甘肃省张掖市2021届新高考数学三模考试卷含解析

合集下载

2021年高三数学第三次模拟考试试题 理(含解析)

2021年高三数学第三次模拟考试试题 理(含解析)

2021年高三数学第三次模拟考试试题理(含解析)【试卷综析】这套试题基本符合高考复习的特点,稳中有变,变中求新,适当调整了试卷难度,体现了稳中求进的精神.,重视学科基础知识和基本技能的考察,同时侧重考察了学生的学习方法和思维能力的考察,有相当一部分的题目灵活新颖,知识点综合与迁移.以它的知识性、思辨性、灵活性,基础性充分体现了考素质,考基础,考方法,考潜能的检测功能.第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上).【题文】1.已知集合,若,则()A.【知识点】交集及其运算.A1【答案解析】B 解析:∵集合M={3,log2a},N={a,b},M∩N={0},∴log2a=0,解得a=1,∴b=0,∴M∪N={0,1,2}.故选:B.【思路点拨】由已知得log2a=0,解得a=1,从而b=0,由此能求出M∪N.【题文】2.等差数列的前 n项和为,若,则( )A. -2B.0C.2D.4【知识点】等差数列的前n项和.D2【答案解析】A 解析:∵等差数列{an}的前n项和为{Sn},S8﹣S4=36,a6=2a4,∴,解得a1=﹣2,d=2.故选:A.【思路点拨】等差数列{an}的前n项和为{Sn},由已知得,由此能求出结果.【题文】3.设随机变量ξ服从正态分布N(2,σ2),若P(ξ>c)=, 则P(ξ>4-c)等于A. B.2 C. 1- D. 1-2【知识点】正态分布曲线的特点及曲线所表示的意义.I3【答案解析】B 解析:∵随机变量X服从正态分布N(2,σ2),对称轴是:μ=2,又4﹣c与c关于μ=2对称,由正态曲线的对称性得:∴p(ξ>4﹣c)=1﹣p(ξ>c)=1﹣a.故选B.【思路点拨】根据随机变量X服从正态分布N(2,σ2),看出这组数据对应的正态曲线的对称轴x=2,根据正态曲线的特点,得到p(ξ>4﹣c)=1﹣p(ξ>c),得到结果.【题文】4.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为()(A) 30 (B) 50 (C) 75 (D) 150【知识点】由三视图求面积、体积.G2【答案解析】B 解析:该几何体是四棱锥,其底面面积S=5×6=30,高h=5,则其体积V=S×h=30×5=50.故选B.【思路点拨】由三视图可知:该几何体是四棱锥.【题文】5.一个棱柱的底面是正六边形,侧面都是正方形,用至少过该棱柱三个顶点(不在同一侧面或同一底面内)的平面去截这个棱柱,所得截面的形状不可以是()等腰三角形 (B)等腰梯形(C)五边形 (D)正六边形【知识点】棱柱的结构特征.G7【答案解析】D 解析:如图,由图可知,截面ABC为等腰三角形,选项A可能,截面ABEF为等腰梯形,选项B可能,截面ADE为五边形,选项C都有可能,选项D不可能,故选D.【思路点拨】由题意作出简图分析.【题文】6.函数在区间的最大值为()(A)1 (B) (C) (D)2【知识点】复合三角函数的单调性. C3 B3【答案解析】C 解析:f(x)=cos2x+sinxcosx==.∵x∈[,],∴2x+∈.∴.∴函数f(x)=cos2x+sinxcosx在区间[,]的最大值为.故选:C.【思路点拨】利用三角函数倍角公式化简,然后结合已知x的范围求得原函数值域,则答案可求.【题文】7.设f(x)是定义在R上的奇函数,其f(x)=f(x-2),若f(x)在区间单调递减,则()(A) f(x)在区间单调递增 (B) f(x)在区间单调递增(C) f(x)在区间单调递减 (D) f(x)在区间单调递减【知识点】奇偶性与单调性的综合.B4 B3【答案解析】D 解析:由f(x)=f(x﹣2),则函数的周期是2,若f(x)在区间[2,3]单调递减,则f(x)在区间[0,1]上单调递减,∵f(x)是定义在R上的奇函数,∴f(x)在区间[﹣1,0]上单调递减,且f(x)在区间[1,2]上单调递减,故选:D【思路点拨】根据函数奇偶性和单调性之间的关系即可得到结论.【题文】8.双曲线的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为( )(A) (B) (C) (D)【知识点】双曲线的简单性质.H6【答案解析】B 解析:如图在Rt△MF1F2中,∠MF1F2=30°,F1F2=2c∴,∴∴,故选B.【思路点拨】先在Rt△MF1F2中,利用∠MF1F2和F1F2求得MF1和MF2,进而根据双曲线的定义求得a,最后根据a和c求得离心率.【题文】9.已知外接圆的半径为,且.,从圆内随机取一个点,若点取自内的概率恰为,则的形状为( )(A)直角三角形 (B)等边三角形 (C)钝角三角形 (D)等腰直角三角形【知识点】几何概型.K3【答案解析】B 解析:∵•=﹣,圆的半径为1,∴cos∠AOB=﹣,又0<∠AOB<π,故∠AOB=,又△AOB为等腰三角形,故AB=,从圆O内随机取一个点,取自△ABC内的概率为,即=,∴S,设BC=a,AC=b.∵C=,∴,得ab=3,…①由AB2=a2+b2﹣2abcosC=3,得a2+b2﹣ab=3,a2+b2=6…②联立①②解得a=b=.∴△ABC为等边三角形.故选:B.【思路点拨】根据向量的数量积求得∠AOB=,进而求得AB的长度,利用几何概型的概率公式求出三角形ABC的面积,利用三角形的面积公式即可求出三角形各边的长度即可得到结论.【题文】10.已知数列满足,,则A. 143B. 156C. 168D. 195【知识点】数列递推式. D1【答案解析】C 解析:由an+1=an+2+1,得,∴,又a1=0,∴{}是以1为首项,以1为公差的等差数列,则,∴.则a13=169﹣1=168.故选:C.【思路点拨】把已知的数列递推式变形,得到{}是以1为首项,以1为公差的等差数列,求出其通项公式后得到an,则a13可求.【题文】11.用1,2,3,4,5,6组成数字不重复的六位数,满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为()A.432 B.288 C.216 D.144【知识点】排列、组合及简单计数问题.J1 J2【答案解析】B解析:从2,4,6三个偶数中任意选出2个看作一个“整体”,方法有•=6种.先排3个奇数:①若1排在左端,方法有种;则将“整体”和另一个偶数中选出一个插在1的左边,方法有种,另一个偶数插在2个奇数形成的3个空中,方法有种,根据分步计数原理求得此时满足条件的六位数共有6×××=72种.②若1排在右端,同理求得满足条件的六位数也有72种,③若1排在中间,方法有种,则将“整体”和另一个偶数插入3个奇数形成的4个空中,根据分步计数原理求得此时满足条件的六位数共有6××=144种.综上,满足条件的六位数共有 72+72+144=288种,故选B.【思路点拨】从2,4,6三个偶数中任意选出2个看作一个“整体”,方法有•=6种.先排3个奇数:分1在左边、1在右边、1在中间三种情况,分别用插空法求得结果,再把这3个结果相加,即得所求.【题文】12.函数在区间上单调递增,则的取值范围是()A. B. C. D.【知识点】指数函数单调性的应用;函数单调性的性质.B3 B6【答案解析】C 解析:当a>0时,y=在(﹣∞,]上为减函数,在[,+∞)上为增函数,且y=>0恒成立若函数在区间[0,1]上单调递增,则y=在[0,1]上单调递增则≤0解得a∈(0,1]当a=0时,在区间[0,1]上单调递增,满足条件当a<0时,在R单调递增,令=0,则x=ln则在(0,ln]为减函数,在[ln,+∞)上为增函数则ln≤0,解得a≥﹣1综上,实数a的取值范围是[﹣1,1],故选C【思路点拨】结合对勾函数,指数函数单调性及单调性的性质,分别讨论a>0,a=0,a<0时,实数a的取值范围,综合讨论结果可得答案.【题文】第Ⅱ卷(非选择题共90分)二、填空题:把答案填在相应题号后的横线上(本大题共4小题,每小题5分,共20分)【题文】13.甲、乙、丙、丁四人商量去看电影.甲说:乙去我才去;乙说:丙去我才去;丙说:甲不去我就不去;丁说:乙不去我就不去。

新高考2021年高三数学高考三模试题卷三附答案解析

新高考2021年高三数学高考三模试题卷三附答案解析

2.已知复数 z 满足 z z 2i ,则 z 的虚部是( )
A. 1
B.1
C. i
3.“ m 0 ”是“函数 f (x) ln x mx 在 0,1 上为增函数”的(
D.i )
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件
4.函数 y 2sin2 x 2 cos x 3 的最大值是( )
(2)企业产品的质量是企业的生命,该企业为了生产优质的产品投放市场,对于生产的每一件产品必须
要经过四个环节的质量检查,若每个环节中出现不合格产品立即进行修复,且每个环节是相互独立的,前
三个环节中生产的产品合格的概率为
1 2
,每个环节中不合格产品所需要的修复费用均为100 元,第四个
环节中产品合格的概率为 3 ,不合格产品需要的修复费用为 50 元,设每件产品修复的费用为 元,写出 4
6
所以,四边形
AODC
为平行四边形,所以,
AD
AO
AC
1
a
b

2
故选 D.
7.【答案】D
【解析】由于函数
y
1 a
x
(a
0
,且
a
1
)向右平移两个单位得
y
1 a
x2
(a
0
,且
a
1
),
即为函数 y a2x (a 0 ,且 a 1 ),所以定点 A2,1 ,
由于点 A 在椭圆 x2 y2 1,所以 4 1 1,且 m 0 , n 0 ,
12.已知函数
f
(x)
ln x ,
x
1,
()
x0 x0
,若函数
y
f

