计量经济学-庞皓-第三版课后答案
庞皓计量经济学第三版课后习题及答案 顶配

第二章练习题及参考解答表中是1992年亚洲各国人均寿命(Y)、按购买力平价计算的人均GDP(X1)、成人识字率(X2)、一岁儿童疫苗接种率(X3)的数据表亚洲各国人均寿命、人均GDP、成人识字率、一岁儿童疫苗接种率数据(1)分别分析各国人均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的数量关系。
(2)对所建立的回归模型进行检验。
【练习题参考解答】(1)分别设定简单线性回归模型,分析各国人均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的数量关系:1)人均寿命与人均GDP 关系Y i 1 2 X1i u i估计检验结果:2)人均寿命与成人识字率关系3)人均寿命与一岁儿童疫苗接种率关系(2)对所建立的多个回归模型进行检验由人均GDP、成人识字率、一岁儿童疫苗接种率分别对人均寿命回归结果的参数t 检验值均明确大于其临界值,而且从对应的P 值看,均小于,所以人均GDP、成人识字率、一岁儿童疫苗接种率分别对人均寿命都有显着影响.(3)分析对比各个简单线性回归模型人均寿命与人均GDP 回归的可决系数为人均寿命与成人识字率回归的可决系数为人均寿命与一岁儿童疫苗接种率的可决系数为相对说来,人均寿命由成人识字率作出解释的比重更大一些为了研究浙江省财政预算收入与全省生产总值的关系,由浙江省统计年鉴得到以下数据:表浙江省财政预算收入与全省生产总值数据的显着性,用规范的形式写出估计检验结果,并解释所估计参数的经济意义(2)如果2011 年,全省生产总值为32000 亿元,比上年增长%,利用计量经济模型对浙江省2011 年的财政预算收入做出点预测和区间预测(3)建立浙江省财政预算收入对数与全省生产总值对数的计量经济模型,. 估计模型的参数,检验模型的显着性,并解释所估计参数的经济意义【练习题参考解答】建议学生独立完成由12对观测值估计得消费函数为:(1)消费支出C的点预测值;(2)在95%的置信概率下消费支出C平均值的预测区间。
计量经济学 庞皓 第三版课后答案

第二章简单线性回归模型2.1(1)①首先分析人均寿命与人均GDP的数量关系,用Eviews分析:Dependent Variable: YMethod: Least SquaresDate: 12/27/14 Time: 21:00Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 56.64794 1.960820 28.88992 0.0000X1 0.128360 0.027242 4.711834 0.0001R-squared 0.526082 Mean dependent var 62.50000 Adjusted R-squared 0.502386 S.D. dependent var 10.08889 S.E. of regression 7.116881 Akaike info criterion 6.849324 Sum squared resid 1013.000 Schwarz criterion 6.948510 Log likelihood -73.34257 Hannan-Quinn criter. 6.872689 F-statistic 22.20138 Durbin-Watson stat 0.629074 Prob(F-statistic) 0.000134有上可知,关系式为y=56.64794+0.128360x1②关于人均寿命与成人识字率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:10Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 38.79424 3.532079 10.98340 0.0000X2 0.331971 0.046656 7.115308 0.0000R-squared 0.716825 Mean dependent var 62.50000 Adjusted R-squared 0.702666 S.D. dependent var 10.08889 S.E. of regression 5.501306 Akaike info criterion 6.334356 Sum squared resid 605.2873 Schwarz criterion 6.433542 Log likelihood -67.67792 Hannan-Quinn criter. 6.357721 F-statistic 50.62761 Durbin-Watson stat 1.846406 Prob(F-statistic) 0.000001由上可知,关系式为y=38.79424+0.331971x2③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:14Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 31.79956 6.536434 4.864971 0.0001X3 0.387276 0.080260 4.825285 0.0001R-squared 0.537929 Mean dependent var 62.50000Adjusted R-squared 0.514825 S.D. dependent var 10.08889S.E. of regression 7.027364 Akaike info criterion 6.824009Sum squared resid 987.6770 Schwarz criterion 6.923194Log likelihood -73.06409 Hannan-Quinn criter. 6.847374F-statistic 23.28338 Durbin-Watson stat 0.952555Prob(F-statistic) 0.000103由上可知,关系式为y=31.79956+0.387276x3(2)①关于人均寿命与人均GDP模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。
计量经济学庞皓第三版课后答案解析

