(完整版)力-电电磁感应计算题——含答案.docx

合集下载

(完整版)电磁感应综合练习题(基本题型,含答案)

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型)一、选择题: 1.下面说法正确的是( )A .自感电动势总是阻碍电路中原来电流增加B .自感电动势总是阻碍电路中原来电流变化C .电路中的电流越大,自感电动势越大D .电路中的电流变化量越大,自感电动势越大【答案】B2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLvB .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零C .当两杆以相同的速度v 同向滑动时,伏特表读数为零D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv【答案】AC3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。

如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4C .a 1 = a 2>a 3>a 4D .a 4 = a 2>a 3>a 1【答案】C4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A图9-2图9-3图9-4图9-15.如图9-4所示,在U形金属架上串入一电容器,金属棒ab在金属架上无摩擦地以速度v向右运动一段距离后突然断开开关,并使ab停在金属架上,停止后,ab不再受外力作用。

(完整版)电磁感应综合练习题(基本题型,含答案)

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型)一、选择题: 1.下面说法正确的是( )A .自感电动势总是阻碍电路中原来电流增加B .自感电动势总是阻碍电路中原来电流变化C .电路中的电流越大,自感电动势越大D .电路中的电流变化量越大,自感电动势越大【答案】B2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLvB .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零C .当两杆以相同的速度v 同向滑动时,伏特表读数为零D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv【答案】AC3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。

如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4C .a 1 = a 2>a 3>a 4D .a 4 = a 2>a 3>a 1【答案】C4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A图9-2图9-3图9-4图9-15.如图9-4所示,在U形金属架上串入一电容器,金属棒ab在金属架上无摩擦地以速度v向右运动一段距离后突然断开开关,并使ab停在金属架上,停止后,ab不再受外力作用。

电磁感应计算题及解答讲解

电磁感应计算题及解答讲解

电磁感应计算题及解答讲解⼀、选择题1、如图所⽰,空间存在两个磁场,磁感应强度⼤⼩均为B,⽅向相反且垂直纸⾯,MN、PQ为其边界,OO’为其对称轴。

⼀导线折成变长为的正⽅形闭合回路abcd,回路在纸⾯内以恒定速度v o向右运动,当运动到关于OO’对称的位置时A.穿过回路的磁通量为零B.回路中感应电动势⼤⼩为C.回路中感应电流的⽅向为顺时针⽅向D.回路中ab边与cd边所受安培⼒⽅向相同2、如图8,在O点下⽅有⼀个具有理想边界的磁场,铜环在A点由静⽌释放向右摆⾄最⾼点B,不考虑空⽓阻⼒,则下列说法正确的是()A.A、B两点在同⼀⽔平线B.A点⾼于B点C.A点低于B点D.铜环将做等幅摆动⼆、计算题3、如图所⽰,两根质量均为m=2kg的⾦属棒垂直地放在光滑的⽔平导轨上,左右两部分导轨间距之⽐为1∶2,导轨间有⼤⼩相等但左右两部分⽅向相反的匀强磁场,CD棒电阻为AB棒电阻的两倍,不计导轨电阻,今⽤250N的⽔平⼒F向右拉CD棒,在CD棒运动0.5m的过程中,两棒上产⽣的焦⽿热共为45J,此时CD棒速率为8m/s,⽴即撤去拉⼒F,设导轨⾜够长且两棒始终在不同磁场中运动,求:(1)撤去拉⼒F瞬间AB棒速度v A;(2)两棒最终匀速运动的速度v A′和v C′。

4、如图所⽰,光滑矩形斜⾯ABCD的倾⾓为,在其上放置⼀矩形⾦属线框,的边长,的边长,线框的质量,电阻,线框通过细线绕过定滑轮与重物相连,细线与斜⾯平⾏且靠近。

重物质量,离地⾯的⾼度为。

斜⾯上区域是有界匀强磁场,⽅向垂直于斜⾯向上,已知AB到的距离为,到的距离为,到CD的距离为,取。

现让线框从静⽌开始运动(开始时刻与AB边重合),发现线框匀速穿过匀强磁场区域,求:(1)区域内匀强磁场的磁感应强度B(2)线框在通过磁场区域过程中产⽣的焦⽿热Q(3)通过计算分析画出线框从开始运动到边与CD边重合过程中线框的图象5、如图所⽰,半径为r的圆形导线框内有⼀匀强磁场,磁场⽅向垂直于导线框所在平⾯,导线框的左端通过导线接⼀对⽔平放置的平⾏的⾦属板,两极间的距离为d,板长为L。

