第五章齿轮传动工程力学
齿轮传动课件

校核式
设计式
H 668
(u 1)3 KT1 ubd12
[ H ]
d1
76.433
KT1(u 1)
du H 2
1)公式中,“+”用于外啮合, “-”用于内啮合。 2)由于一对齿轮啮合时, σ H1= σ H2,但[σ H]1≠ [σ H]2,故应将两者中的较小值代 入公式。
机械设计基础
齿根弯曲疲劳强度计算
3)由于大、小齿轮的比值YF/ [σ F]可能不同,进行设计计 算时,应将两者中的较大值代入设计公式,并将求得的m后圆整 成标准值;
机械设计基础
直齿圆柱齿轮传动设计
直齿圆柱齿轮传动的设计计算步骤
1.闭式软齿面齿轮传动(硬度≤350 HBW) 1)选择齿轮材料、热处理方式、精度等级及计算许用应力; 2)合理选择齿轮参数,按接触疲劳强度设计公式算出小齿 轮分度圆直径; 3)计算齿轮的主要尺寸; 4)校核所设计的齿轮传动的弯曲疲劳强度; 5)确定齿轮的结构尺寸; 6)绘制齿轮的工作图。
设计时应根据工作条件、尺寸大小、毛坯制造及热处理方法等 因素综合考虑后选用。
齿面硬度差
热处理后的齿轮表面可分为软齿面(齿面硬度≤350HBS) 和硬齿面(齿面硬度>350HBS)两种。调质和正火后的齿面 一般为软齿面,表面淬火后的齿面为硬齿面。当大、小齿轮均 为软齿面时,由于单位时间内小齿轮应力循环次数多,为了使 大、小齿轮的寿命接近相等,推荐小齿轮的齿面硬度比大齿轮 高30~50HBS,或更高一些。传动比越大,齿面硬度差就应该 越大。当大、小齿轮均为硬齿面时,硬度差宜小不宜大。
机械设计基础
计算载荷
Fnc KFn
式中, K为载荷系数,用以考虑以下因素影响:
1)原动机和工作机的动力特性、轴和联轴器系统的质量和 刚度,以及运行状态等外部因素引起的附加动载荷。
0第五章_齿轮传动

2020/3/23
5.5 渐开线齿廓的根切现象与变位齿轮的概念
§5.5 渐开线齿廓的根切现象与变位齿轮的概念
一、渐开线齿廓的根切问题
用展成法加工齿轮时,若刀具的齿顶线(或齿顶圆)超过理 论啮合线极限点N时,被加工齿轮齿根附近的渐开线齿廓将被切 去一部分,这种现象称为根切。
a r 1 ' r ' r 1 r 2 m (z 1 z 2 )
➢齿轮的传动比可以进一步表示为
i12
1 rb2 r2'r2 z2 2 rb1 r1' r1 z1
➢径向方向上留有间隙c
c(h a *c*)m h a *m c*m
2020/3/23
5.3 渐开线直齿圆柱齿轮的啮合传动
2020/3/23
按照工作条件的不同,齿轮传动又可分为开式齿轮传动 和闭式齿轮传动。前者轮齿外露,灰尘易于落在齿面,后者 轮齿封闭在箱体内。
2020/3/23
5.2 渐开线直齿齿轮
§5.2 渐开线直齿齿轮
一、渐开线的形成及其特性
观看渐开线生成动画
2020/3/23
5.2 渐开线直齿齿轮
渐开线的特性
(1)发生线在基圆上滚过的长度等于基圆上被滚过的弧长,
2.铸钢
当齿轮较大(d > 400~600mm)或结构形状复杂而轮坯不宜锻造时, 可采用铸钢齿轮。
3.铸铁
铸铁齿轮的抗弯强度和耐冲击性均较差,常用于低速和受力不大的齿 轮传动中。通常用灰铸铁,有时也用球墨铸铁代替铸钢。