第二章 简单线性回归模型2.1(1) ①首先分析人均寿命与人均GDP 的数量关系,用Eviews 分析:Dependent Variable: YMethod: Least SquaresDate: 12/27/14 Time: 21:00Sample: 1 22Included observations: 22 Variable Coefficient Std. Error t-Statistic Prob. C 56.64794 1.960820 28.88992 0.0000X1 0.128360 0.027242 4.711834 0.0001 R-squared 0.526082 Mean dependent var 62.50000AdjustedR-squared 0.502386 S.D. dependent var 10.08889S.E. of regression 7.116881 Akaike info criterion 6.849324Sum squared resid 1013.000 Schwarz criterion 6.948510Log likelihood -73.34257 Hannan-Quinncriter. 6.872689F-statistic 22.20138 Durbin-Watson stat 0.629074Prob(F-statistic) 0.000134 有上可知,关系式为y=56.64794+0.128360x 1②关于人均寿命与成人识字率的关系,用Eviews 分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:10Sample: 1 22Included observations: 22 Variable Coefficient Std. Error t-Statistic Prob. C 38.79424 3.532079 10.98340 0.0000X2 0.331971 0.046656 7.115308 0.0000 R-squared 0.716825 Mean dependent var 62.50000AdjustedR-squared 0.702666 S.D. dependent var 10.08889S.E. of regression 5.501306 Akaike info criterion 6.334356Sum squared resid 605.2873 Schwarz criterion 6.433542Log likelihood -67.67792 Hannan-Quinncriter. 6.357721F-statistic 50.62761 Durbin-Watson stat 1.846406Prob(F-statistic) 0.000001 由上可知,关系式为y=38.79424+0.331971x 2③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews 分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:14Sample: 1 22Included observations: 22 Variable Coefficient Std. Error t-Statistic Prob. C 31.79956 6.536434 4.864971 0.0001X3 0.387276 0.080260 4.825285 0.0001 R-squared 0.537929 Mean dependent var 62.50000AdjustedR-squared 0.514825 S.D. dependent var 10.08889S.E. of regression 7.027364 Akaike info criterion 6.824009Sum squared resid 987.6770 Schwarz criterion 6.923194Log likelihood -73.06409 Hannan-Quinncriter. 6.847374F-statistic 23.28338 Durbin-Watson stat 0.952555Prob(F-statistic) 0.000103 由上可知,关系式为y=31.79956+0.387276x 3(2)①关于人均寿命与人均GDP 模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。
计量经济学 - 庞皓 - 第三版课后答案

计量经济学 - 庞皓 - 第三版课后答案第二章简单线性回归模型 2.1(1)①首先分析人均寿命与人均GDP的数量关系,用Eviews分析: Dependent Variable: Y Method: Least Squares Date: 12/27/14 Time: 21:00 Sample: 1 22 Included observations: 22Variable Coefficient Std. Error t-Statistic Prob. C 56.64794 1.960820 28.88992 0.0000 X1 0.128360 0.027242 4.711834 0.0001 R-squared 0.526082 Mean dependent var 62.50000Adjusted R-squared 0.502386 S.D. dependent var 10.08889 S.E. of regression 7.116881 Akaike info criterion 6.849324 Sum squared resid 1013.000 Schwarz criterion 6.948510 Log likelihood -73.34257 Hannan-Quinn criter. 6.872689 F-statistic 22.20218 Durbin-Watson stat 0.629074 Prob(F-statistic) 0.000134有上可知,关系式为y=56.64794+0.128360x1②关于人均寿命与成人识字率的关系,用Eviews分析如下: Dependent Variable: Y Method: Least Squares Date: 11/26/14 Time: 21:10 Sample: 1 22 Included observations: 22Variable Coefficient Std. Error t-Statistic Prob. C 38.79424 3.532079 10.98340 0.0000 X2 0.331971 0.046656 7.115308 0.0000 R-squared 0.716825 Mean dependent var 62.50000Adjusted R-squared 0.702666 S.D. dependent var 10.08889 S.E. of regression 5.501306 Akaike info criterion 6.334356 Sum squared resid605.2873 Schwarz criterion 6.433542 Log likelihood -67.67792 Hannan-Quinn criter. 