电磁感应计算题训练及答案

电磁感应计算题训练及答案

电磁感应大题训练1.如图所示,在倾角为θ的光滑斜面上,存在着两个磁感应强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L .一个质量为m 、边长也为L 的正方形线框(设电阻为R )以速度υ进入磁场时,恰好做匀速直线运动,若当ab 边到达'gg 与'ff 中间位置时,线框又恰好做匀速运动,则(1)当ab 边刚越过'ff 时,线框加速度的值为多少?(2)求线框从开始进入磁场到ab 边到达'gg 和'ff 中点的过程中产生的热量是多少?2.如图a所示,两水平放置的平行金属板C、D相距很近,上面分别开有小孔O、O′,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动.其速度图象如图b所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O处连续不断以垂直于C板方向飘入质量为m=3.2×10-21kg、电量q=1.6×10-19C的带正电的粒子(设飘入速度很小,可视为零).在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,1B 、2B 方向如图所示(粒子重力及其相互作用不计).求(1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并飞出磁场边界MN?(2)粒子从边界MN射出来的位置之间最大的距离为多少?3.如图所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为L=1m,质量m=0.1㎏的导体棒ab,导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻R=1Ω,磁感强度B=1T的匀强磁场方向垂直于导体框架所在平面.当导体棒在电动机牵引下上升h=3.8m时,获得稳定速度,此过程中导体棒产生热量Q=2J.电动机工作时,电压表、电流表的读数分别为7V和1A,电动机的内阻r=1Ω.不计一切摩擦,g取10m/s2.求:(1)导体棒所达到的稳定速度是多少?(2)导体棒从静止到达稳定速度的时间是多少?.4.图中a1b1c1d1和a2b2c2d2为在同一竖直面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。

(完整版)电磁感应中的各种题型(习题,答案)

(完整版)电磁感应中的各种题型(习题,答案)

电磁感应中的各种题型一.电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等1.“双杆”向相反方向做匀速运动:当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例1] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

2.“双杆”同向运动,但一杆加速另一杆减速:当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例2] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。

若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少。

(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?3. “双杆”中两杆都做同方向上的加速运动。

:“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。

[例3](2003年全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

导轨间的距离l=0.20m。

电磁感应典型题目(含答案)

电磁感应典型题目(含答案)

电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。

(完整版)力-电电磁感应计算题精选——含答案,推荐文档

(完整版)力-电电磁感应计算题精选——含答案,推荐文档

1、如图(a)两相距L=0.5m的平行金属导轨固定于水平面上,导轨左端与阻值R=2Ω的电阻连接,导轨间虚线右侧存在垂直导轨平面的匀强磁场,质量m=0.2kg的金属杆垂直于导轨上,与导轨接触良好,导轨与金属杆的电阻可忽略,杆在水平向右的恒定拉力作用下由静止开始运动,并始终与导轨垂直,其v-t图像如图(b)所示,在15s时撤去拉力,同时使磁场随时间变化,从而保持杆中电流为0,求:(1)金属杆所受拉力的大小为F;(2)0-15s匀强磁场的磁感应强度大小为;(3)15-20s内磁感应强度随时间的变化规律。

2、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.3、如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L1=1m,导轨平面与水平面成θ=30角,上端连接阻值R=1.5Ω的电阻;质量为m=0.2kg、阻值r=0.5Ω的金属棒ab放在两导轨上,距离导轨最上端为L2=4m,棒与导轨垂直并保持良好接触。