2021年高三三模数学试卷含解析

2021年高三三模数学试卷含解析

2021年高三三模数学试卷含解析一、填空题(共14小题,每小题6分,满分84分)1.设集合A={3,m},B={3m,3},且A=B,则实数m的值是.2.已知复数z=(1+i)(1﹣2i)(i为虚数单位),则z的实部为.3.已知实数x,y满足条件则z=2x+y的最小值是.4.为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在中,其频率分布直方图如图所示.已知在考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、实部的定义即可得出.解答:解:复数z=(1+i)(1﹣2i)=1﹣2i+i+2=3﹣i,∴z的实部为3.故答案为:3.点评:本题考查了复数的运算法则、实部的定义,属于基础题.3.已知实数x,y满足条件则z=2x+y的最小值是﹣3 .考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.解答:解:由约束条件作出可行域如图,化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(﹣1,﹣1)时,直线在y轴上的截距最小,z有最小值为2×(﹣1)﹣1=﹣3.故答案为:﹣3.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.4.为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在中,其频率分布直方图如图所示.已知在故答案为:﹣4点评:本题主要考查了程序框图和算法,属于基本知识的考查.6.从集合{1,2,3,4,5,6,7,8,9}中任取一个数记为x,则log2x为整数的概率为.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:本题是一个古典概型,试验发生包含的事件是从9个数字中任选一个有9种结果,满足条件的事件是对数log2x是一个正整数,可以列举x,有1,2,4,8,共有4种结果,根据概率公式得到结果解答:解:从集合{1,2,3,4,5,6,7,8,9}中任取一个数记为x,共有9种基本事件,其中log2x为整数的x=1,2,4,8共4种基本事件,故则log2x为整数的概率为,故答案为:.点评:本题考查古典概型,考查对数的性质,是一个比较简单的综合题,解题的关键是看清楚有几个数字使得对数的值是一个正整数.7.在平面直角坐标系xOy中,点F为抛物线x2=8y的焦点,则F到双曲线的渐近线的距离为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求得抛物线的焦点和双曲线的渐近线方程,再由点到直线的距离公式计算即可得到所求值.解答:解:抛物线x2=8y的焦点F(0,2),双曲线的渐近线方程为y=±3x,则F到双曲线的渐近线的距离为d==.故答案为:.点评:本题考查双曲线和抛物线的方程和性质,主要考查焦点和渐近线方程的求法,考查点到直线的距离公式的运用,属于基础题.8.在等差数列{a n}中,若a n+a n+2=4n+6(n∈N*),则该数列的通项公式a n= 2n+1 .考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由已知条件易得数列的首项和公比,可得通项公式.解答:解:设等差数列{a n}的公差为d,∵a n+a n+2=4n+6,①∴a n+2+a n+4=4(n+2)+6,②②﹣①可得a n+4﹣a n=8,即4d=8,解得d=2,把n=1代入a n+a n+2=4n+6可得2a1+4=10,解得a1=3,∴通项公式a n=3+2(n﹣1)=2n+1故答案为:2n+1点评:本题考查等差数列的通项公式,求出数列的首项和公比是解决问题的关键,属基础题.9.给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;②“α>β”是“cosα<cosβ”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.其中正确命题的序号为③.考点:命题的真假判断与应用.专题:简易逻辑.分析:①“a>b”⇔“3a>3b”,即可判断正误;②取α=,β=,则cosα=cosβ;反之取α=,β=2π,满足cosα<cosβ,即可判断出正误;③函数f(x)=x3+ax2(x∈R)为奇函数⇔f(﹣x)+f(x)=0⇔2ax2=0,∀x∈R,⇔a=0.即可判断出正误.解答:解:①“a>b”⇔“3a>3b”,因此“a>b”是“3a>3b”的充要条件,故不正确;②取α=,β=,则cosα=cosβ;反之取α=,β=2π,满足cosα<cosβ,因此“α>β”是“cosα<cosβ”的既不必要也不充分条件,不正确;③函数f(x)=x3+ax2(x∈R)为奇函数⇔f(﹣x)+f(x)=0⇔2ax2=0,∀x∈R,⇔a=0.因此“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.因此其中正确命题的序号为③.故答案为:③.点评:本题考查了函数的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.10.已知一个空间几何体的所有棱长均为1cm,其表面展开图如图所示,则该空间几何体的体积V= cm3.考点:由三视图求面积、体积.专题:立体几何.分析:三视图复原几何体分两部分,下面是一个边长为1的正方体、上面是一个棱长为1的正四棱锥,分别计算出边长为1的正方体及棱长为1的正四棱锥的体积即可.解答:解:由三视图可知,该几何体下面是一个边长为1的正方体,其体积为1,上面是一个棱长为1的正四棱锥,其体积为=,故答案为:.点评:本题考查三视图与几何体的关系,考查空间想象能力、逻辑思维能力,注意解题方法的积累,属于基础题.11.如图,已知正方形ABCD的边长为2,点E为AB的中点.以A为圆心,AE为半径,作弧交AD于点F.若P为劣弧上的动点,则的最小值为5﹣2 .考点:平面向量数量积的运算.专题:平面向量及应用.分析:首先以A为原点,直线AB,AD分别为x,y轴,建立平面直角坐标系,可设P(cos θ,sinθ),从而可表示出,根据两角和的正弦公式即可得到=5﹣2sin(θ+φ),从而可求出的最小值.解答:解:如图,以A为原点,边AB,AD所在直线为x,y轴建立平面直角坐标系,则:A(0,0),C(2,2),D(0,2),设P(cos θ,sinθ);∴•(﹣cosθ,2﹣sinθ)=(2﹣cosθ)(﹣cosθ)+(2﹣sinθ)2=5﹣2(cosθ+2sinθ)=sin(θ+φ),tanφ=;∴sin(θ+φ)=1时,取最小值.故答案为:5﹣2.点评:考查建立平面直角坐标系,利用向量的坐标解决向量问题的方法,由点的坐标求向量坐标,以及数量积的坐标运算,两角和的正弦公式.12.已知函数若函数f(x)的图象与x轴有且只有两个不同的交点,则实数m的取值范围为(﹣5,0).考点:利用导数研究函数的极值;根的存在性及根的个数判断.专题:计算题;函数的性质及应用;导数的综合应用.分析:由分段函数知,分段讨论函数的单调性,从而求导可知f(x)在上是增函数,从而化为函数f(x)在与(1,+∞)上各有一个零点;从而求实数m的取值范围.解答:解:当0≤x≤1时,f(x)=2x3+3x2+m,f′(x)=6x2+6x=6x(x+1)≥0;故f(x)在上是增函数,故若使函数f(x)的图象与x轴有且只有两个不同的交点,则函数f(x)在与(1,+∞)上各有一个零点;故m<0,故,解得,m∈(﹣5,0);故答案为:(﹣5,0).点评:本题考查了导数的综合应用及分段函数的应用,属于中档题.13.在平面直角坐标系xOy中,过点P(﹣5,a)作圆x2+y2﹣2ax+2y﹣1=0的两条切线,切点分别为M(x1,y1),N(x2,y2),且+=0,则实数a的值为3或﹣2 .考点:圆的切线方程.专题:计算题;直线与圆.分析:两者的和实质上是一个斜率与另一个斜率的倒数和,进而可得两斜率乘积为﹣1,可得P,Q,R,T共线,即可求出实数a的值.解答:解:设MN中点为Q(x0,y0),T(1,0),圆心R(a,﹣1),根据对称性,MN⊥PR,===,∵k MN=,+=0∴k MN•k TQ=﹣1,∴MN⊥TQ,∴P,Q,R,T共线,∴k PT=k RT,即,∴a2﹣a﹣6=0,∴a=3或﹣2.故答案为:3或﹣2.点评:本题考查实数a的值,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.14.已知正实数x,y满足,则xy的取值范围为.考点:基本不等式在最值问题中的应用.专题:不等式的解法及应用.分析:设xy=m可得x=,代入已知可得关于易得一元二次方程(2+3m)y2﹣10my+m2+4m=0,由△≥0可得m的不等式,解不等式可得.解答:解:设xy=m,则x=,∵,∴++3y+=10,整理得(2+3m)y2﹣10my+m2+4m=0,∵x,y是正实数,∴△≥0,即100m2﹣4(2+3m)(m2+4m)≥0,整理得m(3m﹣8)(m﹣1)≤0,解得1≤m≤,或m≤0(舍去)∴xy的取值范围是故答案为:点评:本题考查基本不等式求最值,涉及换元的思想和一元二次方程根的存在性,属中档题.二、解答题(共5小题,满分76分)15.如图,在三棱柱ABC﹣A1B1C1中,B1C⊥AB,侧面BCC1B1为菱形.(1)求证:平面ABC1⊥平面BCC1B1;(2)如果点D,E分别为A1C1,BB1的中点,求证:DE∥平面ABC1.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)根据面面垂直的判定定理即可证明平面ABC1⊥平面BCC1B1;(2)根据线面平行的判定定理进行证明即可.解答:解:(1)因三棱柱ABC﹣A1B1C1的侧面BCC1B1为菱形,故B1C⊥BC1.…2分又B1C⊥AB,且AB,BC1为平面ABC1内的两条相交直线,故B1C⊥平面ABC1.…5分因B1C⊂平面BCC1B1,故平面ABC1⊥平面BCC1B1.…7分(2)如图,取AA1的中点F,连DF,FE.又D为A1C1的中点,故DF∥AC1,EF∥AB.因DF⊄平面ABC1,AC1⊂平面ABC1,故DF∥面ABC1.…10分同理,EF∥面ABC1.因DF,EF为平面DEF内的两条相交直线,故平面DEF∥面ABC1.…12分因DE⊂平面DEF,故DE∥面ABC1.…14分.点评:本题主要考查空间直线和平面平行以及面面垂直的判定,利用相应的判定定理是解决本题的关键.16.已知函数f(x)=Asin(ωx+φ)(其中A,ω,φ为常数,且A>0,ω>0,)的部分图象如图所示.(1)求函数f(x)的解析式;(2)若,求的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的恒等变换及化简求值.专题:三角函数的求值;三角函数的图像与性质.分析:(1)由图可知A的值,由T=2=2π,可求ω==1,又,且,即可求得φ的值,从而可求函数f(x)的解析式.(2)由,得.从而由再根据二倍角公式即可求值.解答:解:(1)由图可知,A=2,…2分由T=2=2π,故ω==1,所以,f(x)=2sin(x+φ).…4分又,且,故.于是,f(x)=.…7分(2)由,得.…9分所以,…12分=.…14分.点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的恒等变换及化简求值,属于基本知识的考查.17.如图,在平面直角坐标系xOy中,椭圆(a>b>0)的两焦点分别为F1(,0),F2(,0),且经过点(,).(1)求椭圆的方程及离心率;(2)设点B,C,D是椭圆上不同于椭圆顶点的三点,点B与点D关于原点O对称.设直线CD,CB,OB,OC的斜率分别为k1,k2,k3,k4,且k1k2=k3k4.①求k1k2的值;②求OB2+OC2的值.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)依题意,c=,a2=b2+3,(,)代入椭圆方程,求出a,b,即可求椭圆的方程及离心率;(2)①利用斜率公式,即可求k1k2的值;②由①知,k3k4=k1k2=,故x1x2=﹣4y1y2.利用OB2+OC2=,求OB2+OC2的值.解答:解:(1)依题意,c=,a2=b2+3,…2分由,解得b2=1(b2=,不合,舍去),从而a2=4.故所求椭圆方程为:,离心率e=.…5分(2)①设B(x1,y1),C(x2,y2),则D(﹣x1,﹣y1),于是k1k2===.…8分②由①知,k3k4=k1k2=,故x1x2=﹣4y1y2.所以(x1x2)2=(﹣4y1y2)2,即(x1x2)2==,所以,=4.…11分又2==,故.所以,OB2+OC2==5.…14分点评:本题考查椭圆方程与性质,考查斜率公式的运用,考查学生的计算能力,属于中档题.18.为丰富市民的文化生活,市政府计划在一块半径为200m,圆心角为120°的扇形地上建造市民广场.规划设计如图:内接梯形ABCD区域为运动休闲区,其中A,B分别在半径OP,OQ上,C,D在圆弧上,CD∥AB;△OAB区域为文化展示区,AB长为m;其余空地为绿化区域,且CD长不得超过200m.(1)试确定A,B的位置,使△OAB的周长最大?(2)当△OAB的周长最大时,设∠DOC=2θ,试将运动休闲区ABCD的面积S表示为θ的函数,并求出S的最大值.考点:解三角形的实际应用.专题:应用题;导数的综合应用;解三角形.分析:(1)设OA=m,OB=n,m,n∈(0,200],在△OAB中,利用余弦定理,结合基本不等式,即可得出结论;(2)利用梯形的面积公式,结合导数,确定函数的单调性,即可求出S的最大值.解答:解:(1)设OA=m,OB=n,m,n∈(0,200],在△OAB中,,即,…2分所以,,…4分所以m+n≤100,当且仅当m=n=50时,m+n取得最大值,此时△OAB周长取得最大值.答:当OA、OB都为50m时,△OAB的周长最大.6分(2)当△AOB的周长最大时,梯形ACBD为等腰梯形.过O作OF⊥CD交CD于F,交AB于E,则E、F分别为AB,CD的中点,所以∠DOE=θ,由CD≤200,得.8分在△ODF中,DF=200sinθ,OF=200cosθ.又在△AOE中,,故EF=200cosθ﹣25.10分所以,==,.…12分令,,,,又y=及y=cos2θ在上均为单调递减函数,故f'(θ)在上为单调递减函数.因>0,故f'(θ)>0在上恒成立,于是,f(θ)在上为单调递增函数.…14分所以当时,f(θ)有最大值,此时S有最大值为.答:当时,梯形ABCD面积有最大值,且最大值为m2.…16分.点评:本题考查余弦定理,考查基本不等式的运用,考查利用导数知识解决最值问题,考查学生分析解决问题的能力,属于中档题.19.已知数列{a n},{b n},a1=1,b n=(1﹣),n∈N+,设数列{b n}的前n项和为S n(1)若a n=2n﹣1,求S n(2)是否存在等比数列{a n},使b n+2=S n对任意n∈N+恒成立?若存在,求出所有满足条件的数列{a n}的通项公式;若不存在,说明理由(3)若a1≤a2≤…≤a n≤…,求证:0≤S n<2.考点:数列与不等式的综合;数列的求和.专题:等差数列与等比数列;点列、递归数列与数学归纳法.分析:(1)通过an=2n﹣1可得bn=,利用等比数列的求和公式计算即可;(2)设an=q n﹣1,通过b n+2=S2,令n=1即b3=b1计算可得q=±1,进而可得结论;(3)通过1=a1≤a2≤…≤an≤…,易得Sn≥0,利用放缩法可得b n≤2(﹣),并项相加即得结论.解答:(1)解:当an=2n﹣1时,bn=(1﹣)•=.∴Sn=(1+++…+)=﹣;(2)结论:满足条件的数列{an}存在且只有两个,其通项公式为an=1和an=(﹣1)n﹣1.证明:在b n+2=S2中,令n=1,得b3=b1.设an=q n﹣1,则bn=,由b3=b1,得=•.若q=±1,则bn=0,满足题设条件.此时an=1和an=(﹣1)n﹣1.若q≠±1,则=,即q2 =1,矛盾.综上,满足条件的数列{an}存在,且只有两个,一是an=1,另一是an=(﹣1)n﹣1.(3)证明:∵1=a1≤a2≤…≤an≤…,∴a n>0,0<≤1,于是0<≤1.∴b n=(1﹣)≥0,n=1,2,3,…∴Sn=b1+b2+…+bn≥0,又b n=(1﹣)=(1+)(1﹣)•=(1+)(﹣)•≤2(﹣).∴Sn=b1+b2+…+bn≤2(﹣)+2(﹣)+…+2(﹣)=2(﹣)=2(1﹣)<2,∴0≤Sn<2.点评:本题考查求数列的通项,考查求数列的和,利用放缩法及并已改项相加法是解决本题的关键,注意解题方法的积累,属于中档题.29807 746F 瑯K6V34634 874A 蝊)33741 83CD 菍36143 8D2F 贯234719 879F 螟25342 62FE 拾I340608 9EA0 麠37844 93D4 鏔。

