小学四年级奥数笔记之幻方

合集下载

四年级奥数数阵与幻方

四年级奥数数阵与幻方

数阵问题知识要点:一般地来讲在解决数阵图的问题上,我们应先观察好数阵图,找出“公用数”的位置,求出“公用数”是解决数阵问题的关键。

在数阵图中横行有,竖行也有的数,我们把它叫做“公用数”。

如果题中给你的数的个数是奇数个,而“公用数”仅一个,而这个“公用数”又是中心数,这样的数阵图称为辐射型数阵图。

在解决这类数阵图时,就是先找出公用数,每边均剩下两个数,实际上就是在奇数个数中找到和相等的几对数,找的办法有三种,即:去头、去尾、去中间,而数阵图中的“公用数”就是这列数中的头、尾、中间任意一个数。

还有一种数阵图,题中给你的已知数的个数为偶数个,“公用数”不再是一个,而是多个。

这样的数阵图称为封闭型数阵图,在解决此类数阵图时,应分三步走:l、先求出题中给出已知数的总和,2、再求出数阵图中的和,3、用图中和减去已知数的和即为“公用数”的总和。

例题分析:一.辐射型数阵:例1.将2~8这7个数分别填在下图中的圆圈内,使每条线段上三个圆圈内数的和相等.例2.把1~9这9个数字,分别填入下图的各圆圈内,使每条线上5个数的和相等.例3.将1~9这九个数字填在”七一”内,使每一横行,每一竖列的数字的和都是13.二.封闭型数阵:例4.将1~6六个数填入图中的圆圈中,要求四条直线上的数字之和都等于10,那么a是多少?例5. 如果将—11这11个自然数填入左下图的圆圈中,使每个菱形上的四个数之和都等于24,那么A等于多少?例6.把10~80八个整十数填入下图的○中,使每个圆上五个数的和为210。

例7.把10~15这6个数字分别填放图中的各个圆圈内,使每边上的三个圆圈内数之和相等。

例8. 图中五个正方形和12个圆圈,将1—12填入圆圈中,使每个正方形四角上圆圈中的数字之和都等于K,那么K等于几?例9. 图中的大三角形被分割成九个小三角形将1—9填入小三角形中,使每条边上的五个小三角形的数字之和都相等,那么这个和的最小值是多少?最大值是多少?例10.图中有10个小三角形和4个大三角形,将1~10填入每个小三角形,使每个大三角形内的数字之和都等于25。

幻方知识点总结

幻方知识点总结

幻方知识点总结一、幻方的定义。

幻方是一种将数字安排在正方形格子中,使每行、每列和对角线上的数字之和都相等的数学结构。

例如,一个简单的三阶幻方(3×3的方格):begin{array}{ccc}hline8 1 6 hline3 5 7 hline4 9 2 hlineend{array}这里每行、每列和两条对角线上的数字之和都是15。

