3)再作23211ζζζ+=-,将半圆映射为3()ζ的I 象限部分; (4)作243ζζ=,便将此映射为上半平面; (5)最后将上半平面映为单位圆:(见图6.9)44i i w ζζ-=+经归纳223422224322i i [(1)/(1)]i i i [(1)/(1)]i w ζζζζζζζζ--+--===+++-+==图6.96-20 求把半带形域ππRe(),Im()022z z -<<>,映为上半平面Im()0w >的映射()w f z =,使π()1,(0)0.2f f ±=±=解 (1)作旋转与平移:1πi i 2z ζ=+,使之映为1ζ平面的半带形域:110Im()π,Re()0.ζζ<<<(2)作指数映射:12e ζζ=,将之映为2ζ平面上的半圆域:22||1,Im()0;ζζ<>(3)作分式线性映射:23211ζζζ+=-,将半圆域映为3ζ平面第1象限; (4)243ζζ=,将之映为4ζ的上半平面,只是未满足π()12f ±=±及(0)0f =的条件;(5)由上半平面映为上半平面,且∞映为1,0-点映为1及1-映为0.即得:4411w ζζ+=-(见图6.10)归纳222223222232211111121111wζζζζζζζζ⎛⎫++ ⎪-++⎝⎭===--⎛⎫+- ⎪-⎝⎭1111ππ(i i)i i22211e e e e e222ez zζζζζ-++-+++=-=-=-i ie esin2z zz-+==,为所求的映射.图6.10115。

复变函数课后习题讲解

复变函数课后习题讲解

e 2 k (cos ln 3 i sin ln 3), (1 i )i eiLn (1i ) e e
1 ( 2 k ) 4
k 0, 1, 2, e
i ln 2 ( 2 k ) 2 4
i[ln 1 i ] i (arg(1 i ) 2 k )
2
2
15.求Ln(i),Ln(3 4i)和它们的主值。
解 Ln(i ) Ln i i (arg(i ) 2k ) i (

2
2k )
1 i (2k ), k 0, 1, 2, 2 i ln(i ) ln i i arg(i ) 2 Ln(3 4i ) ln 3 4i i[arg(3 4i ) 2k ] 4 ln 5 i[( arctan ) 2k ] 3 4 ln 5 i[(arctan (2k 1) )], k 0, 1, 2, 3 4 ln(3 4i) ln 3 4i i arg(3 4i ) ln 5 i ( arctan ) 3

3 i
0
z 2 dz z 2 dz z 2 dz z 2 dz z 2 dz.
0 i c3 c4
i
3 i
C3 : z it 0 t 1 ; C4 : z 3t i 故
0 t 1 ,
26 i 3

3 i
0
z dz t idz 3t i 3dt 6
1 i t 1 i 2t dt= 1 i t 2 i 2t 3 dt
0 0
1 5 1 i = 1+i i. 6 6 3 3

复变函数论习题及答案

复变函数论习题及答案

第一章习题1.设12z -=,求||z 及Arg z .2.设12z z i ==,试用指数形式表 z 1 z 2及12z z .3.解二项方程440(0).z a a +=> 4.证明2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义。

5.设z 1、z 2、z 3三点适合条件: 1231230 |z ||||| 1.z z z z z ++=++=及试证明z 1、z 2、z 3是一个内接于单位圆周||1z =的正三角形的顶点。

6.下列关系表示的点z 的轨迹的图形是什么?它是不是区域? (1)1|212|||,()z z z z z z -=-≠;(2)|||4|z z ≤-;(3)111z z -<+;(4)0arg(1) 2Re 34z z π<-<≤≤且;(5)|| 2 z >且|3|1z ->; (6)Im 1 ||2z z ><且;(7)||2 0arg 4z z π<<<且;(8)131 2222i i z z ->->且.7.证明:z 平面上的直线方程可以写成 .az az c += (a 是非零复常数,c 是实常数)8.证明:z 平面上的圆周可以写成0Azz z z C ββ+++=.其中A 、C 为实数,0,A β≠为复数,且2||.AC β> 9.试证:复平面上的三点1,0,a bi a bi +-+共直线。