2020/3/23
5.6 齿轮常见的失效形式及常用材料
表5-3 齿轮常用材料及机械性能
2020/3/23
2024年机械设计基础课件齿轮传动

机械设计基础课件齿轮传动机械设计基础课件:齿轮传动1.引言齿轮传动是机械设计中的一种基本传动方式,广泛应用于各种机械设备的运动和动力传递。
齿轮传动具有结构简单、传动效率高、可靠性好、寿命长等优点,因此在工业生产和日常生活中得到广泛应用。
本课件将介绍齿轮传动的基本原理、分类、设计方法和应用。
2.齿轮传动的基本原理齿轮传动是利用齿轮副的啮合来传递动力和运动的一种传动方式。
齿轮副由两个或多个齿轮组成,其中主动齿轮通过旋转驱动从动齿轮,从而实现动力和运动的传递。
齿轮副的啮合是通过齿轮齿廓的接触来实现的,齿廓的形状和尺寸决定了齿轮传动的性能和精度。
3.齿轮传动的分类齿轮传动根据齿轮的形状和布置方式可分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动、直齿圆锥齿轮传动和蜗轮蜗杆传动等。
直齿圆柱齿轮传动是应用最广泛的一种齿轮传动方式,具有结构简单、制造容易、精度高等优点。
斜齿圆柱齿轮传动具有传动平稳、噪声低、承载能力强等优点,适用于高速和重载的传动场合。
直齿圆锥齿轮传动适用于空间狭小和角度传动的场合。
蜗轮蜗杆传动具有大传动比、自锁性和精度高等特点,适用于低速、大扭矩的传动场合。
4.齿轮传动的设计方法齿轮传动的设计主要包括齿轮的几何设计、强度设计和精度设计。
齿轮的几何设计是根据传动比、工作条件、材料等因素确定齿轮的齿数、模数、压力角等参数。
强度设计是保证齿轮传动在规定的工作条件下具有足够的承载能力和寿命,主要包括齿面接触强度和齿根弯曲强度的计算。
精度设计是保证齿轮传动的精度和运动平稳性,主要包括齿轮的加工精度和装配精度的控制。
5.齿轮传动的应用齿轮传动在工业生产和日常生活中得到广泛应用。
在机床、汽车、船舶、飞机等机械设备中,齿轮传动用于传递动力和运动,实现各种复杂的运动轨迹和速度变化。
在风力发电、水力发电等能源领域,齿轮传动用于传递高速旋转的动力,实现能源的转换和利用。
在、自动化设备等高科技领域,齿轮传动用于实现精确的运动控制和动力传递,提高设备的性能和效率。
机械基础齿轮传动

机械基础齿轮传动1. 简介齿轮传动是机械传动中常用的一种方式。
通过齿轮间的啮合,将动力传递给其他机械部件。
齿轮传动具有传动效率高、传动比稳定等特点,广泛应用于各种机械设备中。
2. 基本原理2.1 齿轮的分类齿轮按照齿面的形状可以分为直齿轮、斜齿轮、曲线齿轮等多种类型。
其中,直齿轮是最常见的一种类型,其齿面与齿轴平行。
斜齿轮则是齿面与齿轴呈角度,可以用来实现大范围的传动比变化。
2.2 齿轮的啮合原理齿轮传动的基本原理是齿轮之间的啮合。
当两个齿轮啮合时,齿轮上的齿将互相咬合,形成一个传递动力的系统。
通过选择合适的齿轮数量和齿轮的尺寸,可以实现不同的传动比。
2.3 传动比的计算传动比可以通过计算两个齿轮的齿数比值来确定。