整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示。

为保持ab棒静止,在棒上施加了一平行于导轨平面的外力F, g=10m/s2求:(1)当t=2s时,外力F1的大小;(2)当t=3s前的瞬间,外力F2的大小和方向;(3)请在图丙中画出前4s外力F随时间变化的图像(规定F方向沿斜面向上为正);4、如图33-11甲所示,一足够长阻值不计的光滑平行金属导轨MN、PQ之间的距离L=1.0 m,NQ两端连接阻值R=1.0 Ω的电阻,磁感应强度为B的匀强磁场垂直于导轨所在平面向上,导轨平面与水平面间的夹角θ=30°.一质量m=0.20 kg、阻值r=0.50 Ω的金属棒垂直于导轨放置并用绝缘细线通过光滑的定滑轮与质量M=0.60 kg的重物P 相连.细线与金属导轨平行.金属棒沿导轨向上滑行的速度v与时间t之间的关系如图33-11乙所示,已知金属棒在0~0.3 s内通过的电量是0.3~0.6 s内通过电量的,g=10 m/s2,求:甲乙图33-11(1)0~0.3 s内棒通过的位移;(2)金属棒在0~0.6 s内产生的热量.5、如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d =0.5 m ,电阻不计,左端通过导线与阻值R =2 W 的电阻连接,右端通过导线与阻值R L =4 W 的小灯泡L 连接.在CDEF 矩形区域内有竖直向上的匀强磁场,CE 长l =2 m ,有一阻值r =2 W 的金属棒PQ 放置在靠近磁场边界CD 处.CDEF 区域内磁场的磁感应强度B 随时间变化如图22乙所示.在t =0至t =4s 内,金属棒PQ 保持静止,在t =4s 时使金属棒PQ 以某一速度进入磁场区域并保持匀速运动.已知从t =0开始到金属棒运动到磁场边界EF 处的整个过程中,小灯泡的亮度没有发生变化,求:(1)通过小灯泡的电流.(2)金属棒PQ 在磁场区域中运动的速度大小.参考答案一、计算题1、(1)0.24N ;(2)0.4T ;(3)(2)在10—15s时间段杆在磁场中做匀速运动,因此有以F=0.24N,μmg=0.16N代入解得B0=0.4T(3)由题意可知在15—20s时间段通过回路的磁通量不变,设杆在15—20s内运动距离为d,15s后运动的距离为x B(t)L(d+x)=B0Ld其中d=20mx=4(t-15)-0.4(t-15)2由此可得2、考点:导体切割磁感线时的感应电动势;电磁感应中的能量转化..专题:电磁感应——功能问题.分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Q f=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由 mgsin θ=μmgcos θ+BIL得:I=0.5A由BLv=I(R+r)代入数据得:v=2m/s(2)进入粗糙导轨前,导体棒中的平均电动势为: ==导体棒中的平均电流为: ==所以,通过导体棒的电量为:q=△t==0.125C(3)由能量守恒定律得:2mgdsin θ=Q电+μmgdcos θ+mv2得回路中产生的焦耳热为:Q电=0.35J所以,电阻R上产生的焦耳热为:Q=Q电=0.2625J答:(1)导体棒到达轨道底端时的速度大小是2m/s;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q是0.35C;(3)整个运动过程中,电阻R产生的焦耳热Q是0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.3、【知识点】导体切割磁感线时的感应电动势;闭合电路的欧姆定律;法拉第电磁感应定律;电磁感应中的能量转化.J2 L2 L3【答案解析】(1)0;(2)0.5N,方向沿斜面向下;(3)如图所示.解析:(1)当t=2s时,回路中产生的感应电动势为:E=,B2=1T,应电流为:I=;根据楞次定律判断可知,ab所受的安培力沿轨道向上;ab棒保持静止,受力平衡,设外力沿轨道向上,则由平衡条件有:mgsin30°-B2IL1-F1=0可解得:F1=mgsin30°-B2IL1=0.2×10×sin30°-1×1×1=0(2)当t=3s前的瞬间,由图可知,B3=1.5T,设此时外力沿轨道向上,则根据平衡条件得:F2+B3IL1-mg sin30°=0则得:F2=mg sin30°-B3IL1=0.2×10×sin30°-1.5×1×1=-0.5N,负号说明外力沿斜面向下.(3)规定F方向沿斜面向上为正,在0-3s内,根据平衡条件有:mgsin30°-BIL1-F=0而B=0.5t(T)则得:F=mgsin30°-BIL1=0.2×10×sin30°-0.5T×1×1=1-0.5T(N)当t=0时刻,F=1N.在3-4s内,B不变,没有感应电流产生,ab不受安培力,则由平衡条件得:F=mgsin30°=0.2×10×sin30°N=1N画出前4s外力F随时间变化的图象如图所示.【思路点拨】(1)由图知,0-3s时间内,B均匀增大,回路中产生恒定的感应电动势和感应电流,根据法拉第电磁感应定律和欧姆定律求出感应电流,由平衡条件求解t=2s时,外力F1的大小.(2)与上题用同样的方法求出外力F2的大小和方向.(3)由B-t图象得到B与t的关系式,根据平衡条件得到外力F与t的关系式,再作出图象.解决本题的关键掌握法拉第电磁感应定律、平衡条件、安培力公式和能量守恒定律等等电磁学和力学规律,得到解析式,再画图象是常用的思路,要多做相关的训练.4、解析:(1)金属棒在0.3~0.6 s内通过的电量是q1=I1t1=金属棒在0~0.3 s内通过的电量q2==由题知q1=q2,代入解得x2=0.3 m.(2)金属棒在0~0.6 s内通过的总位移为x=x1+x2=vt1+x2,代入解得x=0.75 m根据能量守恒定律Mgx-mgx sinθ-Q=(M+m)v2代入解得Q=2.85 J由于金属棒与电阻R串联,电流相等,根据焦耳定律Q=I2Rt,得到它们产生的热量与电阻成正比,所以金属棒在0~0.6 s内产生的热量Q r=Q=1.9 J.答案:(1)0.3 m (2)1.9 J5、【解析】(1)在t=0至t=4s内,金属棒PQ保持静止,磁场变化导致电路中产生感应电动势.电路为r与R并联,再与R L 串联,电路的总电阻=5Ω①此时感应电动势=0.5×2×0.5V=0.5V ②通过小灯泡的电流为:=0.1A ③(2)当棒在磁场区域中运动时,由导体棒切割磁感线产生电动势,电路为R与R L并联,再与r串联,此时电路的总电阻=2+Ω=Ω④由于灯泡中电流不变,所以灯泡的电流I L=0.1A,则流过棒的电流为=0.3A ⑤电动势⑥解得棒PQ在磁场区域中v=1m/s。