10.求下列方程(t 是实参数)给出的曲线: (1)(1)z i t =+; (2)cos sin z a t ib t =+;(3)i z t t =+; (4)22i z t t =+.11.函数1w z =将z 平面上的下列曲线变成w 平面上的什么曲线(,z x iy w u iv =+=+)?(1)224;x y +=(2)y x =;(3)x = 1; (4)( x -1)2+y 2=1. 12.试证:(1)多项式1010()(0)n n n p z a z a z a a -=+++≠在z 平面上连续;(2)有理分式函数101101()n n nm m m a z a z a f z b z b z b --+++=+++(000,0a b ≠≠)在z 平面上除分母为的点外都连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i
R : z Re


2


2
5月26日
及虚轴上从Ri到 Ri的有向线段所构成,
于是P( z)的零点全在左半平面 Re z 0内的充要条件是
N ( f , CR ) 0
R
R
R成立,
故 0 lim C arg P( z )
lim R arg P( z ) lim ( R R ) arg P(iy )
1 1 ( N ( f , C ) P( f , C )) (10 0) 1. 10 10
二、辐角原理
1. 对数留数的几何意义 围线C : z (t ), t , ( ) ( ),
经变换w f ( z)的像为
: w f ( (t )) (t ), t , ( ) ( );
时f ( z)的辐角改变量, 则C arg f ( z)一定是2的整数倍,且
1 f ( z ) f ( z) dz 2πi C
1 f ( z ) 1 f ( z) dz 2 C arg f ( z ). 2πi C
2.辐角原理
在定理6.9条件下, f ( z )在周线C内部的零点 个数与极点个数之差, 等于当z沿C正向绕行一周 后, arg f ( z )的改变量C arg f ( z )除以2 , 即
1 N ( f , C ) P( f , C ) C arg f ( z ). 2
注1 若f ( z)在C上及C内解析, 且f ( z)在C上不为零, 则
1 f ( z ) 1 N ( f , C) C arg f ( z ) ( f ( z) dz) 2πi C 2
R R

R arg P( z) arg a0 z n (1 g( z)) R
R arg a0 z n arg(1 g( z))
R
a1 z n1 an 其中g ( z ) , n a0 z
在R 时g ( z)沿R一致趋于零. 所以 lim R arg(1 g ( z )) 0,
2 2 2 0 6 .

C arg f ( z ) 6 3 N ( f , C) 2 2
注2 若定理6.9条件(2)减弱为" f ( z)连续到边界C,
且沿C, f ( z) 0", 则辐角原理仍成立 ' ' 在C内取C , C 内含f ( z)在C内部全部零点和极点, 则
N ( f , C ) P( f , C )
N ( f , C ' ) P( f , C ' )

C ' arg f ( z ) 2
C arg f ( z ) 1 f ( z ) f ( z) dz 2 2πi C
例3
设n次多项式
P( z ) a0 z a1 z
的奇点.
f ( z ) 引理6.4 (1) 设a为f ( z )的n阶零点, 则a必为 f ( z) f ( z ) 的一阶极点, 并且 Re s n; z a f ( z)
f ( z ) 的一阶极点, 并且 Re s m. z b f ( z) 证明 (1) 若a为f ( z)的n阶零点, 则在点a的邻域
R
另一方面又有
R arg a0 z
n

[ , ] 2 2

arg a0 R e n ,
n in
y ( )
arg P(iy) n .
三、儒歇(Rouche)定理
定理6.10 设C是一条周线,函数f ( z) 及 ( z) 满足条件 (1) 它们在C的内部均解析, 且连续到C; (2) 在C上 f ( z) ( z) ; 则函数f ( z)与f ( z) ( z)在C的内部有同样多(几阶算 几个 )的零点,即 N ( f , C ) N ( f , C ). 证明 由假设知,f ( z)及f ( z) ( z)在C内解析,
n g ( z ) n n ( z a) g ( z ) ( z a) g ( z ) za g ( z) f ( z ) n g ( z ) n g ( z ) ; f ( z) f ( z) ; za g ( z) f ( z) z a g ( z)
1 于是, 也பைடு நூலகம்足条件:沿C连续且不为零, f ( z)
1 在C的内部除可能有极点外是解析的, f ( z)
1 在D内部至多也只有有限个零点. f ( z)
f ( z)在C内部至多只有有限个极点。 从而,f ( z)在C内部至多只有有限个零点和极点。
定理6.9
设C是一条周线, f ( z)符合条件
(1) f ( z)在C的内部是亚纯的,
(2) f ( z)在C上解析且不为零,
1 f ( z ) 则有 f ( z) dz N ( f , C ) P( f , C ). 2 i C
f ( z )在C内 f ( z )在C内 的零点个数 的极点个数
注意: m级的零点或极点算作m个零点或极点.
n
n 1
an
(a0 0)
在虚轴上无零点, 试证它的零点全在左半平面 Re z 0 内的充要条件是 arg P(iy) n .
y ( )
即当点z 自下而上沿虚轴从点走向 n 点的过程中, P( z )绕原点转 圈. 2
Ri
CR
o -Ri ΓR
证明
令周线CR由