2021年高三第三次高考模拟考试理数试题 含答案

2021年高三第三次高考模拟考试理数试题 含答案

2021年高三第三次高考模拟考试理数试题 含答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2|13,|680A x x B x x x =-≤≤=-+<,则等于( )A .B .C .D .2.设是虚数单位,若为纯虚数,则实数的值为( )A .2B .-2C .D .3.函数与在上都是递减的,实数的取值范围是( )A .B .C .D .4.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的概率是( )A .B .C .D .5.在如图所示的算法流程图中,输出的值为( )A .11B .12C .13D .156.下列双曲线中,与双曲线的离心率和渐近线都相同的是( )A .B .C .D .7.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,该多面体的体积是( )A .32B .16C .D .8.在约束条件0024x y y x t y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当时,其所表示的平面区域的面积为,与之间的函数关系用下列图像表示,正确的应该是( )A .B .C .D .9.函数的最小正周期为,给出下列四个命题:(1)的最大值为3;(2)将的图像向左平移后所得的函数是偶函数;(3)在区间上单调递增;(4)的图象关于直线对称.其中正确说法的序号是( )A .(2)(3)B .(1)(4)C .(1)(2)(4)D .(1)(3)(4)10.已知()()()()4241220126243111x x a a x a x a x ++=+++++++,则的值为:( ) A . B . C . D .11.已知定义在的函数,若仅有一个零点,则实数的取值范围是( ) A . B . C . D .12.将半径都为1的4个彼此相切的钢球完全装入形状为正三棱台的容器里,该正三棱台的高的最小值为( )A .B .C .D .第Ⅱ卷二、填空题:本大题共四小题,每题5分,满分20分.13.已知向量与的夹角为120°,,则等于___________.14.数列满足1120212112n n n n n a a a a a +⎧⎛⎫≤< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-≤< ⎪⎪⎝⎭⎩,若,则___________. 15.已知是抛物线上的一条动弦,且的中点横坐标为2,则的最大值为___________.16. 的三个内角的对边分别是,其面积.若,则边上的中线长的取值范围是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知各项均为正数的数列的前项和,且.(1)求的通项公式;(2)若数列满足,求的前项和.18.(本小题满分12分)某中学对男女学生是否喜爱古典音乐进行了一个调查,调查者学校高三年级随机抽取了100名学生,调查结果如下表:喜爱不喜爱总计男学生60 80女学生总计70 30(1)完成上表,并根据表中数据,判断是否有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”;(2)从以上被调查的学生中以性别为依据采用分层抽样的方式抽取10名学生,再从这10名学生中随机抽取5名学生去某古典音乐会的现场观看演出,求正好有个男生去观看演出的分布列及期望.附:0.100 0.050 0.0102.7063.841 6.63519.(本小题满分12分)如图,四棱锥的侧面是正三角形,底面为菱形,点为的中点,若.(1)求证:;(2)若,求二面角的余弦值.20.(本小题满分12分)已知直线与椭圆相交于不同的两点,且线段的中点的坐标为.(1)求椭圆的离心率;(2)设为坐标原点,且,求椭圆的方程.21.(本小题满分12分)已知函数()()()()()()2231,ln 134x f x x e g x a x x a x a a R =+=+++-+∈. (1)若,求函数的单调区间;(2)若恒成立,求的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,是的一条切线,切点为,直线都是的割线,已知.(1)若,求的值;(2)求证:.23. (本小题满分10分)选修4-4:坐标系与参数方程已知直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,两点极坐标分别为.(1)求曲线的参数方程;(2)在曲线上取一点,求的最值.24. (本小题满分10分)选修4-5:不等式选讲设函数.(1)若,求不等式的解集;(2)若不等式的解集为,求的值.参考答案一、选择题CAAC BCDA DBBC二、填空题13. 4 14. 15. 6 16.三、解答题17.(本小题12分)解:(1)由,解得,由假设,因此,故的通项为......................6分(2)由1323133132nb n nn n==+--++............................8分得前项和1111323132233n nii ib i i n===+-=+∑∑................12分18.(本小题12分)解:(1)喜爱不喜爱总计男学生60 20 80女学生10 10 20总计 70 30100将表中的数据代入公式计算,得()2210060102010100 4.7627030802021K ⨯⨯-⨯==≈⨯⨯⨯, 由于,所以有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”...............5分(2)由题意知:这10名学生中有8名男生和2名女生 ,故可取值3,4,5..........6分()()()32415082828255510101056214055623,4,5252925292529C C C C C C P X P X P X C C C ============.........................................................8分故其分布列为:3 4 5.........................................10分该分布满足超几何分布,故其期望.....................12分19.(本小题12分)(1)证明:由得,从而,且,又∵,∴平面,而平面,得,又∵,∴..................................6分(2)解:如图建立直角坐标系,其中为坐标原点,轴平行于,的中点坐标,连结,又知,由此得到:()333331,,,0,,,2,0,04422GA PB BC ⎛⎫⎛⎫=--=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,有, ∴,∵的夹角为等于所求二面角的平面角,20.(本小题12分)解:(1)设,代入椭圆,两式相减:()()()()22121212120b x x x x a y y y y -++-+=,由题意可知:代入上式得,∵,∴,从而所求离心率........................5分(2)由(1)得椭圆的方程为:,与直线联立方程组并化简得:,从而,得,且,................................................7分∵,∴,有得:,解得:(满足).故所求的椭圆的方程为............................12分21.(本小题12分)解:(1)当,,得,或,得.故所求增区间为和,减区间为………………………………4分(2)由,有()()()2231ln 134xx e a x x a x a +≥+++-+, 令()()()()2231ln 134x h x x e a x x a x a =+-+----, ①当时,()()()2323312x a h x x e x a x '=+--+-+, 1°当时,()()()23233012x a h x x e x a x '=+--+-=+, 2°当时,()()()2323312x a h x x e x a x '=+--+-+ ()()()()22123232311011x x a x e x a x e a x x ⎛⎫<+--+-=+-+-< ⎪++⎝⎭, 3°当时,()()()2323312x a h x x e x a x '=+--+-+ ()()()()22123232311011x x a x e x a x e a x x ⎛⎫>+--+-=+-+-> ⎪++⎝⎭, 在递减,在递增,∴,②当时,在时,,即,而对于函数,不妨令,有()()()()4223ln 13ln 123ln 112314a a g x a x x a x a a x a a e a -⎛⎫=+++-+>++-=-+++-= ⎪⎝⎭,故在内存在,使得不恒成立,综上:的取值范围是..................................12分22.(本小题满分10分)(1)证明:由题意可得:四点共圆,∴,∴,∴,又∵......................4分(2)∵为切线,为割线,∴,又∵,∴,∴,又∵,∴,∴,又∵,∴∴................................................10分23.(本小题满分10分)解:(1)由,得,即,故所求参数方程为:(为参数)..............................4分(2)由已知条件知两点直角坐标分别为,令,()()()()222222cos 12sin cos 12sin 8sin 12AP BP t t t t t +=++++-++=+, 故当,有最小值4,,有最大值20............................10分24.(本小题满分10分)解:(1)时,由得,当时,有,得;时,有,解集为空集;时,有,得,综上,所求解集为...........................4分(2)法一:由的解集为知:是方程一个根,得而当时,由解得,合题意;当时,由解得,合题意.综上:..........................10分法二:不等式可化为:,分别作出及的图象由图可知若的解集为,则有:,解得:..........................................10分•f8 31109 7985 禅f=N36467 8E73 蹳 &23880 5D48 嵈K 36298 8DCA 跊。