6.357721 F-statistic 50.62761 Durbin-Watson stat 1.846406 Prob(F-statistic) 0.000001由上可知,关系式为y=38.79424+0.331971x2③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews分析如下:Dependent Variable: Y Method: Least Squares Date: 11/26/14 Time: 21:14 Sample: 1 22 Included observations: 22Variable Coefficient Std. Error t-Statistic Prob. C 31.79956 6.536434 4.864971 0.0001 X3 0.387276 0.080260 4.825285 0.0001 R-squared 0.537929 Mean dependent var 62.50000Adjusted R-squared 0.514825 S.D. dependent var 10.08889 S.E. of regression 7.027364 Akaike info criterion 6.824009 Sum squared resid987.6770 Schwarz criterion 6.923194 Log likelihood -73.06409 Hannan-Quinn criter. 6.847374 F-statistic 23.28338 Durbin-Watson stat 0.952555 Prob(F-statistic) 0.000103由上可知,关系式为y=31.79956+0.387276x3(2)①关于人均寿命与人均GDP模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。
计量经济学(庞皓)课后思考题答案

思考题答案第一章绪论思考题1.1怎样理解产生于西方国家的计量经济学能够在中国的经济理论研究和现代化建设中发挥重要作用?答:计量经济学的产生源于对经济问题的定量研究,这是社会经济发展到一定阶段的客观需要。
计量经济学的发展是与现代科学技术成就结合在一起的,它反映了社会化大生产对各种经济因素和经济活动进行数量分析的客观要求。
经济学从定性研究向定量分析的发展,是经济学逐步向更加精密、更加科学发展的表现。
我们只要坚持以科学的经济理论为指导,紧密结合中国经济的实际,就能够使计量经济学的理论与方法在中国的经济理论研究和现代化建设中发挥重要作用。
1.2理论计量经济学和应用计量经济学的区别和联系是什么?答:计量经济学不仅要寻求经济计量分析的方法,而且要对实际经济问题加以研究,分为理论计量经济学和应用计量经济学两个方面。
理论计量经济学是以计量经济学理论与方法技术为研究内容,目的在于为应用计量经济学提供方法论。
所谓计量经济学理论与方法技术的研究,实质上是指研究如何运用、改造和发展数理统计方法,使之成为适合测定随机经济关系的特殊方法。
应用计量经济学是在一定的经济理论的指导下,以反映经济事实的统计数据为依据,用计量经济方法技术研究计量经济模型的实用化或探索实证经济规律、分析经济现象和预测经济行为以及对经济政策作定量评价。
1.3怎样理解计量经济学与理论经济学、经济统计学的关系?答:1、计量经济学与经济学的关系。
联系:计量经济学研究的主体—经济现象和经济关系的数量规律;计量经济学必须以经济学提供的理论原则和经济运行规律为依据;经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善。
区别:经济理论重在定性分析,并不对经济关系提供数量上的具体度量;计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容。
2、计量经济学与经济统计学的关系。
联系:经济统计侧重于对社会经济现象的描述性计量;经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据;经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据。
计量经济学第三版庞浩第七章习题答案

第七章习7.1(1)1)PCE=-216.4269+1.008106PDI2)PCE=-233.2736+0.982382PDI+0.037158PEC T -I⑵ 模 型 一 MPC=1.008106;模型 二短期 MPC=0.982382 , 长 期 MPC=0.982382心+0.037158)=0.94727.2(1)a 0馆=a 0+ a.j + a 2令旳=a o + 2a-i +4a 2B 3= a 0 + 3a-| + 9a 2B 4= a 0+ 4% +1&2模型变形为 Y^= a + a 0Z 0t + a -|Z 1t + a 2Z 2t + u iZ °t = X t + X t-1+ X t_2+ X t-3+ X其中乙 t = X t-1 + 2X t-2+3X t-3+ 4X t-4Z 2t =X t-1+4X t-2+9X t-3+16X t-4%= 0.891012 Y t = -35.49234+0.891012X t +0.3255X t 「 -0.3123X t-2-0.17917X t-3 -0.11833X t-4 B 尸-0.118337.3/• r 、r * * ** (1)估计 Y t = a + B °X t + B 1Y t-1 + u t 1 〕根据局部调整模型的参数关系,有 a = S a , B = 3 B , B 1=1-3, u t =3 U t3 = 1-B *1 = 1-0.271676 = 0.728324局部调整模型估计结果为: Y *t = 20.738064+ 0.864001 X t2〕 经济意义:销售额每增加1亿元,未来预期最正确新增固定资产投资增加 0.864001亿元 3〕 运用德宾h 检验一阶自相关:在0.05显着水平下,临界值h ^ =1.96,因为h=1.29728 v h^ =1.96,接受原假设,模型 不存在一阶自相关性。
计量经济学(庞皓)课后思考题规范标准答案

2.4为什么在对参数作最小二乘估计之前,要对模型提出古典假设?
答:在对参数作最小二乘估计之前,要对模型提出古典假设。因为模型中有随机扰动,估计的参数是随机变量,只有对随机扰动的分布作出假定,才能确定所估计参数的分布性质,也才可能进行假设检验和区间估计。只有具备一定的假定条件,所作出的估计才具有较好的统计性质。
在简单线性回归中,可决系数越大,说明在总变差中由模型作出了解释的部分占的比重越大,X对Y的解释能力越强,模型拟合优度越好。对参数的t检验是判断解释变量X是否是被解释变量Y的显著影响因素。二者的目的作用是一致的。
2.7有人说:“得到参数区间估计的上下限后,说明参数的真实值落入这个区间的概率为 。”如何评论这种说法?