新编《电磁感应》精选练习题(含答案)

新编《电磁感应》精选练习题(含答案)

新编《电磁感应》精选练习题(含答案)1、选择题:1.正确答案为(D)。

2.正确答案为(D)。

3.正确答案为(B)。

4.正确答案为(B)。

5.正确答案为(A)。

6.正确答案为(D)。

7.正确答案为(A)。

2、文章改写:本文是一篇电磁感应单元测试题。

在选择题部分,需要根据题目要求选择正确答案。

其中包括关于线圈中磁通量变化、自感现象、金属棒的旋转、匀强磁场中的固定金属框架和导体棒等问题。

在每个问题中,需要根据问题描述和图示来判断正确答案。

对于第一题,正确答案是(D),即线圈中磁通量变化越快,线圈中产生的感应电动势越大。

第二题的正确答案是(D),即对于同一线圈,当电流变化较快时,线圈中的自感电动势电较大。

第三题的正确答案是(B),即金属棒内电场强度等于零。

第四题的正确答案是(B),即在导体棒ef还未脱离框架前,电路中的磁通量保持不变。

第五题的正确答案是(A),即刚一闭合S2,A灯就立即亮,而B灯则延迟一段时间才亮。

第六题的正确答案是(D),即无法判断线圈中的感应电流方向,也无法判断线圈所受磁场力的方向。

最后一题的正确答案是(A),即在拉出正方形多匝线圈的过程中,拉力做功的功率与线圈匝数成正比。

本文需要读者根据问题描述和图示来判断正确答案。

在文章改写时,需要修正问题描述和图示的格式错误,同时删除明显有问题的段落,并进行小幅度的改写。

和L2同时达到最亮,断开时同时灭D.接通时L1和L2都不亮,断开时也都不灭8、在斜面上,金属棒沿着导轨匀速上滑,且上升一定高度。

根据能量守恒定律,作用于金属棒上的各力的合力所做的功等于mgh与电阻R上发出的焦耳热之和。

其中,作用于金属棒上的合力包括恒力F和安培力的合力。

9、一电子以初速度v沿金属板平行方向飞入XXX极板间,若突然发现电子向M板偏转,则可能是电键S由闭合到断开瞬间。

10、磁带录音机既可用作录音,也可用作放音。

其主要的部件为可匀速行进的磁带和绕有线圈的磁头。

不论是录音或放音过程,磁带或磁隙软铁会存在磁化现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图( a)两相距L=0.5m的平行金属导轨固定于水平面上,导轨左端与阻值R=2Ω的电阻连接,导轨间虚线右侧存在垂直导轨平面的匀强磁场,质量 m=0.2kg的金属杆垂直于导轨上,与导轨接触良好,导轨与金属杆的电阻可忽略,杆在水平向右的恒定拉力作用下由静止开始运动,并始终与导轨垂直,其v- t 图像如图(b)所示,在15s 时撤去拉力,同时使磁场随时间变化,从而保持杆中电流为0,求:( 1)金属杆所受拉力的大小为F;( 2)0-15s 匀强磁场的磁感应强度大小为;( 3)15-20s 内磁感应强度随时间的变化规律。

2、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m ,长为 2d, d=0.5m,上半段 d 导轨光滑,下半段 d 导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg 的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1 Ω,其他部分的电阻均不计,重力加速度取g=10m/s 2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R 上的电量 q;(3)整个运动过程中,电阻R 产生的焦耳热 Q.3、如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L1=1m,导轨平面与水平面成θ=30角,上端连接阻值= 1. 5Ω的电阻;质量为= 0. 2kg 、阻值r= 0. 5Ω的金属棒 ab 放在两导轨上,距离导轨最上端为L2= 4m,棒与导轨垂直并保持良好接触。