二、幻方的阶数。

1. 阶数的概念。

- 幻方的阶数是指幻方的行数(或列数),用n表示。

常见的有三阶幻方(n = 3)、四阶幻方(n=4)等。

2. 不同阶数幻方的特点。

- 三阶幻方。

- 是最基本、最常见的幻方。

它的数字组合相对固定,中心数字具有特殊性质。

在三阶幻方中,中心数字是这9个数字的平均数。

例如在上面的三阶幻方中,数字是1 - 9,它们的平均数是5,正好是中心数字。

- 四阶幻方。

- 构造相对复杂一些。

四阶幻方的幻和(每行、每列、对角线数字之和)计算为:(1 + 2+3+·s+16)÷4=(16×(16 + 1)÷2)÷4= 34。

三、幻方的构造方法。

1. 奇数阶幻方(以三阶幻方为例)——罗伯法。

- 把1(或最小的数)放在第一行正中。

- 按以下规律排列剩下的数:- 每一个数放在前一个数的右上一格。

- 如果这个数所要放的格已经超出了最顶行,那么就把它放在底行,仍然要放在右一列。

- 如果这个数所要放的格已经超出了最右列,那么就把它放在最左列,仍然要放在上一行。

- 如果这个数所要放的格已经填好了其他的数,或者同时超出了顶行和右列,那么就把这个数放在前一个数的下一行同一列的格内。

2. 偶数阶幻方(以四阶幻方为例)——对称交换法。

- 先将1 - 16按顺序填入4×4的方格中。

- 然后将对角线上的数字(从左上角到右下角和从右上角到左下角)进行对称交换。

例如,交换1和16,4和13,6和11,7和10,就可以得到一个四阶幻方。

4年级奥数魔力幻方

4年级奥数魔力幻方

思考与练习:
1、用1、3、5、7、9、11、13、15、17这九个奇数 构成为一个三阶幻方。
2、把1-16这十六个数分别填入下图中的十六个方 格内,使每行、每列和两条对角线上的四个数的和都相 等。
4、在下图中A,B,C,D处填上适当的数,使下图成为 一个三阶幻方。
5、将2,3,4,5,6,7,9,10,11,12,13,14这 12个数填入下图中,使每行中四个数的和相等,同 时使每列中的三个数的和也相等。
数学思维提升专题
魔力幻方
讲解人:赵老师
专题简介:
幻方,实质上就是按照一定格式,一定要求在方框内 填数,使每一行、每一列和每一条对角线上各数之和相等。
相传在大禹治水的时候,黄河支流洛水浮现出一只神龟, 它的背甲上有一个9种花点的图案,人们称之为“河图”。 后来,人们将花点一数,惊奇地发现,正好是1—9九个自然 数,各数的排列非常巧妙,三行、三列及两条对角线上的各 数之和都是15。
例题与方法:
例1、将1—9九个数填在下图中的方格里, 每格填一个数,使每一横行、每一纵行和两 9,10,11九 个数填入图中的方格内,使每一行、每一列和 每条对角线上的数的和都相等。
例4、在下图中A,B,C,D处填上适当的数,使下 图成为一个三阶幻方。
例5、将1,2,3,5,6,7这六个数填入下图中, 使每行中三个数的和相等,同时使每列中的两个数 的和也相等。
总结与提升:
幻方的填写不能只采取试的方法,而要根据题目 的要求和所给数的特征进行合理的分析思考,并在计 算的基础上,先填写关键位置的数,再填写其他位置 的数。也可通过比较法对两条有公共部分的直线进行 幻和的比较,从而求出幻方中的一些未知数。这些方 法不仅适用于幻方,也适用于一些与幻方类似的数阵 图问题。
课外练习:

《有趣的小学数学—幻方问题》

《有趣的小学数学—幻方问题》

幻方知识点:1、幻方:在一个正方形中,将其分为n n 个(九个、十六个、二十五个、三十六个……)小方格,填上给定的数(九个、十六个、二十五个、三十六)个数字,使每一横行、每一竖行以及每一斜行上的n 个数相加的和都相等。

像这样的正方形,我们把它叫做n 阶幻方。

在幻方中这个相等的和就叫做幻和。

2、三阶幻方:如果一个3×3的方阵中,每一横行、每一竖列及两条对角线上数的和都相等,那么这个方阵称为三阶幻方(又叫九宫格或九宫图),这个相等的和叫做幻和,填在幻方中心位置的数称为中间数或中心数。

3、三阶幻方的性质:(1)幻和=中心数×3;中心数=幻和÷3; (2)幻和=填入的所有数总和÷3; (3)“斜T 法”:在三阶幻方中,四个角上的数,等于它对角上相邻两旁两个数的平均数(例如:i 位置的数=(b 位置的数+d 位置的数)÷2;a 和f 、h 位置也有此规律)。

(4)在三阶幻方中,最大与最小的数不能填在对角线上;(5)一个三阶幻方,经过翻折,或者旋转90°以后,仍为幻方.例题1:下面是幻方吗?是的在括号里打“√”,不是在括号里打“×”。