甘肃省张掖市2021届新高考数学仿真第三次备考试题含解析

甘肃省张掖市2021届新高考数学仿真第三次备考试题含解析

甘肃省张掖市2021届新高考数学仿真第三次备考试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,将两个全等等腰直角三角形拼成一个平行四边形ABCD ,将平行四边形ABCD 沿对角线BD 折起,使平面ABD ⊥平面BCD ,则直线AC 与BD 所成角余弦值为( )A .223B .63C .33D .13【答案】C【解析】【分析】利用建系,假设AB 长度,表示向量AC u u u r 与BD u u u r ,利用向量的夹角公式,可得结果.【详解】由平面ABD ⊥平面BCD ,AB BD ⊥平面ABD ⋂平面BCD BD =,AB Ì平面ABD所以AB ⊥平面BCD ,又DC ⊂平面BCD所以AB DC ⊥,又DB DC ⊥所以作z 轴//AB ,建立空间直角坐标系B xyz -如图设1AB =,所以1,1,2BD DC BC ===所以()()1,1,1,0,1,0AC BD =---u u u r u u u r 所以3cos ,33AC BD AC BD AC BD⋅===u u u r u u u r u u u r u u u r u u u r u u u r 故选:C【点睛】本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.2.函数()2sin()f x x ωϕ=+(0,0)ωϕπ><<的部分图像如图所示,若5AB =,点A 的坐标为(1,2)-,若将函数()f x 向右平移(0)m m >个单位后函数图像关于y 轴对称,则m 的最小值为( )A .12B .1C .3πD .2π 【答案】B【解析】【分析】根据图象以及题中所给的条件,求出,A ω和ϕ,即可求得()f x 的解析式,再通过平移变换函数图象关于y 轴对称,求得m 的最小值.【详解】由于5AB =,函数最高点与最低点的高度差为4,所以函数()f x 的半个周期32T =,所以263T ππωω==⇒=, 又()1,2A -,0ϕπ<<,则有2sin 123πϕ⎛⎫-⨯+= ⎪⎝⎭,可得56πϕ=, 所以()()52sin 2sin 2cos 1363323f x x x x ππππππ⎛⎫⎛⎫=+=++=+ ⎪ ⎪⎝⎭⎝⎭, 将函数()f x 向右平移m 个单位后函数图像关于y 轴对称,即平移后为偶函数,所以m 的最小值为1,故选:B.该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.3.已知当m ,[1n ∈-,1)时,33sinsin 22m n n m ππ-<-,则以下判断正确的是( ) A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定 【答案】C【解析】【分析】 由函数的增减性及导数的应用得:设3()sin ,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】 解:设3()sin ,[1,1]2x f x x x π=+∈-, 则2()3cos 022x f x x ππ'=+>, 即3()sin ,[1,1]2x f x x x π=+∈-为增函数, 又m ,[1n ∈-,1),33sin sin 22m n n m ππ-<-, 即33sin sin 22m n m n ππ+<+, 所以()()f m f n <,所以m n <.故选:C .【点睛】本题考查了函数的增减性及导数的应用,属中档题.4.已知函数f (x )=sin 2x+sin 2(x 3π+),则f (x )的最小值为( )A .12B .14CD .2【答案】A【解析】【分析】先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛⎫=-+ ⎪⎝⎭,再求最值.已知函数f (x )=sin 2x+sin 2(x 3π+), =21cos 21cos 2322x x π⎛⎫-+ ⎪-⎝⎭+, =1cos 23sin 2111cos 22223x x x π⎛⎫⎛⎫--=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭, 所以f (x )的最小值为12. 故选:A【点睛】 本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题. 5.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( )A 5B .3C .8D .83【答案】B【解析】【分析】根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积.【详解】解:分析题意可知,如下图所示,该几何体为一个正方体中的三棱锥A BCD -, 最大面的表面边长为22ABC , 23(22)23=, 故选B .【点睛】本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题. 6.已知抛物线2:4C x y =,过抛物线C 上两点,A B 分别作抛物线的两条切线,,PA PB P 为两切线的交点O 为坐标原点若.0PA PB =u u u v u u u v ,则直线OA 与OB 的斜率之积为( )A .14-B .3-C .18- D .4-【答案】A【解析】【分析】设出A ,B 的坐标,利用导数求出过A ,B 的切线的斜率,结合0PA PB ⋅=u u u r u u u r,可得x 1x 2=﹣1.再写出OA ,OB 所在直线的斜率,作积得答案.【详解】 解:设A (2114x x ,),B (2224x x ,), 由抛物线C :x 2=1y ,得214y x =,则y′12x =. ∴112AP k x =,212PB k x =, 由0PA PB ⋅=u u u r u u u r ,可得12114x x =-,即x 1x 2=﹣1. 又14OA x k =,24OB x k =, ∴124116164OA OB x x k k -⋅===-. 故选:A .础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A 2(2,)a a ,B 2(2,)b b ,a b ¹,再求切线PA,PB 方程,求点P 坐标,再根据.0PA PB =u u u v u u u v 得到1,ab =-最后求直线OA 与OB 的斜率之积.如果先设点P 的坐标,计算量就大一些.7.在平面直角坐标系xOy 中,锐角θ顶点在坐标原点,始边为x 轴正半轴,终边与单位圆交于点5P m ⎛⎫ ⎪ ⎪⎝⎭,则sin 24πθ⎛⎫+= ⎪⎝⎭( )A .10B .10C .10D 【答案】A【解析】【分析】根据单位圆以及角度范围,可得m ,然后根据三角函数定义,可得sin ,cos θθ,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果.【详解】由题可知:2215m ⎛+= ⎝⎭,又θ为锐角所以0m >,m =根据三角函数的定义:sin 55θθ== 所以4sin 22sin cos 5θθθ== 223cos 2cos sin 5θθθ=-=- 由sin 2sin 2cos cos 2sin 444πππθθθ⎛⎫+=+ ⎪⎝⎭所以43sin 24525210πθ⎛⎫+=⨯-⨯= ⎪⎝⎭ 故选:A【点睛】 本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,8.已知等差数列{}n a 的公差不为零,且11a ,31a ,41a 构成新的等差数列,n S 为{}n a 的前n 项和,若存在n 使得0n S =,则n =( )A .10B .11C .12D .13【答案】D【解析】【分析】 利用等差数列的通项公式可得16a d =-,再利用等差数列的前n 项和公式即可求解.【详解】 由11a ,31a ,41a 构成等差数列可得 31431111a a a a -=- 即13341413341422a a a a d d a a a a a a a a ----=⇒=⇒= 又()4111323a a d a a d =+⇒=+解得:16a d =- 又[]12(1)(12(1))(13)222n n n n S a n d d n d d n =+-=-+-=- 所以0n S =时,13n =.故选:D【点睛】本题考查了等差数列的通项公式、等差数列的前n 项和公式,需熟记公式,属于基础题.9.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( )A .若m n ⊥,//n α,则m α⊥B .若//m β,βα⊥,则m α⊥C .若m β⊥,n β⊥,n α⊥,则m α⊥D .若m n ⊥,n β⊥,βα⊥,则m α⊥【答案】C【解析】【分析】根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果.对于A ,当m 为α内与n 垂直的直线时,不满足m α⊥,A 错误;对于B ,设l αβ=I ,则当m 为α内与l 平行的直线时,//m β,但m α⊂,B 错误;对于C ,由m β⊥,n β⊥知://m n ,又n α⊥,m α∴⊥,C 正确;对于D ,设l αβ=I ,则当m 为β内与l 平行的直线时,//m α,D 错误.故选:C .【点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.10.如图,已知三棱锥D ABC -中,平面DAB ⊥平面ABC ,记二面角D AC B --的平面角为α,直线DA 与平面ABC 所成角为β,直线AB 与平面ADC 所成角为γ,则( )A .αβγ≥≥B .βαγ≥≥C .αγβ≥≥D .γαβ≥≥【答案】A【解析】【分析】 作'DD AB ⊥于'D ,DE AC ⊥于E ,分析可得'DED α=?,'DAD β=∠,再根据正弦的大小关系判断分析得αβ≥,再根据线面角的最小性判定βγ≥即可.【详解】作'DD AB ⊥于'D ,DE AC ⊥于E .因为平面DAB ⊥平面ABC ,'DD ⊥平面ABC .故,'AC DE AC DD ⊥⊥,故AC ⊥平面'DED .故二面角D AC B --为'DED α=?.又直线DA 与平面ABC 所成角为'DAD β=∠,因为DA DE ≥, 故''sin 'sin 'DD DD DED DAD DE DA ???.故αβ≥,当且仅当,A E 重合时取等号.又直线AB 与平面ADC 所成角为γ,且'DAD β=∠为直线AB 与平面ADC 内的直线AD 所成角,故故αβγ≥≥.故选:A【点睛】本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.11.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的23,且球的表面积也是圆柱表面积的23”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为24π,则该圆柱的内切球体积为( )A .43πB .16πC .163πD .323π 【答案】D【解析】【分析】设圆柱的底面半径为r ,则其母线长为2l r =,由圆柱的表面积求出r ,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为r ,则其母线长为2l r =,因为圆柱的表面积公式为2=22S r rl ππ+圆柱表,所以222224r r r πππ+⨯=,解得2r =,因为圆柱的体积公式为2=2V Sh r r π=⋅圆柱,所以3=22=16V ππ⨯⨯圆柱,由题知,圆柱内切球的体积是圆柱体积的23, 所以所求圆柱内切球的体积为2232=16=333V V ππ=⨯圆柱. 故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.12.函数sin y x x =+在[]2,2x ππ∈-上的大致图象是( )A .B .C .D .【答案】D【解析】【分析】讨论x 的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【详解】当0x ≥时,sin y x x =+,则cos 10y x '=+≥,所以函数在[]0,2π上单调递增,令()cos 1g x x =+,则()sin g x x '=-,根据三角函数的性质,当[]0,x π∈时,()sin 0g x x '=-<,故切线的斜率变小,当[],2x ππ∈时,()sin 0g x x '=->,故切线的斜率变大,可排除A 、B ;当0x <时,sin y x x =-+,则cos 10y x '=-+≥,所以函数在[]2,0π-上单调递增,令 ()cos 1h x x =-+,()sin h x x '=,当[],0x π∈-时,()sin 0h x x '=<,故切线的斜率变小,可排除C , 故选:D 【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。