一般来说参数是未知的,又是不可直接观测的。由于随机误差项的存在,参数也不能通过变量值去精确计算。只能通过变量样本观测值选择适当方法去估计。
1.10你能分别举出三个时间序列数据、截面数据、面板数据、虚拟变量数据的实际例子,并分别说明这些数据的来源吗?
答:时间序列数据:中国1981年至2010年国内生产总值,可从中国统计年鉴查得数据。
庞皓计量经济学课后答案第三章

统计学2班第二次作业1、Ŷi =-151.0263 + 0.1179X 1i + 1.5452X 2iT= (-3.066806) (6.652983) (3.378064)R 2=0.934331 R 2=0.92964 F=191.1894 n=31⑴模型估计结果说明,各省市旅游外汇收入Y 受旅行社职工人数X 1,国际旅游人数X 2的影响。
由所估计出的参数可知,在假定其他变量不变的情况下,当旅行社职工人数每增加1人,各省市旅游外汇收入增加0.1179百万美元。
在嘉定其他变量不变的情况下。
当国际旅游人数每增加1万人,各省市旅游外汇收入增加1.5452百万美元。
⑵由题已知,估计的回归系数β1的T 值为:t (β1)=6.652983。
β2的T 值分为: t (β2)=3.378064。
α=0.05.查得自由度为n-2=22-2=29的临界值t 0.025(29)=2.045229因为t (β1)=6.652983≥t 0.025(29)=2.045229.所以拒绝原假设H 0:β1=0。
表明在显著性水平α=0.05下,当其他解释变量不变的情况下,旅行社职工人数X 1对各省市旅游外汇收入Y 有显著性影响。
因为 t (β2)=3.378064≥t 0.025(29)=2.045229,所以拒绝原假设H 0:β2=0表明在显著性水平α=0.05下,当其他解释变量不变的情况下,和国际旅游人数X 2对各省市旅游外汇收入Y 有显著性影响。
⑶正对H O :β1=β2=0,给定显著水性水平α=0.05,自由度为k-1=2,n-k=28的临界值F 0.05(2,28)=3.34038。
由题已知F=191.1894>F 0.05(2,28)=3.34038,应拒绝原假设H O :β1=β2=0,说明回归方程显著,即旅行社职工人数和旅游人数变量联合起来对各省市旅游外汇收入有显著影响。
2、⑴样本容量n=15 残差平方和RSS=66042-65965=77 回归平方和ESS 的自由度为K-1=2 残差平方和RSS 的自由度为n-k=13⑵可决系数R 2=TSS ESS =6604265965=0.99883 调整的可决系数R 2=1-(1-R 2)kn n --1=1-(1-0.99883)1214=0.99863 ⑶利用可决系数R 2=0.99883,调整的可决系数R 2=0.99863,说明模型对样本的拟合很好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章简单线性回归模型2.1(1)①首先分析人均寿命与人均GDP的数量关系,用Eviews分析:Dependent Variable: YMethod: Least SquaresDate: 12/27/14 Time: 21:00Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 56.64794 1.960820 28.88992 0.0000X1 0.128360 0.027242 4.711834 0.0001R-squared 0.526082 Mean dependent var 62.50000 Adjusted R-squared 0.502386 S.D. dependent var 10.08889 S.E. of regression 7.116881 Akaike info criterion 6.849324 Sum squared resid 1013.000 Schwarz criterion 6.948510 Log likelihood -73.34257 Hannan-Quinn criter. 6.872689 F-statistic 22.20138 Durbin-Watson stat 0.629074 Prob(F-statistic) 0.000134有上可知,关系式为y=56.64794+0.128360x1②关于人均寿命与成人识字率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:10Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 38.79424 3.532079 10.98340 0.0000X2 0.331971 0.046656 7.115308 0.0000R-squared 0.716825 Mean dependent var 62.50000 Adjusted R-squared 0.702666 S.D. dependent var 10.08889 S.E. of regression 5.501306 Akaike info criterion 6.334356 Sum squared resid 605.2873 Schwarz criterion 6.433542 Log likelihood -67.67792 Hannan-Quinn criter. 6.357721 F-statistic 50.62761 Durbin-Watson stat 1.846406 Prob(F-statistic) 0.000001由上可知,关系式为y=38.79424+0.331971x2③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:14Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 31.79956 6.536434 4.864971 0.0001X3 0.387276 0.080260 4.825285 0.0001R-squared 0.537929 Mean dependent var 62.50000Adjusted R-squared 0.514825 S.D. dependent var 10.08889S.E. of regression 7.027364 Akaike info criterion 6.824009Sum squared resid 987.6770 Schwarz criterion 6.923194Log likelihood -73.06409 Hannan-Quinn criter. 6.847374F-statistic 23.28338 Durbin-Watson stat 0.952555Prob(F-statistic) 0.000103由上可知,关系式为y=31.79956+0.387276x3(2)①关于人均寿命与人均GDP模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。