( )123456789( )191817161514131211【答案】×;√;【分析】要求每行、每列、两条对角线上的和都相等。

例题2:在下图中,填上适当的数,使每行、每列及两条对角线上三个数的和都相等。

【答案】如图所示【分析】我们知道幻和是中心数的三倍,因此6+12=18是中心数的2倍,由此可知,中心数为:18÷2=9,幻和为:9×3=27。

接着一一填出各个空格中的数。

例题3:如图,填上适当的数,使每行、每列及两条对角线上三个数的和都相等。

【答案】如图所示 【分析】先根据斜T 法算出右下角(27+15)÷2=21;中心数=(17+21)÷2=19;幻和=19×3=57。

四年级奥数 魔力幻方

四年级奥数 魔力幻方

【例题1】将1~9九个数填在下图中的方格里,每格填一个数,使每一横行、每一纵行和两条对角线上的三个数之和相等。

练习1:用1,3,5,7,9,11,13,15,17这九个奇数构成一个三阶幻方。

练习2:把4,5,6,7,8,9,10,11,12九个数填人图中的方格内,使每一行、每一列和每条对角线上的数的和都相等。

【例题2】把3,4,5,6,7,8,9,10,11九个数填人图中的方格内,使每一行、每一列和每条对角线上的数的和都相等。

练习1:把1~16这十六个数分别填入下图中的十六个方格内,使每行、每列和两条对角线上的四个数的和都相等
练习2:如下图所示,每个方格内填一个数,使得每行、每列及每条对角线上的四个方格中的数都是1,3,5,7,那么带“☆”的两个方格中的数的和等于几?
【例题3】在下图中的A,B,C,D处填上适当的数,使下图成为一个三阶幻方。

练习1:在下图中的A,B,C,D处填上适当的数,使下图成为一个三阶幻方。

练习2:已知下面幻方的和等于21,请将这个三阶幻方补充完整。

课后作业
1.将1-9这九个数填在图中的圆圈里,使每条线上的三个数之和都相等。

2.用2,4,6,8,10,12,14,16,18这九个数构建一个三阶幻方。

(完整)第二讲四年级奥数幻方

(完整)第二讲四年级奥数幻方

幻方是一种广为流传的数学游戏,据说早在大禹治水时就发现过。

幻方的特点是:由自然数构成n×n正方形阵列,称为n阶幻方,每一行、每一列、两对角线上的数之和相等。

法国人罗伯总结出了构造奇数阶连续自然数幻方的简单易行的方法“罗伯法” (也叫“萝卜”法)。

三阶幻方解法“萝卜”法一居上行正中央依次填在右上角上出框时下边填右出框时左边放斜出框时下边放(出角重复一个样)排重便在下格填9阶(了解)47 58 69 80 1 12 23 34 4557 68 79 9 11 22 33 44 4667 78 8 10 21 32 43 54 5677 7 18 20 31 42 53 55 666 17 19 30 41 52 63 65 7616 27 29 40 51 62 64 75 526 28 39 50 61 72 74 4 1536 38 49 60 71 73 3 14 2537 48 59 70 81 2 13 24 35幻方的其它概念: 中心数和黄金三角的规律只适用于3阶幻方1.中心数: 中心数为对称两边数的和除以2 (比如(8+2)/2=5)8 1 63 5 74 9 22.黄金三角: 黄金三角顶点的数为两腰之和除以2(比如(7+9)/2=8)练习1.在如图所示的方格内填上合适的数,使每行、每列及对角线上的三数之和等于33.14 9 107 11 1512 13 82.中间值是“12”,请在其他8格填上适当的数据,使9个方格内的数据是9个连续的自然数的幻方15 8 1310 12 1411 16 9标准的幻方是每行每列以及对角线上的和为15, 现在要求为33, 如果在标准幻方的基础上每个数都扩大6,就可以满足要求: 15+6x3=33简单:只要在标准的幻方的基础上+7 就OK3.每一行、列、对角线上的数的和要为30,请补充填写空白处的数151354.求?,要求3列3行还有斜线和一致!?8921在图(1),(2)的空格中填入不大于15且互不相同的数(其中已填好一个数),使每一横行、每一竖列和对角线上的3个数之和都等于30.解析30被分为3行,那么10为中间的数,所以两个方格的正中间均为10,那么第一个正方形一条对角线上的数为8,10,12,接着一行可填15,10,5;需注意15和8相邻,那么剩下的只要相加为30即可.同理,第二个正方形一条对角线上的数为14,10,6,接着一行可填15,10,5;需注意15和6相邻,那么剩下的只要相加为30即可.解答解:如图:。