甘肃省张掖市2021届新高考数学考前模拟卷(1)含解析

甘肃省张掖市2021届新高考数学考前模拟卷(1)含解析

甘肃省张掖市2021届新高考数学考前模拟卷(1)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设()f x 为定义在R 上的奇函数,当0x ≥时,22()log (1)1f x x ax a =++-+(a 为常数),则不等式(34)5f x +>-的解集为( )A .(,1)-∞-B .(1,)-+∞C .(,2)-∞-D .(2,)-+∞【答案】D 【解析】 【分析】由(0)0f =可得1a =,所以22()log (1)(0)f x x x x =+≥+,由()f x 为定义在R 上的奇函数结合增函数+增函数=增函数,可知()y f x =在R 上单调递增,注意到(2)(2)5f f -=-=-,再利用函数单调性即可解决. 【详解】因为()f x 在R 上是奇函数.所以(0)0f =,解得1a =,所以当0x ≥时,22()log (1)f x x x =++,且[0,)x ∈+∞时,()f x 单调递增,所以()y f x =在R 上单调递增,因为(2)5(2)5f f =-=-,,故有342x +>-,解得2x >-. 故选:D. 【点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题. 2.若复数()()31z i i =-+,则z =( )A .B .CD .20【答案】B 【解析】 【分析】 化简得到()()3142z i i i =-+=+,再计算模长得到答案.【详解】()()3142z i i i =-+=+,故z ==故选:B .本题考查了复数的运算,复数的模,意在考查学生的计算能力. 3.若ABC ∆的内角A 满足2sin 23A =-,则sin cos A A -的值为( )A .3B .-3 C .3D .5-3【答案】A 【解析】 【分析】由2sin 22sin cos 3A A A ==-,得到1sin cos 03A A =-<,得出(,)2A ππ∈,再结合三角函数的基本关系式,即可求解. 【详解】由题意,角A 满足2sin 22sin cos 3A A A ==-,则1sin cos 03A A =-<, 又由角A 是三角形的内角,所以(,)2A ππ∈,所以sin cos A A >,因为()225sin cos 12sin cos 1()33A A A A -=-=--=,所以sin cos 3A A -=. 故选:A. 【点睛】本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.4.已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为( )A .43B .53C .54D .32【答案】B 【解析】 【分析】由题意得出22b a 的值,进而利用离心率公式e =可求得该双曲线的离心率. 【详解】双曲线22221x y a b -=的渐近线方程为b y x a =±,由题意可得22241639b a ⎛⎫== ⎪⎝⎭,因此,该双曲线的离心率为53c e a ====. 故选:B. 【点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式e =计算较为方便,考查计算能力,属于基础题. 5.设直线l 过点()0,1A -,且与圆C :2220x y y +-=相切于点B ,那么AB AC ⋅=uuu r uuu r( )A .3±B .3C D .1【答案】B 【解析】 【分析】过点()0,1A -的直线l 与圆C :2220x y y +-=相切于点B ,可得0BA BC ⋅=uu r uu u r .因此()2AB AC AB AB BC AB AB BC ⋅=⋅+=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 222AB AC r ==-u u u r u u u r,即可得出.【详解】由圆C :2220x y y +-=配方为()2211x y +-=,()0,1C ,半径1r =.∵过点()0,1A -的直线l 与圆C :2220x y y +-=相切于点B ,∴0AB BC ⋅=u u u r u u u r;∴()2AB AC AB AB BC AB AB BC ⋅=⋅+=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2223AB AC r ==-=u u u r u u u r ;故选:B. 【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题. 6.已知集合{}1A x x =<,{}1xB x e =<,则( ) A .{}1A B x x ⋂=< B .{}A B x x e ⋃=< C .{}1A B x x ⋃=< D .{}01A B x x ⋂=<<【答案】C 【解析】 【分析】求出集合B ,计算出A B I 和A B U ,即可得出结论. 【详解】{}1A x x =<Q ,{}{}10x B x e x x =<=<,{}0A B x x ∴⋂=<,{}1A B x x ⋃=<.故选:C. 【点睛】本题考查交集和并集的计算,考查计算能力,属于基础题. 7.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45-【答案】A 【解析】 【分析】列出每一步算法循环,可得出输出结果S 的值. 【详解】18i =≤满足,执行第一次循环,()120111S =+-⨯=-,112i =+=; 28i =≤成立,执行第二次循环,()221123S =-+-⨯=,213i =+=; 38i =≤成立,执行第三次循环,()323136S =+-⨯=-,314i =+=; 48i =≤成立,执行第四次循环,()4261410S =-+-⨯=,415i =+=; 58i =≤成立,执行第五次循环,()52101515S =+-⨯=-,516i =+=; 68i =≤成立,执行第六次循环,()62151621S =-+-⨯=,617i =+=; 78i =≤成立,执行第七次循环,()72211728S =+-⨯=-,718i =+=; 88i =≤成立,执行第八次循环,()82281836S =-+-⨯=,819i =+=;98i =≤不成立,跳出循环体,输出S 的值为36,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.8.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为 A .171.25cm B .172.75cm C .173.75cm D .175cm【答案】C 【解析】 【分析】 【详解】由题可得0.00520.02020.040(1)10a ⨯++⨯+⨯=,解得0.010a =, 则(0.0050.0100.020)100.35++⨯=,0.350.040100.750.5+⨯=>, 所以这部分男生的身高的中位数的估计值为0.50.3517010173.75(cm)100.040-+⨯=⨯,故选C .9.已知,x y 满足001x y x y x -⎧⎪+⎨⎪⎩………,则32y x --的取值范围为( )A .3,42⎡⎤⎢⎥⎣⎦B .(1,2]C .(,0][2,)-∞+∞UD .(,1)[2,)-∞⋃+∞【答案】C 【解析】 【分析】 设32y k x -=-,则k 的几何意义为点(,)x y 到点(2,3)的斜率,利用数形结合即可得到结论. 【详解】解:设32y k x -=-,则k 的几何意义为点(,)P x y 到点(2,3)D 的斜率, 作出不等式组对应的平面区域如图:由图可知当过点D 的直线平行于x 轴时,此时302y k x -==-成立; 32y k x -=-取所有负值都成立; 当过点A 时,32y k x -=-取正值中的最小值,1(1,1)0x A x y =⎧⇒⎨-=⎩,此时3132212y k x --===--; 故32y x --的取值范围为(,0][2,)-∞+∞U ; 故选:C. 【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在. 10.函数()22xf x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3 B .()1,2C .()0,3D .()0,2【答案】C 【解析】 【分析】显然函数()22xf x a x=--在区间()1,2内连续,由()f x 的一个零点在区间()1,2内,则()()120f f <,即可求解. 【详解】由题,显然函数()22xf x a x=--在区间()1,2内连续,因为()f x 的一个零点在区间()1,2内,所以()()120f f <,即()()22410a a ----<,解得0<<3a ,本题考查零点存在性定理的应用,属于基础题.11.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为1、2、3元).甲、乙租车费用为1元的概率分别是0.5、0.2,甲、乙租车费用为2元的概率分别是0.2、0.4,则甲、乙两人所扣租车费用相同的概率为( ) A .0.18 B .0.3C .0.24D .0.36【答案】B 【解析】 【分析】甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得. 【详解】由题意甲、乙租车费用为3元的概率分别是0.3,0.4, ∴甲、乙两人所扣租车费用相同的概率为0.50.20.20.40.30.40.3P =⨯+⨯+⨯=.故选:B . 【点睛】本题考查独立性事件的概率.掌握独立事件的概率乘法公式是解题基础.12.已知双曲线2222:1x y a bΓ-=(0,0)a b >>的一条渐近线为l ,圆22:()4C x c y -+=与l 相切于点A ,若12AF F ∆的面积为Γ的离心率为( )A .2B .C .73D .3【答案】D 【解析】 【分析】由圆22:()4C x c y -+=与l 相切可知,圆心(,0)C c 到l 的距离为2,即2b =.又1222AF F AOF S S ab ∆===V a 的值,利用离心率公式,求出e.【详解】由题意得2b =,12AF F S ab ∆==a ∴=3e ∴==.本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