传动比的计算公式如下:传动比 = 驱动齿轮的齿数 / 被动齿轮的齿数例如,如果驱动齿轮有40齿,被动齿轮有20齿,则传动比为2:1。
3. 齿轮传动的应用齿轮传动广泛应用于各种机械设备中,包括汽车、机床、重型机械等。
以下是齿轮传动的几个常见应用场景:3.1 汽车变速器汽车变速器是齿轮传动的典型应用之一。
通过改变不同齿轮之间的传动比,可以实现汽车的不同行驶速度。
例如,低速行驶时使用较小的齿轮传动比,以提供更大的扭矩和爬坡能力。
3.2 机床传动在机床上,齿轮传动被广泛用于传递动力和实现不同运动速度。
例如,齿轮传动可以将电机的高速旋转转换为工作台的低速运动,从而提供更大的精度和稳定性。
3.3 纺织机械传动纺织机械通常需要同时实现多个不同的运动方式,例如旋转、上下运动等。
齿轮传动可以根据需要实现不同的运动组合,满足纺织机械的工艺要求。
4. 齿轮传动的优缺点4.1 优点齿轮传动具有以下几个优点:•传动效率高:齿轮传动的传动效率通常在95%以上,较高的效率可以减少能量损耗。
•传动比稳定:齿轮传动通过确定齿轮的齿数来确定传动比,因此传动比较为稳定,不受外界影响。
•轴线传递能力强:齿轮传动能够传递较大的扭矩,适合传递大功率的动力。
机械设计基础第5章 齿轮传动-1原理1

课堂练习
今有一对外啮合的标准直齿圆柱齿轮,已知 m=4mm, z1=25, z2=75。试计算:中心距a,分度 圆直径d1、d2,齿顶圆直径da1、da2。
解: d1 mz1 4 25 100mm d 2 mz 2 4 75 300 mm da1 d1 2ha 100 2 1 4 108mm
齿轮插刀插外齿
齿轮插刀 齿条插刀
齿轮滚刀
滚直齿轮
滚斜齿轮
二、根切现象与最少齿数
二、根切现象与最少齿数
若刀具齿顶线超过N1点,则会将 根部已加工出的渐开线切去一 部分,这种现象称为根切。 根切使齿根削弱,还会使重合 度减小,所以应当避免。 标准齿轮是否发生根切取决于其 齿数的多少。当齿数增多时, 分度圆半径增大,轮坯中心上 移至O1’ 处,理论啮合点也随之 上移至N1 ’ 处,从而避免根切; 标准齿轮欲避免根切,其齿数z 反之,齿数越少,根切越严重。 必须大于或等于不根切的最少 齿数 。对于α=20°和ha* =1的 正常齿制标准渐开线齿轮,其 最少齿数zmin=17。
O1 O1
ω1 r′2 rb1 N1 ′ C N2 rb2 ω2 O2 r′1 rb2 r′1 r′2 ω1 rb1 N1 K
N2
C
K
ω2
O
三、渐开线齿廓啮合的其它特性
2、啮合线与啮合角 对于渐开线齿轮,无论在哪一 点接触,接触点总是在两基圆 的内公切线上 。 因此直线N1N2就是渐开线齿廓 的啮合线。 过节点C作两节圆的公切线,它 与啮合线N1N2间的夹角称啮合角 (α ’)。 啮合角等于节圆上的压力角α ’
a=r1’+r2’=r1+r2=m(z1+z2)/2
齿轮传动经典课件

未来展望
未来的发展方向将以更小、 更轻、更高效、更环保为特 点。
总结
本课件介绍了齿轮传动 的基本概念、设计、分 析以及应用和发展方向。
通过学习,您将能够深 入了解齿轮传动的知识, 为实际工作提供更优质 的支持。
感谢您的学习,我们期 待您的反馈和建议!