整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示。

为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F,g=10m/s 2 求:(1)当t= 2s 时,外力F1的大小;(2)当t= 3s 前的瞬间,外力F2的大小和方向;( 3)请在图丙中画出前4s 外力F随时间变化的图像(规定F方向沿斜面向上为正);4、如图 33 - 11 甲所示,一足够长阻值不计的光滑平行金属导轨MN、 PQ之间的距离 L=1.0m,NQ两端连接阻值R =1.0 Ω的电阻,磁感应强度为 B 的匀强磁场垂直于导轨所在平面向上,导轨平面与水平面间的夹角θ=30°.一质量= 0.20 kg 、阻值r = 0.50Ω的金属棒垂直于导轨放置并用绝缘细线通过光滑的定滑轮与质量= 0.60 kg的重物Pm M相连.细线与金属导轨平行.金属棒沿导轨向上滑行的速度v 与时间 t 之间的关系如图33-11乙所示,已知金属棒在 0~ 0.3 s内通过的电量是0.3 ~ 0.6 s内通过电量的,g=10 m/s2,求:甲乙图 33- 11(1)0 ~ 0.3 s内棒通过的位移;(2) 金属棒在0~ 0.6 s内产生的热量.5、如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距的电阻连接,右端通过导线与阻值R L= 4 W的小灯泡 L 连接.在d= 0.5 m,电阻不计,左端通过导线与阻值CDEF矩形区域内有竖直向上的匀强磁场,R=2WCE长l =2m,有一阻值r=2 W的金属棒PQ放置在靠近磁场边界CD处. CDEF区域内磁场的磁感应强度B 随时间变化如图22 乙所示.在 t =0至 t =4s内,金属棒 PQ保持静止,在 t =4s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动.知从 t =0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化,求:已(1)通过小灯泡的电流.(2)金属棒PQ在磁场区域中运动的速度大小.参考答案一、计算题1、( 1) 0.24N ;( 2) 0.4 T;( 3)( 2)在 10 — 15s 时间段杆在磁场中做匀速运动,因此有以 F=0.24N,μmg=0.16N代入解得 B0=0.4 T( 3)由题意可知在15— 20s 时间段通过回路的磁通量不变,设杆在15— 20s 内运动距离为d,15s后运动的距离为x B( t ) L( d+x)= B0Ld其中 d=20mx=4( t -15)-0.4(t -15)2由此可得2、考点:导体切割磁感线时的感应电动势;电磁感应中的能量转化..专题:电磁感应——功能问题.分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.( 3)导体棒在滑动时摩擦生热为Q f =2μ mgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:( 1)导体棒在粗糙轨道上受力平衡:由 mgsin θ =μ mgcos θ +BIL得: I=0.5A由 BLv=I (R+r)代入数据得: v=2m/s( 2)进入粗糙导轨前,导体棒中的平均电动势为:==导体棒中的平均电流为:==所以,通过导体棒的电量为:q=△ t==0.125C(3)由能量守恒定律得: 2mgdsin θ =Q电 +μ mgdcos θ +mv2得回路中产生的焦耳热为:Q电 =0.35J所以,电阻R 上产生的焦耳热为:Q=Q 电=0.2625J答:( 1)导体棒到达轨道底端时的速度大小是2m/s ;( 2)导体棒进入粗糙轨道前,通过电阻R 上的电量q 是 0.35C ;(3)整个运动过程中,电阻R 产生的焦耳热 Q 是 0.2625J .