甘肃省张掖市2021届新高考适应性测试卷数学试题(3)含解析

甘肃省张掖市2021届新高考适应性测试卷数学试题(3)含解析

甘肃省张掖市2021届新高考适应性测试卷数学试题(3)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知等差数列{}n a 中,468a a +=则34567a a a a a ++++=( ) A .10 B .16C .20D .24【答案】C 【解析】 【分析】根据等差数列性质得到46582a a a +==,再计算得到答案. 【详解】已知等差数列{}n a 中,4655824a a a a +==⇒=345675520a a a a a a ++++==故答案选C 【点睛】本题考查了等差数列的性质,是数列的常考题型.2.为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是( )A .乙的数据分析素养优于甲B .乙的数学建模素养优于数学抽象素养C .甲的六大素养整体水平优于乙D .甲的六大素养中数据分析最差 【答案】C 【解析】 【分析】根据题目所给图像,填写好表格,由表格数据选出正确选项.【详解】根据雷达图得到如下数据:由数据可知选C.【点睛】本题考查统计问题,考查数据处理能力和应用意识.3.设i为虚数单位,z为复数,若ziz+为实数m,则m=()A.1-B.0C.1D.2【答案】B【解析】【分析】可设(,)z a bi a b R=+∈,将ziz+化简,a b i+由复数为实数,0b=,解方程即可求解【详解】设(,)z a bi a b R=+∈,则)22a b iz a bii i iz ab+-+=+=+=+.00b a=⇒=,所以0m=.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题4.已知函数()cos sin2f x x x=,下列结论不正确的是()A.()y f x=的图像关于点(),0π中心对称 B.()y f x=既是奇函数,又是周期函数C.()y f x=的图像关于直线2xπ=对称D.()y f x=【答案】D【解析】【分析】通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果. 【详解】解::(2)cos(2)sin 2(2)cos sin 2()A f x x x x x f x πππ-=--=-=-,正确; :()cos()sin 2()cos sin 2()B f x x x x x f x -=--=-=-,为奇函数,周期函数,正确; :()cos()sin 2()cos sin 2()C f x x x x x f x πππ-=--==,正确;D : 232sin cos 2sin 2sin y x x x x ==-,令sin t x =,[]1,1t ∈-则()322g t t t =-,()226g t t '=-,[1t ∈-,1],则t <<时()0g t '>,1t -<<1t >>()0g t '<,即()g t 在⎛ ⎝⎭上单调递增,在1,⎛- ⎝⎭和⎫⎪⎪⎝⎭上单调递减;且39g ⎛= ⎝⎭,()10g -=,max y g ∴==<⎝⎭,故D 错误. 故选:D . 【点睛】本题考查三角函数周期性和对称性的判断,利用导数判断函数最值,属于中档题.5.已知公差不为0的等差数列{}n a 的前n 项的和为n S ,12a =,且139,,a a a 成等比数列,则8S =( ) A .56 B .72 C .88 D .40【答案】B 【解析】 【分析】2319a a a =⇔2111(2)(8)a d a a d +=+,将12a =代入,求得公差d ,再利用等差数列的前n 项和公式计算即可. 【详解】由已知,2319a a a =,12a =,故2111(2)(8)a d a a d +=+,解得2d =或0d =(舍),故2(1)22n a n n =+-⨯=,1888()4(228)722a a S +==+⨯=. 故选:B. 【点睛】本题考查等差数列的前n 项和公式,考查等差数列基本量的计算,是一道容易题.6.已知ABC V 的内角A 、B 、C 的对边分别为a 、b 、c ,且60A =︒,3b =,AD 为BC 边上的中线,若72AD =,则ABC V 的面积为( )A .253B .1534C .154D .3534【答案】B 【解析】 【分析】延长AD 到E ,使AD DE =,连接,BE CE ,则四边形ABEC 为平行四边形,根据余弦定理可求出5AB =,进而可得ABC V 的面积.【详解】解:延长AD 到E ,使AD DE =,连接,BE CE ,则四边形ABEC 为平行四边形, 则3BE AC ==,18060120ABE ∠=-=o o o ,27AE AD ==, 在ABE △中,2222cos AE AB BE AB BE ABE =+-⋅∠ 则2227323cos120AB AB =+-⨯⨯⨯o ,得5AB =,113153sin 605322ABC S AB AC =⋅⋅=⨯⨯⨯=o V . 故选:B.【点睛】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题. 7.已知等差数列{}n a 的公差为2-,前n 项和为n S ,1a ,2a ,3a 为某三角形的三边长,且该三角形有一个内角为120︒,若n m S S ≤对任意的*n ∈N 恒成立,则实数m =( ). A .6 B .5C .4D .3【答案】C 【解析】 【分析】若n m S S ≤对任意的*n ∈N 恒成立,则m S 为n S 的最大值,所以由已知,只需求出n S 取得最大值时的n 即可. 【详解】由已知,1a >2a >30a >,又三角形有一个内角为120︒,所以22212323a a a a a =++,22211111(2)(4)(2)(4)a a a a a =-+-+--,解得17a =或12a =(舍),故2(1)7(2)82n n n S n n n -=+⨯-=-+,当4n =时,n S 取得最大值,所以4m =. 故选:C. 【点睛】本题考查等差数列前n 项和的最值问题,考查学生的计算能力,是一道基础题.8.已知曲线24x y =,动点P 在直线3y =-上,过点P 作曲线的两条切线12,l l ,切点分别为,A B ,则直线AB 截圆22650x y y +-+=所得弦长为( ) AB .2C .4D.【答案】C 【解析】 【分析】设221212,,,,(,3)44x x A x B x P t ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,根据导数的几何意义,求出切线斜率,进而得到切线方程,将P 点坐标代入切线方程,抽象出直线AB 方程,且过定点为已知圆的圆心,即可求解. 【详解】圆22650x y y +-+=可化为22(3)4x y +-=.设221212,,,,(,3)44x x A x B x P t ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则12,l l 的斜率分别为1212,22x xk k ==, 所以12,l l 的方程为()21111:24x x l y x x =-+,即112x y x y =-,()22222:24x x l y x x =-+,即222x y x y =-,由于12,l l 都过点(,3)P t -,所以11223232x t y x t y ⎧-=-⎪⎪⎨⎪-=-⎪⎩,即()()1122,,,A x y B x y 都在直线32xt y -=-上, 所以直线AB 的方程为32xt y -=-,恒过定点(0,3), 即直线AB 过圆心(0,3),则直线AB 截圆22650x y y +-+=所得弦长为4. 故选:C. 【点睛】本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.9.已知集合{}21|A x log x =<,集合{|B y y ==,则A B =U ( )A .(),2-∞B .(],2-∞C .()0,2D .[)0,+∞【答案】D 【解析】 【分析】可求出集合A ,B ,然后进行并集的运算即可. 【详解】解:{}|02A x x =<<,{}|0B y y =≥;∴[)0,A B =+∞U .故选D . 【点睛】考查描述法、区间的定义,对数函数的单调性,以及并集的运算.10.已知函数()222cos 1f x x x =-+,将()f x 的图象上的所有点的横坐标缩短到原来的12,纵坐标保持不变;再把所得图象向上平移1个单位长度,得到函数()y g x =的图象,若()()129g x g x ⋅=,则12x x -的值可能为( ) A .54π B .34π C .2π D .3π 【答案】C 【解析】 【分析】利用二倍角公式与辅助角公式将函数()y f x =的解析式化简,然后利用图象变换规律得出函数()y g x =的解析式为()2sin 416g x x π⎛⎫=-+ ⎪⎝⎭,可得函数()y g x =的值域为[]1,3-,结合条件()()129g x g x ⋅=,可得出()1g x 、()2g x 均为函数()y g x =的最大值,于是得出12x x -为函数()y g x =最小正周期的整数倍,由此可得出正确选项. 【详解】函数()222cos 12cos 22sin 26f x x x x x x π⎛⎫=-+=-=-⎪⎝⎭, 将函数()y f x =的图象上的所有点的横坐标缩短到原来的12倍,得2sin 46y x π⎛⎫=- ⎪⎝⎭的图象;再把所得图象向上平移1个单位,得函数()2sin 416y g x x π⎛⎫==-+ ⎪⎝⎭的图象,易知函数()y g x =的值域为[]1,3-.若()()129g x g x ⋅=,则()13g x =且()23g x =,均为函数()y g x =的最大值, 由()4262x k k Z πππ-=+∈,解得()62k x k Z ππ=+∈; 其中1x 、2x 是三角函数()y g x =最高点的横坐标,12x x ∴-的值为函数()y g x =的最小正周期T 的整数倍,且242T ππ==.故选C . 【点睛】本题考查三角函数图象变换,同时也考查了正弦型函数与周期相关的问题,解题的关键在于确定()1g x 、()2g x 均为函数()y g x =的最大值,考查分析问题和解决问题的能力,属于中等题.11.函数()3221f x x ax =-+在()0,∞+内有且只有一个零点,则a 的值为( ) A .3 B .-3 C .2 D .-2【答案】A 【解析】 【分析】求出2()62f x x ax '=-,对a 分类讨论,求出(0,)+∞单调区间和极值点,结合三次函数的图像特征,即可求解. 【详解】2()626()3af x x ax x x '=-=-,若0a ≤,(0,),()0x f x '∈+∞>,()f x 在()0,∞+单调递增,且(0)10=>f , ()f x 在()0,∞+不存在零点;若0a >,(0,),()0,(0,),()03ax f x x f x ''∈<∈+∞>,()3221f x x ax =-+在()0,∞+内有且只有一个零点,31()10,3327a f a a =-+=∴=. 故选:A. 【点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.12.如图网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为( )A .2B .22C .23D .1【答案】C 【解析】 【分析】利用正方体将三视图还原,观察可得最长棱为AD ,算出长度. 【详解】几何体的直观图如图所示,易得最长的棱长为23AD =故选:C. 【点睛】本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