齿轮传动经典课件
本课程将带您深入了解齿轮传动,包括概念、设计、分析以及应用。通过本 课件的学习,您将深入了解齿轮传动原理,为实际工作提供更优质的支持。
齿轮传动概述
定义
通过齿轮传递动力和转矩 的一种机械传动方式。
分类
分为直接啮合式、链轮传 动式、摆线啮合式、蜗杆 蜗轮传动式等。
优缺点
优点包括效率高、承载能 力大,缺点包括振动大、 噪音高等。
齿轮的基本知识
定义及分类ຫໍສະໝຸດ 参数配合有直齿轮、斜齿轮、圆锥齿轮、 蜗杆等。
包括压力角、模数、法向系数、 齿数等。
齿轮之间的啮合必须满足一定 的啮合条件。
齿轮传动的设计
1
计算方法
包括齿轮数的确定、传动比的计算、转矩分析等。
2
设计流程
涵盖了基本的设计流程,如传动比计算、强度校核、精度校核等。
3
设计实例
展示了实际的齿轮传动设计案例,包括参数选择、齿形设计、校核计算等。
齿轮传动的分析与评价
1 质量评价
包括齿面精度、齿轮的运转平稳度、噪声等指标。
2 动力学分析
主要针对齿轮传动的振动、冲击等动态特性进行研究。
3 强度分析
主要针对齿轮强度的校核,确保传动可靠性和耐久性。
齿轮传动的应用与发展
机械制造中的应用
广泛应用于各类工业机械、 汽车、轨道交通等领域。
齿轮传动

■抗点蚀措施:提高齿面硬度和齿面加工精度;选用黏度合 适的润滑油等。
机械设计基础
(三)齿面胶合 对于重载、高速齿轮传动,因啮合区产生很大的摩擦热,导 致局部温度过高,使润滑油膜破裂,接触齿面金属发生粘着,随 着齿面的相对运动,使金属从齿面上撕落而引起严重的粘着磨损, 这种现象称为齿面胶合。 此外在重载低速齿轮传动中,由于局部齿面啮合处压力很 高,且速度低,不易形成油膜,使接触表面膜被刺破而粘着,也 产生胶合破坏,称之为冷胶合。 ■抗胶合措施:提高齿面硬度,减 小齿面粗糙度和齿轮模数,采用抗胶合 能力强的润滑油等。
常用材料及热处理选择
齿轮常用材料是钢、铸铁、非金属材料。
机械设计基础
1.钢 齿轮常用钢材为优质碳素钢、合金钢和铸钢,一般多用锻件 或轧制钢材; 较大直径(d>400~600mm)的齿轮不宜锻造,需采用铸钢 如ZG340-640、ZG40Cr等。因铸钢收缩率大,内应力大故加工前 应进行正火或回火处理。 齿轮按照不同的热处理方法所获得的齿面硬度的高低,分为 软齿面和硬齿面两类。
机械设计基础
计算载荷
Fnc KFn
式中, K为载荷系数,用以考虑以下因素影响:
1)原动机和工作机的动力特性、轴和联轴器系统的质量和 刚度,以及运行状态等外部因素引起的附加动载荷。
2)齿轮副在啮合过程中,因制造 误差及运转速度变化引起的内部附加 动载荷。
3)由于轴的变形和齿轮制造误差 等引起载荷沿齿宽方向分布不均性。
机械设计基础
直齿圆柱齿轮传动设计
直齿圆柱齿轮传动的设计计算步骤
1.闭式软齿面齿轮传动(硬度≤350 HBW) 1)选择齿轮材料、热处理方式、精度等级及计算许用应力; 2)合理选择齿轮参数,按接触疲劳强度设计公式算出小齿 轮分度圆直径; 3)计算齿轮的主要尺寸; 4)校核所设计的齿轮传动的弯曲疲劳强度; 5)确定齿轮的结构尺寸; 6)绘制齿轮的工作图。
机械设计基础课件第五章齿轮传动

(9) 齿根高 : 分度圆和齿根圆之间的 径向距离称为齿根高 , 用 hf 表示。显然 hf=(d-df)/2。 (10) 齿高: 齿顶圆和齿根圆之间的径 向距离称为齿高 , 用 h 表示。显然 h=ha+hf 。 (11) 齿轮宽度: 沿齿轮轴线的长度 称为齿宽, 用b表示。
5.3.2、渐开线齿轮的基本参数和尺寸计算
1、齿数:齿轮整个圆周上轮齿的总数, 用z表示。
2、 模数: 根据圆的周长和齿距的定义可知
d k zpk
dk
zpk
式中, 比值pk/π含有无理数π, 这给设计、制造及测量带来不便, 为此需在齿轮上取一圆, 将该圆pk/π的比值规定为标准值,并使该