第二讲四年级奥数幻方

第二讲四年级奥数幻方

幻方是一种广为流传的数学游戏,据说早在大禹治水时就发现过。

幻方的特点是:由自然数构成n×n正方形阵列,称为n阶幻方,每一行、每一列、两对角线上的数之和相等。

法国人罗伯总结出了构造奇数阶连续自然数幻方的简单易行的方法“罗伯法” (也叫“萝卜”法)。

三阶幻方解法
“萝卜”法
一居上行正中央
依次填在右上角
上出框时下边填
右出框时左边放
斜出框时下边放(出角重复一个样)
排重便在下格填
9阶(了解)
幻方的其它概念: 中心数和黄金三角的规律只适用于3阶幻方
1.中心数: 中心数为对称两边数的和除以2 (比如(8+2)/2=5)
2.黄金三角: 黄金三角顶点的数为两腰之和除以2(比如(7+9)/2=8)
练习
在图(1),(2)的空格中填入不大于15且互不相同的数(其中已填好一个数),使每一横行、每一竖列和对角线上的3个数之和都等于30.
解析30被分为3行,那么10为中间的数,所以两个方格的正中间均为10,那么第一个正方形一条对角线上的数为8,10,12,接着一行可填15,10,5;需注意15和8相邻,那么剩下的只要相加为30即可.
同理,第二个正方形一条对角线上的数为14,10,6,接着一行可填15,10,5;需注意15和6相邻,那么剩下的只要相加为30即可.
解答解:如图:。

小学奥数专题-幻方(二)

小学奥数专题-幻方(二)