甘肃省张掖市2021届新高考第三次质量检测数学试题含解析

甘肃省张掖市2021届新高考第三次质量检测数学试题含解析

甘肃省张掖市2021届新高考第三次质量检测数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线C :2222x y a b-=1(a>0,b>0)的右焦点为F ,过原点O 作斜率为43的直线交C 的右支于点A ,若|OA|=|OF|,则双曲线的离心率为( ) AB.C .2D+1【答案】B 【解析】 【分析】以O 为圆心,以OF 为半径的圆的方程为222x y c +=,联立22222221x y c x y ab ⎧+=⎪⎨-=⎪⎩,可求出点2,b A c c ⎛⎫ ⎪ ⎪⎝⎭243b =,整理计算可得离心率. 【详解】解:以O 为圆心,以OF 为半径的圆的方程为222x y c +=,联立22222221x y c x y a b ⎧+=⎪⎨-=⎪⎩,取第一象限的解得2x c b y c ⎧=⎪⎪⎨⎪=⎪⎩,即2b A c c ⎛⎫ ⎪ ⎪⎝⎭243b =, 整理得()()22229550c aca --=,则22519c a =<(舍去),225c a=,ce a∴==. 故选:B. 【点睛】已知弯管向外的最大突出(图中CD )有15cm ,跨接了6个坐位的宽度(AB ),每个座位宽度为43cm ,估计弯管的长度,下面的结果中最接近真实值的是( )A .250cmB .260cmC .295cmD .305cm【答案】B 【解析】 【分析】»AB 为弯管,AB 为6个座位的宽度,利用勾股定理求出弧AB 所在圆的半径为r ,从而可得弧所对的圆心角,再利用弧长公式即可求解. 【详解】如图所示,»AB 为弯管,AB 为6个座位的宽度,则643258AB cm =⨯=15CD cm =设弧AB 所在圆的半径为r ,则222()r r CD AC =-+22(15)129r =-+解得562r cm ≈129sin 0.23562AOD ∠=≈ 可以近似地认为sin x x ≈,即0.23AOD ∠≈ 于是0.46AOB ∠≈,»AB 长5620.46258.5≈⨯≈因此只能选B ,260或者由cos 0.97x ≈,sin 20.4526x x π≈⇒<所以弧长5622946π<⨯≈.故选:B 【点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题. 3.下列函数中,既是偶函数又在区间()0,+?上单调递增的是( )A .y =B .()sin f x x x =C .()2f x x x =+ D .1y x =+【答案】C 【解析】 【分析】结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可. 【详解】A :y =B :()sin f x x x =在()0,∞+上不单调,不符合题意;C :2y xx =+为偶函数,且在()0,∞+上单调递增,符合题意;D :1y x =+为非奇非偶函数,不符合题意. 故选:C. 【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.4.已知双曲线2222:1(0,0)x y a b a bΓ-=>>的右焦点为F ,过原点的直线l 与双曲线Γ的左、右两支分别交于,A B 两点,延长BF 交右支于C 点,若,||3||AF FB CF FB ⊥=,则双曲线Γ的离心率是( )A B .32C .53D 【答案】D 【解析】 【分析】设双曲线的左焦点为'F ,连接'BF ,'AF ,'CF ,设BF x =,则3CF x =,'2BF a x =+,设双曲线的左焦点为'F ,连接'BF ,'AF ,'CF , 设BF x =,则3CF x =,'2BF a x =+,'32CF x a =+,AF FB ⊥,根据对称性知四边形'AFBF 为矩形,'Rt CBF ∆中:222''CF CB BF =+,即()()()2223242x a x a x +=++,解得x a =; 'Rt FBF ∆中:222''FF BF BF =+,即()()22223c a a =+,故2252c a =,故10e =. 故选:D .【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.5.已知3log 5a =,0.50.4b =,2log 5c =,则a ,b ,c 的大小关系为( ) A .c b a >> B .b c a >>C .a b c >>D .c a b >>【答案】D 【解析】 【分析】与中间值1比较,,a c 可用换底公式化为同底数对数,再比较大小. 【详解】0.50.41<,3log 51>,又550log 2log 3<<,∴5511log 2log 3>,即23log 5log 5>, ∴c a b >>.本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较. 6.已知||23z z i =-(i 为虚数单位,z 为z 的共轭复数),则复数z 在复平面内对应的点在( ). A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】设i,(,)z a b a b R =+∈,由||23z z i =-,得2i=(z a b --+,利用复数相等建立方程组即可. 【详解】设i,(,)z a b a b R =+∈,则2i=(z a b --+,所以20a b ⎧⎪=⎨⎪+=⎩,解得22a b ⎧=⎪⎨⎪=-⎩,故2i 2z =-,复数z在复平面内对应的点为(2)2-,在第四象限. 故选:D. 【点睛】本题考查复数的几何意义,涉及到共轭复数的定义、复数的模等知识,考查学生的基本计算能力,是一道容易题.7.已知集合{1,3,5}A =,{1,2,3}B =,{2,3,4,5}C =,则()A B C ⋂⋃=( ) A .{1,2,3,5} B .{1,2,3,4}C .{2,3,4,5}D .{1,2,3,4,5}【答案】D 【解析】 【分析】根据集合的基本运算即可求解. 【详解】解:{1,3,5}A =Q ,{1,2,3}B =,{2,3,4,5}C =, 则(){1,3}{2,3,4,5}{1,2,3,4,5}A B C ⋂⋃=⋃=本题主要考查集合的基本运算,属于基础题.8.已知抛物线22(0)y px p =>上一点(5,)t 到焦点的距离为6,P Q 、分别为抛物线与圆22(6)1x y -+=上的动点,则PQ 的最小值为( )A 1B .2C .D .1【答案】D 【解析】 【分析】利用抛物线的定义,求得p 的值,由利用两点间距离公式求得PM ,根据二次函数的性质,求得minPM ,由PQ 取得最小值为min1PM -,求得结果.【详解】由抛物线2:2(0)C y px p =>焦点在x 轴上,准线方程2p x =-, 则点(5,)t 到焦点的距离为562pd =+=,则2p =, 所以抛物线方程:24y x =,设(,)P x y ,圆22:(6)1M x y -+=,圆心为(6,1),半径为1,则PM ===,当4x =时,PQ 11=, 故选D. 【点睛】该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目. 9.函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到函数()y g x =的图象,并且函数()g x 在区间[,]63ππ上单调递增,在区间[,]32ππ上单调递减,则实数ω的值为( ) A .74B .32C .2D .54【答案】C 【解析】由函数sin (0)f x x ωω=>的图象向右平移π个单位得到[]g x sin x sin x πωπωω=-=-()()(),函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,可得3x π=时,()g x 取得最大值,即23122k πωππωπ⨯-=+(),k Z ∈,0ω>,当0k =时,解得2ω=,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出()g x ,根据函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得3x π=时,()g x 取得最大值,求解可得实数ω的值.10.已知1F 、2F 分别为双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,过1F 的直线l 交C 于A 、B 两点,O 为坐标原点,若1OA BF ⊥,22||||AF BF =,则C 的离心率为( )A .2B .CD【答案】D 【解析】 【分析】作出图象,取AB 中点E ,连接EF 2,设F 1A =x ,根据双曲线定义可得x =2a ,再由勾股定理可得到c 2=7a 2,进而得到e 的值 【详解】解:取AB 中点E ,连接EF 2,则由已知可得BF 1⊥EF 2,F 1A =AE =EB , 设F 1A =x ,则由双曲线定义可得AF 2=2a+x ,BF 1﹣BF 2=3x ﹣2a ﹣x =2a ,所以x =2a ,则EF 2=,由勾股定理可得(4a )2+(a )2=(2c )2, 所以c 2=7a 2,则e ca== 故选:D .【点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题.对于圆锥曲线中求离心率的问题,关键是列出含有,,a b c 中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.11.如图所示,已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且||2||BF AF =,则双曲线C 的离心率是( ).A .33B .72C 3D 7【答案】C 【解析】 【分析】易得||2AF a =,||4BF a =,又1()2FO FB FA =+u u u r u u u r u u u r,平方计算即可得到答案.【详解】设双曲线C 的左焦点为E ,易得AEBF 为平行四边形, 所以||||||||2BF AF BF BE a -=-=,又||2||BF AF =,故||2AF a =,||4BF a =,1()2FO FB FA =+u u u r u u u r u u u r,所以2221(41624)4c a a a a =+-⨯,即223c a =,故离心率为【点睛】本题考查求双曲线离心率的问题,关键是建立,,a b c 的方程或不等关系,是一道中档题. 12.要得到函数()sin(3)3f x x π=+的导函数()f x '的图像,只需将()f x 的图像( )A .向右平移3π个单位长度,再把各点的纵坐标伸长到原来的3倍 B .向右平移6π个单位长度,再把各点的纵坐标缩短到原来的13倍 C .向左平移3π个单位长度,再把各点的纵坐标缩短到原来的13倍 D .向左平移6π个单位长度,再把各点的纵坐标伸长到原来的3倍 【答案】D 【解析】 【分析】 先求得()'fx ,再根据三角函数图像变换的知识,选出正确选项.【详解】 依题意()'553cos 33cos 33sin 33626fx x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦3sin 363x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦,所以由()sin(3)3f x x π=+向左平移6π个单位长度,再把各点的纵坐标伸长到原来的3倍得到()'f x 的图像.