点评:运用平衡条件列方程,关键要正确推导本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,出安培力与速度的关系式,分析出能量是怎样转化的.3、【知识点】导体切割磁感线时的感应电动势;闭合电路的欧姆定律;法拉第电磁感应定律;电磁感应中的能量转化. J2 L2 L3【答案解析】( 1)0;( 2) 0.5N ,方向沿斜面向下;( 3)如图所示.解析:( 1)当 t=2s 时,回路中产生的感应电动势为:E=,B2=1T,应电流为:I=;根据楞次定律判断可知,ab 所受的安培力沿轨道向上;ab 棒保持静止,受力平衡,设外力沿轨道向上,则由平衡条件有:mgsin30 ° -B 2IL 1-F 1=0可解得: F1 =mgsin30 ° -B 2IL 1 =0.2 × 10× sin30 °-1 × 1× 1=0( 2)当 t=3s 前的瞬间,由图可知,B3 =1.5T ,设此时外力沿轨道向上,则根据平衡条件得:F2+B3 IL 1-mg sin30 ° =0则得: F2=mg sin30 ° -B 3IL 1=0.2 × 10 × sin30 ° -1.5 × 1× 1=-0.5N ,负号说明外力沿斜面向下.( 3)规定 F 方向沿斜面向上为正,在0-3s 内,根据平衡条件有:mgsin30 ° -BIL 1-F=0 而 B=0.5t ( T)则得: F=mgsin30 ° -BIL 1=0.2 × 10× sin30 ° -0.5T × 1× 1=1-0.5T ( N)当 t=0 时刻, F=1N.在 3-4s 内, B 不变,没有感应电流产生,ab 不受安培力,则由平衡条件得:F=mgsin30 ° =0.2×10 × sin30 ° N=1N画出前4s 外力 F 随时间变化的图象如图所示.【思路点拨】(1)由图知, 0-3s 时间内, B 均匀增大,回路中产生恒定的感应电动势和感应电流,根据法拉第电磁感应定律和欧姆定律求出感应电流,由平衡条件求解t=2s 时,外力F1的大小.( 2)与上题用同样的方法求出外力F2的大小和方向.(3)由 B-t图象得到 B 与 t 的关系式,根据平衡条件得到外力 F 与 t 的关系式,再作出图象.解决本题的关键掌握法拉第电磁感应定律、平衡条件、安培力公式和能量守恒定律等等电磁学和力学规律,得到解析式,再画图象是常用的思路,要多做相关的训练.4、解析: (1) 金属棒在0.3 ~ 0.6 s内通过的电量是q1=I 1t 1=金属棒在0~ 0.3 s内通过的电量q2==由题知 1 =q 2,代入解得x2=0.3 m.q(2)金属棒在 0~ 0.6 s 内通过的总位移为x=x1+x2=vt1+x2,代入解得x= 0.75 m 根据能量守恒定律Mgx- mgx sinθ- Q=( M+m) v2代入解得Q=2.85 J由于金属棒与电阻R串联,电流相等,根据焦耳定律Q= I 2Rt,得到它们产生的热量与电阻成正比,所以金属棒在0~0.6 s内产生的热量Q r=Q=1.9 J.答案: (1)0.3 m(2)1.9 J5、【解析】( 1)在t= 0 至t= 4s 内,金属棒保持静止,磁场变化导致电路中产生感应电动势.电路为r与R并联,再与RL 串联,电路的总电阻=5Ω①此时感应电动势=0.5 ×2× 0.5V=0.5V②通过小灯泡的电流为:= 0.1A③( 2)当棒在磁场区域中运动时,由导体棒切割磁感线产生电动势,电路为R 与 R L并联,再与r 串联,此时电路的总电阻=2+Ω=Ω④由于灯泡中电流不变,所以灯泡的电流I L=0.1A,则流过棒的电流为= 0.3A⑤电动势⑥解得棒 PQ在磁场区域中v=1m/s。

相关文档
最新文档