1. 会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3. 深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有: ①求幻和: 所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3. ③角上的数=与它不同行、不同列、不同对角线的两数和÷2.四、数独数独简介:(日语:数独 すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏.如今数独的雏型首先于1970年代由美国的一家数学逻辑游戏杂志发表,当时名为Number Place.现今流行的数独于1984年由日本游戏杂志《パズル通信ニコリ》发表并得了现时的名称.数独本是“独立的数字”的省略,因为每一个方格都填上一个个位数. 数独可以简单的数为:让行与列及单元格的数字成规律性变换的一类数字谜问题知识点拨教学目标5-1-4-2.幻方(二)解题技巧:数独游戏中最常规的办法就是利用每一个空格所在的三个单元中已经出现的数字(大小数独一个空格只位于两个单元之内,但是同时多了一个大小关系作为限制条件)来缩小可选数字的范围. 总结4个小技巧:1、 巧选突破口:数独中未知的空格数目很多,如何寻找突破口呢?首先我们要通过规则的限制来分析每一个空格的可选数字的个数,然后选择可选数字最少的方格开始,一般来说,我们会选择所在行、所在列和所在九宫格中已知数字比较多的方格开始,尽可能确定方格中的数字;而大小数独中已知的数字往往非常少,这个时候大小关系更加重要,我们除了利用已知数字之外更加需要考虑大小关系的限制.2、 相对不确定法:有的时候我们不能确定2个方格中的数字,却可以确定同一单元其他方格中肯定不会出现什么数字,这个就是我们说的相对不确定法.举例说明,A1可以填入1或者2,A2也可以填入1或者2,那么我们可以确定,1和2必定出现在A1和A2两者之中,A 行其他位置不可能出现1或者2.3、 相对排除法:某一单元中出现好几个空格无法确定,但是我们可以通过比较这几个空格的可选数字进行对比分析来确定它们中的某一个或者几个空格.举例说明,A 行中已经确定5个数字,还有4个数字(我们假设是1、2、3、4)没有填入,通过这4个空格所在的其他单元我们知道A1可以填入1、2、3、4,A2可以填入1、3,A3可以填入1、2、3,A4可以填入1、3,这个时候我们可以分析,数字4只能填入A1中,所以A1可以确定填入4,我们就可以不用考虑A1,这样就可以发现2只能填入A3中,所以A3也能确定,A2和A4可以通过其他办法进行确定.4、 假设法:如果找不到能够确定的空格,我们不妨进行假设,当然,假设也是原则的,我们不能进行无意义的假设,假设的原则是:如果通过假设一个空格的数字,可以确定和这个空格处在同一个单元内的其它某一个或者某几个空格的数字,那么我们就以选择这样的空格来假设为佳.举例说明,B3可以填入1或者2,A3可以填入2或者3,B4可以填入1或者2,这个时候我们就应该假设B3填入2,这样就可以确定A3填入3,B4填入1,然后以这个为基础进行推理,如果推出违反规则的情况出现,那么这个假设就是错误的,我们回到假设点重新开始.数独【例 1】 在下图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是1,2,3,4.1234212342abd e c3412134123412342【例 2】 在图的5×5的方格表中填入A B C D 、、、四个字母,要求:每行每列中四个字母都恰出现一次:如果菜行的左边标有字母,则它表示这行中第一个出现的字母;如果某行的右边标有字母,则它表示这行中最后一个出现的字母;类似地,如果某列的上边(或者下边)标有字母,则它表示该列的第一个(或者最后一个)出现的字母.那么,,,A B C D 在第二行从左到右出现的次序是 .DAAAD CBA【巩固】 在左下图的5×5方格表的空白处填入1~5中的数,使得每行、每列、每条对角线上的数各不相同.例题精讲5432151244【例 3】 请你在六阶拉丁幻方中的空白方格内填入相应数字,使得每一行、每一列及两条对角线上恰好出现1、2、3、4、5、6.【巩固】 如下图,6个3×2的小方格表拼成了6×6的大方格表.请在空白处填入1~6中的数,使得每行、每列中的数各不相同,并且原来6个3×2的小方格表中的数也各不相同.615122464165【例 4】 请在如右图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.3285631548621346415【例 5】 如图,请将1个1,2个2,3个3,…,7个7,8个8填入6×6的表格中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边);现在已经给出了其中8个方格中的数,并且知道A ,B ,C ,D ,E ,F 各不相同;那么,六位数ABCDEF 是 .【例 6】 将1到9填入下图的空白方块中,每个方块只能填一个数字,任何一行,一列或一个区块都是一个单元.每个单元都必须包含全部但不重复的数字.795485365324176264118639386492559794IH G F E D C B A 795485365324176264118639386492559794863215794999999998888888877777777666666666555555554444444433333333222222221111111198754321【巩固】 如右下图,9个33⨯的小方格表合并成一个99⨯的大方格表,每个格子中填入1-9中的一个数,每个数在每一行、每一列中都只出现一次,并且在原来的每个3⨯3的小方格表中也只出现一次,10个“☆”处所填数的总和是 .17★★★★★★★★★★47955946839381146267142356358457【巩固】 “九宫图”是一个9×9的方阵,它是由九个3×3的“九宫格”(图中黑实线围住的方阵)组成.7154296832159845983171527116842请你在上图中将数字1、2、3、4、5、6、7、8、9分别填入空格内,使得每行、每列及9个“九宫图”中数字1~9均恰好出现一次.