故选:D 【点睛】本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘肃省张掖市2021届新高考数学三模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知ABC ∆为等腰直角三角形,2A π=,22BC =,M 为ABC ∆所在平面内一点,且1142CM CB CA =+u u u u r u u u r u u u r ,则MB MA ⋅=u u u r u u u r( )A .224-B .72-C .52-D .12-【答案】D 【解析】 【分析】以AB,AC 分别为x 轴和y 轴建立坐标系,结合向量的坐标运算,可求得点M 的坐标,进而求得,MB MA u u u r u u u r,由平面向量的数量积可得答案. 【详解】如图建系,则()0,0A ,()2,0B ,()0,2C ,由1142CM CB CA =+u u u u r u u u r u u u r ,易得11,22M ⎛⎫⎪⎝⎭,则31111,,22222MB MA ⎛⎫⎛⎫⋅=-⋅--=- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r .故选:D 【点睛】本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.2.如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1AB 的中点,,M N 分别为线段1AC 和 棱11B C 上任意一点,则22PM MN +的最小值为( )A .22B .2C 3D .2【答案】D 【解析】 【分析】取AC 中点E ,过M 作MF ⊥面1111D C B A ,可得MFN ∆为等腰直角三角形,由APM AEM ∆≅∆,可得PM EM =,当11MN B C ⊥时, MN 最小,由 22MF MN =,故()12222222PM MN PM MN EM MF AA ⎛⎫+=+=+≥= ⎪ ⎪⎝⎭,即可求解.【详解】取AC 中点E ,过M 作MF ⊥面1111D C B A ,如图:则APM AEM ∆≅∆,故PM EM =,而对固定的点M ,当11MN B C ⊥时, MN 最小.此时由MF ⊥面1111D C B A ,可知MFN ∆为等腰直角三角形,22MF MN =, 故()122222222PM MN PM MN EM MF AA ⎛⎫=+=+≥= ⎪ ⎪⎝⎭.故选:D 【点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题. 3.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A.36 cm3B.48 cm3C.60 cm3D.72 cm3【答案】B【解析】试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.考点:三视图和几何体的体积.4.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为()A.15B.120C.112D.340【答案】C【解析】【分析】先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.【详解】所有的情况数有:310120C 种,3个数中至少有2个阳数且能构成等差数列的情况有:()()()()()()()()()()1,2,3,3,4,5,5,6,7,7,8,9,1,4,7,3,6,9,1,3,5,3,5,7,5,7,9,1,5,9,共10种,所以目标事件的概率10112012P ==. 故选:C. 【点睛】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算.5.已知等差数列{}n a 的公差不为零,且11a ,31a ,41a 构成新的等差数列,n S 为{}n a 的前n 项和,若存在n 使得0n S =,则n =( ) A .10 B .11C .12D .13【答案】D 【解析】 【分析】利用等差数列的通项公式可得16a d =-,再利用等差数列的前n 项和公式即可求解. 【详解】由11a ,31a ,41a 构成等差数列可得 31431111a a a a -=- 即13341413341422a a a a d da a a a a a a a ----=⇒=⇒= 又()4111323a a d a a d =+⇒=+ 解得:16a d =- 又[]12(1)(12(1))(13)222n n n nS a n d d n d d n =+-=-+-=- 所以0n S =时,13n =. 故选:D 【点睛】本题考查了等差数列的通项公式、等差数列的前n 项和公式,需熟记公式,属于基础题.6.在边长为2的菱形ABCD中,BD =ABCD 沿对角线AC 对折,使二面角B AC D--的余弦值为13,则所得三棱锥A BCD -的外接球的表面积为( ) A .23π B .2πC .4πD .6π【答案】D 【解析】 【分析】取AC 中点N ,由题意得BND ∠即为二面角B AC D --的平面角,过点B 作BO DN ⊥于O ,易得点O 为ADC V 的中心,则三棱锥A BCD -的外接球球心在直线BO 上,设球心为1O ,半径为r ,列出方程222r r ⎫-+=⎪⎪⎝⎭⎝⎭即可得解. 【详解】如图,由题意易知ABC V 与ADC V 均为正三角形,取AC 中点N ,连接BN ,DN , 则BN AC ⊥,DN AC ⊥,∴BND ∠即为二面角B AC D --的平面角, 过点B 作BO DN ⊥于O ,则BO ⊥平面ACD ,由BN ND ==1cos 3BND ∠=可得cos ON BN BND =⋅∠=,OD =,3OB ==, ∴13ON ND =即点O 为ADC V 的中心,∴三棱锥A BCD -的外接球球心在直线BO 上,设球心为1O ,半径为r ,∴11BO DO r ==,1OO r =-,∴222r r ⎫-+=⎪⎪⎝⎭⎝⎭解得2r =, ∴三棱锥A BCD -的外接球的表面积为234462S r πππ==⨯=. 故选:D.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题. 7.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( )A .36πB .64πC .144πD .256π【答案】C 【解析】 【分析】 【详解】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C .考点:外接球表面积和椎体的体积.8.已知,a b r r 为非零向量,“22a b b a =r r r r ”为“a a b b =r r r r ”的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件【答案】B 【解析】 【分析】由数量积的定义可得220a a =>r r ,为实数,则由22a b b a =r r r r 可得22a b b a =r r r r ,根据共线的性质,可判断a b =r r ;再根据a a b b =r r r r 判断a b=r r ,由等价法即可判断两命题的关系. 【详解】若22a b b a =r r r r 成立,则22a b b a =r r r r ,则向量a r 与b r 的方向相同,且22a b b a =r r r r ,从而a b =r r ,所以a b =r r ; 若a a b b =r r r r ,则向量a r 与b r 的方向相同,且22a b =r r ,从而a b =r r ,所以a b =r r .所以“22a b b a =r r r r ”为“a a b b =r r r r ”的充分必要条件.故选:B 【点睛】本题考查充分条件和必要条件的判定,考查相等向量的判定,考查向量的模、数量积的应用.9.函数()sin()f x A x ωϕ=+的部分图象如图中实线所示,图中圆C 与()f x 的图象交于,M N 两点,且M 在y 轴上,则下列说法中正确的是A .函数()f x 的最小正周期是2πB .函数()f x 的图象关于点,034⎛⎫π ⎪⎝⎭成中心对称 C .函数()f x 在2(,)36ππ--单调递增 D .函数()f x 的图象向右平移512π后关于原点成中心对称【答案】B 【解析】 【分析】根据函数的图象,求得函数()sin 23f x A x π⎛⎫=+ ⎪⎝⎭,再根据正弦型函数的性质,即可求解,得到答案. 【详解】根据给定函数的图象,可得点C 的横坐标为3π,所以1()2362T πππ=--=,解得T π=,所以()f x 的最小正周期T π=, 不妨令0A >,0ϕπ<<,由周期T π=,所以2ω=,又06f π⎛⎫-= ⎪⎝⎭,所以3πϕ=,所以()sin 23f x A x π⎛⎫=+ ⎪⎝⎭, 令2,3x k k Z ππ+=∈,解得,26k x k Z ππ=-∈,当3k =时,43x π=,即函数()f x 的一个对称中心为4,03π⎛⎫ ⎪⎝⎭,即函数()f x 的图象关于点4,03π⎛⎫⎪⎝⎭成中心对称.故选B . 【点睛】本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题.10.已知变量x ,y 间存在线性相关关系,其数据如下表,回归直线方程为 2.10.5ˆ8yx =+,则表中数据m 的值为( )A .0.9B .0.85C .0.75D .0.5【答案】A 【解析】 【分析】计算,x y ,代入回归方程可得. 【详解】 由题意01231.54x +++==,3 5.5715.544m m y ++++==,∴15.52.1 1.50.854m +=⨯+,解得0.9m =. 故选:A. 【点睛】本题考查线性回归直线方程,解题关键是掌握性质:线性回归直线一定过中心点(,)x y .11.已知函数()()614,7,7x a x x f x a x -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( ) A .1(,0)2-B .1(2,)2-C .(1,1)-D .1(,1)2【答案】A 【解析】 【分析】首先根据()f x 为R 上的减函数,列出不等式组,求得112a ≤<,所以当a 最小时,12a =,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果. 【详解】由于()f x 为R 上的减函数,则有()1001714a a a a ⎧-<⎪<<⎨⎪≤-+⎩,可得112a ≤<, 所以当a 最小时,12a =, 函数()4y f x kx =--恰有两个零点等价于方程()4f x kx =+有两个实根, 等价于函数()y f x =与4y kx =+的图像有两个交点.画出函数()f x 的简图如下,而函数4y kx =+恒过定点()0,4,数形结合可得k 的取值范围为102k -<<.故选:A. 【点睛】该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中档题目. 12.若x yi +(,)x y ∈R 与31ii+-互为共轭复数,则x y +=( ) A .0B .3C .-1D .4【答案】C 【解析】 【分析】 计算3121ii i+=+-,由共轭复数的概念解得,x y 即可. 【详解】3121ii i+=+-Q,又由共轭复数概念得:x 1,y 2==-, 1x y ∴+=-.故选:C 【点睛】本题主要考查了复数的运算,共轭复数的概念. 二、填空题:本题共4小题,每小题5分,共20分。

相关文档
最新文档