对于回归系数的t检验:t(β1)=4.711834>t0.025(20)=2.086,对斜率系数的显著性检验表明,人均GDP对人均寿命有显著影响。
②关于人均寿命与成人识字率模型,由上可知,可决系数为0.716825,说明所建模型整体上对样本数据拟合较好。
对于回归系数的t检验:t(β2)=7.115308>t0.025(20)=2.086,对斜率系数的显著性检验表明,成人识字率对人均寿命有显著影响。
③关于人均寿命与一岁儿童疫苗的模型,由上可知,可决系数为0.537929,说明所建模型整体上对样本数据拟合较好。
对于回归系数的t检验:t(β3)=4.825285>t0.025(20)=2.086,对斜率系数的显著性检验表明,一岁儿童疫苗接种率对人均寿命有显著影响。
2.2(1)①对于浙江省预算收入与全省生产总值的模型,用Eviews分析结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/03/14 Time: 17:00Sample (adjusted): 1 33Included observations: 33 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.X 0.176124 0.004072 43.25639 0.0000C -154.3063 39.08196 -3.948274 0.0004R-squared 0.983702 Mean dependent var 902.5148Adjusted R-squared 0.983177 S.D. dependent var 1351.009S.E. of regression 175.2325 Akaike info criterion 13.22880Sum squared resid 951899.7 Schwarz criterion 13.31949Log likelihood -216.2751 Hannan-Quinn criter. 13.25931F-statistic 1871.115 Durbin-Watson stat 0.100021Prob(F-statistic) 0.000000②由上可知,模型的参数:斜率系数0.176124,截距为—154.3063③关于浙江省财政预算收入与全省生产总值的模型,检验模型的显著性:1)可决系数为0.983702,说明所建模型整体上对样本数据拟合较好。
2)对于回归系数的t检验:t(β2)=43.25639>t0.025(31)=2.0395,对斜率系数的显著性检验表明,全省生产总值对财政预算总收入有显著影响。
④用规范形式写出检验结果如下:Y=0.176124X—154.3063(0.004072) (39.08196)t= (43.25639) (-3.948274)R2=0.983702 F=1871.115 n=33⑤经济意义是:全省生产总值每增加1亿元,财政预算总收入增加0.176124亿元。
(2)当x=32000时,①进行点预测,由上可知Y=0.176124X—154.3063,代入可得:Y= Y=0.176124*32000—154.3063=5481.6617②进行区间预测:先由Eviews分析:由上表可知,∑x2=∑(X i—X)2=δ2x(n—1)= 7608.0212 x (33—1)=1852223.473(X f—X)2=(32000— 6000.441)2=675977068.2当Xf=32000时,将相关数据代入计算得到:5481.6617—2.0395x175.2325x√1/33+1852223.473/675977068.2≤Yf≤5481.6617+2.0395x175.2325x√1/33+1852223.473/675977068.2即Yf的置信区间为(5481.6617—64.9649, 5481.6617+64.9649)(3) 对于浙江省预算收入对数与全省生产总值对数的模型,由Eviews分析结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 12/03/14 Time: 18:00Sample (adjusted): 1 33Included observations: 33 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.LNX 0.980275 0.034296 28.58268 0.0000C -1.918289 0.268213 -7.152121 0.0000R-squared 0.963442 Mean dependent var 5.573120Adjusted R-squared 0.962263 S.D. dependent var 1.684189S.E. of regression 0.327172 Akaike info criterion 0.662028Sum squared resid 3.318281 Schwarz criterion 0.752726Log likelihood -8.923468 Hannan-Quinn criter. 0.692545F-statistic 816.9699 Durbin-Watson stat 0.096208Prob(F-statistic) 0.000000①模型方程为:lnY=0.980275lnX-1.918289②由上可知,模型的参数:斜率系数为0.980275,截距为-1.918289③关于浙江省财政预算收入与全省生产总值的模型,检验其显著性:1)可决系数为0.963442,说明所建模型整体上对样本数据拟合较好。