圆上的压力角也为标准值, 这个圆即为分度圆。规定分度圆上的齿
5.1 齿轮传动的类型和特点
齿轮传动:用于传递空间任意两轴 之间的运动和动力。 一、齿轮传动的特点
①传动比准确; ②传动效率高;
优点: ③工作可靠、寿命长; ④结构紧凑;
⑤适用范围广。
①制造和安装精度要 求较高; 缺点: ②不适宜用于两轴 间距离较大的传动。
齿轮传动动画(3D)
二、齿轮传动的类型
1 O2 P r2' rb 2 i12 ' 2 O1 P r1 rb1
渐开线齿轮的传动比又与两轮基圆半径成反比。 其基圆的大小是不变的,所以当两轮的实际中心 距与设计中心距不一致时,而两轮的传动比却保 持不变。这一特性称为传动的可分性。
α
3. 齿廓间正压力方向不变
如图所示,过节点C作两节圆 的公切线t- t,它与啮合线n-n的 夹角α’称为啮合角。由理论力学 知道,齿廓间正压力方向为接触 点公法线方向,由于公法线与啮 合线重合且位置不变,显然,啮 合角α’是一个常数,所以齿廓间 正压力方向也不会改变。当齿轮 传递的转矩为常数时,正压力的 大小也不变。这对于提高齿轮传 动的平稳性是极为有利的。由图 还可知道,啮合角α’在数值上等 于渐开线在节圆上的压力角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渐开线齿轮(1765年) 准双曲面齿轮
动 的
按950年)
类
抛物线齿轮(近年)
型
按封闭形式分:开式齿轮传动、闭式齿轮传动。
ω1
作者:潘存云教授
ω2
1 2
椭圆齿轮
作者:潘存云教授
斜齿圆锥齿轮
作者:潘存云教授
曲线齿圆锥齿轮
准双曲面齿轮
§5-2 齿轮的齿廓设计
节圆
n
k
作者:潘存云教授
P n
ω2 r’2
o2
2.齿廓曲线的选择
理论上,满足齿廓啮合定律的曲线有无穷多,但考虑到便于制造和检测等因
素,工程上只有极少数几种曲线可作为齿廓曲线,如渐开线、其中应用最广的 是渐开线,其次是摆线(仅用于钟表)和变态摆线。(摆线针轮减速器),近年来提 出了圆弧和抛物线。
渐开线 ----应用最广
1.齿廓啮合基本定律
根据三心定律可知: P点为相对瞬心。
由: v12 =O1P ω1 =O2 P ω2 得: i12 =ω1/ω2=O2 P /O1P
v12
o1 ω1
n k
作者:潘存云教授
P
齿廓啮合基本定律: 互相啮合的一对齿轮在任一位
置时的传动比,都与连心线O1O2 被其啮合齿廓的在接触处的公法
n ω2
摆线
变态摆线
圆弧
抛物线
渐开线齿廓的提出已有近两百多年的历史,目前还没有其它曲线可以替代。
渐开线具有很好的传动性能,而且便于制造、安装、 测量和互换使用等优点。本章只研究渐开线齿轮。
§5-3 渐开线的形成及其特性
1、 渐开线的形成和特性 ―条直线在圆上作纯滚动时,直线 上任一点的轨迹 -渐开线
BK-发生线,基圆-rb θk-AK段的展角
§5-5 渐开线齿轮各部分的名称和尺寸
一、外齿轮 1.名称与符号
B
p
pk
齿顶圆- da、ra 齿根圆- df、rf
s ha
齿厚- sk 任意圆上的弧长
h
hf
ek e s 作者:潘存k 云教授
pn pb
rb
齿槽宽- ek 弧长 齿距 (周节)- pk= sk +ek 同侧齿廓弧长
rf r ra
法向齿距 (周节)- pn = pb 分度圆--人为规定的计算基准圆
i12=ω1/ω2= O2P/ O1P = rb2 /rb1 N2
--基圆半径之反比。基圆半径是定值
rb2
实际安装中心距略有变化时,不影
响i12,这一特性称为运动可分性, 对加工和装配很有利。
O1 ω1 rb1
N1 K 作者:潘存云教授
P C2 C1
ω2 O2
由于上述特性,工程上广泛采用渐开线齿廓曲线。
§5-1 齿轮机构的应用和分类