当填写完后,位于第4行第4列的数字式______. (A )2 (B )4 (C )6 (D )8【巩固】 如图是一个未完成的“数独”,给出数字A 、B 、C 、D 所在方格内应填的数字.A =、B = 、 C = 、D = .注:所谓“数独”即在99⨯ 的方格中填入1~9中的数字,使得每个粗线33⨯的方格中数字及99⨯的方格中每行每列数字均不重复.【巩固】 下图是一个9×9的方格图,由粗线隔为9个横竖各有3个格子的“小九宫”格,其中,有一些小方格填有1至9的数字.小青在第4列的空格中各填入了一个1至9中的自然数,使每行、每列和每个“小九宫”格内的数字都不重复,然后小青将第4列的数字从上向下写成一个9位数,请写出这个9位数,并且简单说明理由.【例 7】 将1到4填入右图的空白方块中,每个方块只能填一个数字,任何一行,一列都必须包含全部但不重复的数字,并且,在有“>”或者“<”的对应两个空格必须满足对应的大小关系.<∧∨∨∨∨1D432C B A【巩固】 请在右图4×4表格的每格中填入l ,2,3,4中的一个,使得每行,每列,每条对角线的四个数各不相同,且满足图中三个不等的关系.【巩固】 将1到4填入右图的空白方块中,每个方块只能填一个数字,任何一行,一列都必须包含全部但不重复的数字,并且,在有“>”或者“<”的对应两个空格必须满足对应的大小关系.【巩固】 将1、2、3、4分别填入4×4的方格网(如下图所示)的16个小方格中,使得每一行每一列中的4个数1、2、3、4恰好各出现一次,并且满足与不等号相邻的两个数中小数是大数的约数,那么,从左上到右下的对角线上4个数的和是____________.(左下图是一个3×3的例子)321212331A. 10B. 11C. 12D. 16【例 8】 将1到5填入右图的空白方块中,每个方块只能填一个数字,任何一行,一列都必须包含全部但不重复的数字,并且,在有“>”或者“<”的对应两个空格必须满足对应的大小关系.225><>∨∧∧∨∧54321ED CBA【巩固】 将1到5填入右图的空白方块中,每个方块只能填一个数字,任何一行,一列都必须包含全部但不重复的数字,并且,在有“>”或者“<”的对应两个空格必须满足对应的大小关系.33>∧∧<A B C D E12345∧∨><>【巩固】 请你在下面55 表格的每格中填入1,2,3,4,5中的一个,使得每行、每列、每条对角线所填的5个数各不相同,且A 格中的数比B 格中的数大,B 格中的数比C 格中的数大,C 格中的数比D 格中的数大,E 格中的数比F 格中的数大,G 格中的数比H 格中的数大.那么,第二行的5个数从左到右依次是 .HG F E DCB A【例 9】 将1、2、3、4、5、6都分别填入6×6的方格网(如下图所示)的36个小方格中,使得每一行每一列中的6个数1、2、3、4、5、6各出现依次,并且满足与不等式相邻的两个数中小数是大数的约数,那么,第二行从左到右的第6个数是___________.(左下图是一个3×3的例子.)321212331(A )5 (B )4 (C )3 (D )2【例 10】 如图.4 4方格被分成了五块;请你在每格中填入l 、2、3、4中的一个,使得每行、每列的四个数各不相同,且每块上所填数的和都相等.则A 、B 、C 、D 四处所填数字之和是 .DCBA【例 11】 如图,5×5方格被分成了五块;请你在每格中填入1、2、3、4、5中的一个,使得每行、每列、每条对角线的五个数各不相同,.现有两个格子已分别填入1和2,请在其它格子中填上适当的数.那么,ABCDE 是 .ED C B A 21【例 12】 请将1个1,2个2,3个3,…,8个8,9个9填入右图的表格中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边).现在已经给出了其中8个方格中的数,并且知道A ,B ,C ,D ,E ,F ,G 各不相同;那么,五位数CDEFG 是 .【例 13】 请将1个1,2个2,3个3,…,8个8,9个9填入右图的表格中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边);现在已经给出了其中8个方格中的数,并且知道A ,B ,C ,D ,E ,F ,G 各不相同;那么,七位数ABCDEFG 是 .【例 14】 将数字1~6中填入右面的6×6方格,使每个数字在每一行、每一列和每一个标有粗线的23⨯的“宫”中只能出现一次. 如果虚线框出的区域左上角标注的数值为该区域内所有数字之和,并且该区域内所有数字互不相同,那么,六位数ABCDEF 是_____________.【例 15】 如图1的每个方格中分别填入1、2、3、4、5、6、7中的一个数,使得每行、每列的七个数各不相等;并且圆圈中的数等于与它相邻的四个数的乘积.那么,★处所填的数是 .图18420361201056019212016824525【例 16】 如图,请沿虚线将77⨯的方格表分割成若干个长方形,使得每个长方形中恰好包含一个数字,并且这个数字就是此长方形的面积.那么第四列的7个小方格分别属于________个不同的长方形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 幻方
【知识要点】
在3×3(三行三列)的正方形方格中,既不重复又不遗漏地填上1~9这九个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。