设 lim ank a lim f (ank ) 0 f (a ),
k k
由于f ( z)沿C连续且不为零, 所以a D.
由唯一性定理在D上有f ( z) 0, 矛盾.
f ( z)在D内部至多只有有限个零点.
1 (ii) 根据零点与极点的互为倒数关系,考虑 , f ( z) 由于f ( z)沿C连续且不为零,
证明 由上命题可知, f ( z)在C的内部至多只有有限个零点和极点,
设ak (k 1, 2,, p)为f ( z)在C内部的相异 零点, 其阶相应地为nk ;
设bj ( j 1, 2,, q)为f ( z)在C内部的相异 极点, 其阶相应地为mj ;
由引理6.4可知, f ( z ) 在C的内部及C上除去在C内部有一阶极 f ( z)
f ( z ) (2) 设b为f ( z )的m阶极点, 则b必为 f ( z)
内有 f ( z) ( z a) g ( z), 其中g ( z)
n
在点a的邻域内解析, 且于g (a) 0.于是
( z) n( z a)n1 g ( z) ( z a)n g ( z), f
其中h( z)在点b的邻域内解析, 且h(b) 0.于是
mh( z ) h( z ) f ( z ) m 1 ( z b) ( z b) m
m h( z ) h( z ) h( z ) m h( z ) f ( z) f ( z ), m m z b ( z b) h( z ) ( z b) z b h( z )
w0 f ( z0 )
C
z0

w f ( z )
Arg w
1 dw 1 (t ) 1 f ( (t )) dt (t )dt (t ) f ( (t )) 2 i w 2πi 2πi
1 由于 沿任意一条围绕原点的周线正向积分为2 i, w 负向积分为 2 i, 任意一不围绕原点的周线积分为0. 1 dw 从而 w 为围绕原点的正向圈数与负向圈 2 i 数的代数和 绕原点的圈数.用C arg f ( z)表示当z沿C一周
f ( z ) 称为f ( z)关于曲线的对数留数. [ln f ( z )] f ( z) 说明: 1) 对数留数即函数f(z)的对数的导数
f ( z ) 2) 函数 f(z)的零点和奇点都可能是 f ( z)
f ( z ) 在C内孤立奇点处的留数的代数和; f ( z)
f ( z ) m h( z ) ; f ( z) z a h( z )
h( z ) 由于 在点b的邻域内解析, h( z ) f ( z ) f ( z ) 故b必为 的一阶极点,且 Rebs m. z f ( z) f ( z)
命题
设C是一条周线, f ( z)符合条件
nk (m j )
q
k 1
p
j 1
N ( f , C ) P( f , C ).
1 z9 例1 计算积分 z 4 z10 1 dz. 2 i 解 设f ( z ) z10 1,
则f ( z)在 z 4上解析且不等于零,

f ( z)在 z 4内部解析, 有10个零点, 9 10 1 z 1 1 ( z 1) z 4 z10 1 dz 10 2 i z 4 z10 1 dz 2 i
例2 设f ( z) ( z 1)( z 2)2 ( z 4)
试验证辐角原理. 解
C: z 3
f ( z)在z平面解析, 且在C内有
一阶零点z 1, 二阶零点z 2, N ( f , C ) 3,
当z沿C转一周时,有
C arg f ( z) C arg( z 1) C arg( z 2)2 C arg( z 4)
点ak (k 1, 2,, p)及bj ( j 1, 2,, q)外均解析,
故由留数定理及引理6.4得,
p f ( z ) q f ( z ) ( z ) 1 f f ( z) dz Reaks f ( z) Rebjs f ( z) z 2 i C k 1 j 1 z
相关文档
最新文档