作用:传递空间任意两轴(平行、相交、交错)的旋 转运动,或将转动转换为移动。
优点: ①传动比准确、传动平稳。 ②圆周速度大,高达300 m/s。 ③传动功率范围大,从几瓦到10万千瓦。 ④效率高(η→0.99)、使用寿命长、工作安全可靠。 ⑤可实现平行轴、相交轴和交错轴之间的传动。
要使两齿轮作定传动比
传动,则两轮的齿廓无
工程意义:i12为常数可减少因速度变化所
论在任何位置接触,过 接触点所作公法线必须
产生的附加动载荷、振动和噪音,延长齿
与两轮的连心线交于一 个定点。
轮的使用寿命,提高机器的工作精度。
2.齿廓间正压力方向不变 N1N2是啮合点的轨迹, 称为啮合线
啮合线与节圆公切线之间
tgαk= BK/rb =AB/rb= rb(θk+αk)/rb θk = tgαk-αk 上式称为渐开线函数,用invαk 表示: θk =invαk =tgαk-αk 为使用方便,已制成函数表待查。
αk k vk
rk θ α A
B k作者:潘存k云教授
rb
O
4、渐开线方程 (极坐标方程) rk=rb/cosαk θk =invαk =tgαk-αk
cosαk = rb/rk
rk θ α A
B k作者:潘存k云教授
rb
O
④渐开线形状取决于基圆
K
⑤ 基圆内无渐开线。
当rb→∞,变成直线。
A Aθθ 2
1 作者:k潘存k云教授
BB1 2
顺口溜: 弧长等于发生线, 基圆切线是法线,
o1 o2
B3
曲线形状随基圆, 基圆内无渐开线。
o3
)
3、渐开线函数
O1 ω1
N1 α’
K 作者:潘存云教授 K’ P C2 C1 N2
的夹角α’ ,称为啮合角
rb2
实际上α’ 就是节圆上的压力角
ω2
由渐开线的性质可知:啮合线又是接
O2
触点的法线,正压力总是沿法线方向,
故正压力方向不变。该特性对传动的
平稳性有利。
3.运动可分性 △ O1N1P≌△O2N2P 故传动比又可写成:
o2
线所分成的两段成反比。
如果要求传动比为常数,则应使O2 P /O1P为常数。
由于O2 、O1为定点,故P必为一个定点。 o1
节圆: r’1 r’2
r’1
ω1
两节圆相切于P点,且两轮节点处
速度相同,故两节圆作纯滚动。 a
中心距: a=r’1+r’2 共轭齿廓:一对能实现预定传动
比(i12=ω1/ω2)规律 的 啮合齿廓。
缺点: 要求较高的制造和安装精度,加工成本高、不适 宜远距离传动(如单车)。
分类:
外齿轮传动 直齿 内齿轮传动
平面齿轮传动 (轴线平行)
圆柱齿轮 非圆柱齿轮
斜齿 人字齿
齿轮齿条 直齿
按相对 运动分
空间齿轮传动
两轴相交
圆锥齿轮 球齿轮
斜齿 曲线齿
齿
(轴线不平行)
蜗轮蜗杆传动
轮
两轴交错 交错轴斜齿轮
传
2、渐开线的特性
渐开线
t
k
t
A
rk 发生线
θk
B
r
作者:潘存云教授
b
O
基圆
① AB = BK;
②渐开线上任意点的法线切于基圆,切 点B点为曲率中心,BK为曲率半径。
渐开线起始点A处曲率半径为0
αk
③离中心越远,渐开线上的压力角越大。 vk
k
定义:啮合时K点正压力方向与速度方向 所夹锐角为渐开线上该点之压力角αk。
表示符号: d、r、s、e,p= s+e
齿顶高ha 齿根高 hf 齿全高 h= ha+hf O 齿宽- B
2.基本参数 ①齿数-z
②模数-m
分度圆周长:πd=zp,
出现无理数,不方便为了计算、 制造和检验的方便
§5-4 渐开线齿廓的啮合特性
1.渐开线齿廓满足定传动比要求
O1 ω1
N1
两齿廓在任意点K啮合时,过K作 两齿廓的法线N1N2,是基圆的切线,N2
K 作者:潘存云教授 K’ P C2 C1
为定直线。
rb2
两轮中心连线也为定直线,故交
ω2
点P必为定点。在位置K’时同样有此结论。
O2
i12=ω1/ω2=O2P/ O1P=const