如果在44×(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44×方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。

一般地,在n×n(n 行n 列)的方格里,既不重复又不遗漏地填上n×n 个连续自然数,(注意这些连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的n 个自然数和均相等,我们把这个相等的和叫做幻和,n 叫做阶,这样排成的数的图形叫做n 阶幻方。

中心方格中这个数叫做这个幻方的中间数。

任意阶数幻方的各行或各列或两条条对角线上所有数的和成为幻和! 幻方的幻和等于 n (n 2 +1) ÷2 。

幻和=总和÷阶数
幻积=中间数的3次方。

二、幻方的特征:
1、对称性
2、轮换性
三、幻方的种类:
按照纵横各有数字的个数,可以分为:
三阶幻方、四阶幻方、五阶幻方、六阶幻方… … 按照纵横数字数量奇偶的不同,可以分为: 1、奇数阶幻方 2、偶数阶幻方
(1)单偶数阶幻方,阶数是2的倍数,形如:2n+2 (2)双偶数阶幻方,阶数是4的倍数,形如:2n+4
四、幻方的构造方法
1、杨辉口诀法(仅仅适用于三阶幻方)
早在公元1275年,宋朝的杨辉就对幻方进行了系统的研究。

他称这种图为“纵横图”,他提出了一个构造三阶幻方的秘诀:
九子斜排,上下对易,左右相更,四维挺出
戴九履一,左三右七,二四为肩,六八为足
2、罗伯法
适用于奇数阶幻方,适合于连续自然数或者等差数列的奇数阶幻方。

口诀:
1居下行正中央,依次斜填切莫忘;
下出框时往上写,左出框时往右放;
排重便往上格填,左下排重一个样。

3、巴舍法(平移补空法)(适合奇数阶幻方)
要点,构造五阶具体操作:
(1)画图:构造楼梯
(2)按顺序填数(数字按顺序斜排)
(3)平移补空:把幻方外的数字平移进幻方——上到下,下到上,左到右,右到左,注意:几阶幻
方就平移几个格。

4、对称交换法(对角线法)——适用于四阶幻方
总体来说,偶数阶的幻方构造比奇数阶要复杂。

但因为四阶阶数
不大,作为拓展, 补充一下四阶的一种简单构造方法——对角线法。

【典型例题】
例题1:请编出一个三阶幻方,使其幻和为24。

基本型三阶幻方的幻和是15。

幻和增加了24-15=9,
每个数应该增加9÷3=3。

三阶幻方的基本型的拓展:
每个数都加上1,依然是一个幻方,幻和增加了3。

幻方的基本型可以拓展出更多的幻方!
例题2:在下图的空格中填入适当的数,使每行、每列及两条对角线上的三个数的和都等于18.
2
5
例题3:请用11、13、15、17、19、21、23、25、27编制一个三阶幻方。

这是一个等差数列,将它与基本型中的1-9对应好:
11、13、15、17、19、21、23、25、27
1、 2、 3、 4、 5、 6、 7、 8、 9
(1)先写出基本型
(2)再对应的数填在对应的位置。

例题4:小华需要构造一个3×3的乘积魔方,使得每行、每列、每条对角线上三个正整数的乘积都相等;现在他已经填入了2、3、6三个数(右图),那么小华的乘积魔方构造完毕后,x等于________。

方法一:老师讲过幻和,也讲过幻积,但幻积不是重点,如果知道幻积和中间数的关系,题目就简单了,幻积=中间数的3次方。

方法二:我再给出一种不用列方程的方法,不用求出来右边竖列的3个数,
中间竖列的3个数是可求的。

(下图)
从B看对角线和横行,有:2×6=3×j,j=4。

从A看对角线和横行,有:3×6=2×i,i=9。

如图所示。

这样,就有2·x·3 = 9×6×4,所以x=36。

【习题:】
1、把7—15这九个数构成一个三阶幻方。

2、把3、4、5、8、9、10、13、14、15编成一个三阶幻方,并求出幻和是多少?
3、构成一个三阶幻方,使其幻和是18。

(1) (2) (3)
4、把5-20这16个数构成一个四阶幻方。

5、用罗伯法把5-29这25个数编成一个五阶幻方,。

(4) (5)
6、小华需要构造一个3×3的乘积魔方,使得每行、每列、每条对角线上三个正整数的乘积都相等;现在他已经填入了2、4、8三个数(如下图),那么小华的乘积魔方构造完毕后,x等于________。

相关文档
最新文档