设备设计计算与选型
化工设备选型及设计计算

化工设备选型及设计计算1. 简介化工设备的选型及设计计算在化工工程设计中起着至关重要的作用。
合理的设备选型和设计计算可以提高生产效率、降低生产成本,同时保证设备的安全运行。
本文将介绍化工设备的选型和设计计算的基本原理和方法。
2. 化工设备选型2.1 设备选型的原则在进行设备选型时,需要考虑以下几个原则:1.工艺要求:设备的选型必须满足工艺流程的要求,包括温度、压力、流量、反应时间等方面。
2.材料的适应性:设备的材料必须能适应工艺介质的性质,包括酸碱性、腐蚀性、温度和压力等。
3.经济性:设备的选型应综合考虑设备的投资和运行成本。
2.2 设备选型的步骤设备选型的步骤一般包括以下几个方面:1.确定工艺流程:首先需要确定工艺流程,包括反应过程、分离过程等。
根据工艺流程确定所需的设备种类。
2.评估设备性能:评估设备的性能指标,包括设备的传热效率、传质效率、搅拌效果等。
3.比较不同设备类型:根据设备的性能指标,比较不同种类的设备,选择经济合理且能满足工艺流程要求的设备。
4.考虑设备的维护和运行成本:除了设备的投资成本外,还需要考虑设备的维护和运行成本,包括能耗、人力和维护费用等。
3. 化工设备设计计算3.1 设计计算的目的化工设备的设计计算是为了确定设备的主要参数和尺寸,包括设备的体积、负荷、结构等。
3.2 设计计算的基本原理设备的设计计算是根据工艺流程和设备的选型结果进行的。
根据工艺流程,可以确定设备的工艺参数,如温度、压力、流量等。
根据设备的选型结果,可以确定设备的尺寸和结构。
3.3 设计计算的步骤设计计算的步骤一般包括以下几个方面:1.确定工艺参数:根据工艺流程确定设备的工艺参数,如温度、压力、流量等。
2.确定设备的尺寸:根据工艺参数和设备选型结果,确定设备的尺寸,如设备的直径、高度等。
3.计算设备的负荷:根据工艺参数和设备的尺寸,计算设备的负荷,包括传热负荷、传质负荷等。
4.设计设备的结构:根据设备的尺寸和负荷,设计设备的结构,包括设备的支撑、连接等。
引风机设计计算与选型

引风机设计计算与选型引风机是一种常见的工业设备,用于输送气体、增加气流速度和压力。
在工程设计中,引风机的设计计算与选型是非常重要的环节,直接影响设备的运行效果和能耗。
本文将从设计计算和选型两个方面进行探讨。
一、引风机设计计算引风机设计计算是为了确定设备的主要参数,包括风量、风压、功率等。
下面将介绍几个关键的设计计算。
1. 风量计算风量是引风机的主要性能指标之一,表示单位时间内通过引风机的气体体积。
风量的计算需要考虑气体的密度、温度、压力等因素。
一般来说,风量的计算可以通过流量计等仪器测量得到,也可以通过气体的质量流量和密度计算得到。
2. 风压计算风压是引风机提供的气体压力,是引风机的另一个重要性能指标。
风压的计算需要考虑气体的流速、管道的阻力、弯头和分支等因素。
一般来说,风压的计算可以通过风压计等仪器测量得到,也可以通过流速和管道阻力计算得到。
3. 功率计算引风机的功率是指引风机所消耗的电能或机械能。
功率的计算需要考虑风量、风压和效率等因素。
一般来说,功率的计算可以通过电表或功率计等仪器测量得到,也可以通过风量、风压和效率的关系计算得到。
二、引风机选型引风机的选型是根据设计要求和工况条件,选择适合的引风机型号和规格。
下面将介绍几个关键的选型因素。
1. 设计要求引风机的选型首先要根据设计要求确定,包括风量、风压、噪声、效率等指标。
根据设计要求,可以确定引风机的基本参数范围,如风量范围、风压范围等。
2. 工况条件引风机的选型还需要考虑工况条件,包括气体的温度、湿度、粉尘含量等。
不同的工况条件对引风机的材质、密封性能、耐腐蚀性能等都有一定要求,因此需要根据实际工况选择适合的引风机。
3. 经济性引风机的选型还需要考虑经济性。
不同的引风机型号和规格的价格、能耗等都有差异,需要综合考虑设备的投资成本、运行成本和维护成本,选择经济性最好的引风机。
总结:引风机的设计计算与选型是工程设计中非常重要的环节。
设计计算需要确定风量、风压、功率等主要参数,选型需要考虑设计要求、工况条件和经济性等因素。
化工设备的选型和设计计算

5.2 贮罐
分类
A.立式贮罐 平底平盖系列、平底锥系列底 90°无折边锥形底平盖系列、立式球形封头系列 90°折边锥形底、椭圆形盖系列、立式椭圆封头系列 以上系列适用非易燃易爆、非剧毒化工液体 B.卧式贮罐 卧式无折边球形封头系列 :适用非易燃易爆、非剧毒 化工液体。P≤0.07MPa 卧式有折边球形封头系列 :化工液体。P=0.25~4.0MPa
温度、压力和化学性质、物性参数取提有关设备
的负荷、流程中的地位与流程中其他设备的关系
等数据。 ② 设计换热器流程 将换热的工艺流程仔细探讨,以利于充分利用热 量和热流。
③ 设计换热器的材质 根据介质的腐蚀性和其它有关性,按照操作压力、
温度、材料规格和制造价格,合理选择。
④ 选择换热器的类型。
⑤ 确定换热器中冷热流体的流向,根据截体的性质,
叉式装卸车、手动液压装卸车、圆筒搬运车、液压升
降台等,指标:起重重量、升高高度、空载行走速
度等。
C.运输设备 移动式皮带输送机、气垫式输送机、螺旋输送机、 载货电梯等
D.给料设备 电磁振动给料机、振动漏斗等,技术指标:进了 尺寸、激振电动机 型号与功率、激振力等 E.破碎设备
粗碎颚式破碎机、环锤式破碎机、锤式破碎机等。
内热式回转 炉 外热式回转 炉
直立圆筒形炉-垂直燃烧式(底烧)
箱式炉-卧式-水平燃烧式
垂直燃烧式(底烧)
管式炉
卧管(水平管) 水平燃烧式 特殊燃烧式 立式炉 垂直燃烧式(底烧) 立管(垂直管) 水平燃烧式 管式炉特殊燃烧式
冷却塔
干式 直接式 间接式 自然通风 冷却塔分类 湿式 机械通风 抽风式 开放式 逆流式 横流式 逆流式 横流式 鼓风式 -逆流式
第5章 设备的选型和设计计算
设备的设计与选型概述

设备的设计与选型概述引言设备的设计和选型是产品开发过程中关键的一步。
合理的设计与选型能够直接影响到产品的性能、功能和可靠性,因此在产品设计阶段需要认真对待。
本文旨在概述设备的设计与选型过程,介绍设计的要点和选型的考虑因素,以帮助读者了解设备的设计与选型的重要性。
设计的要点设备的设计是产品开发阶段中的核心环节,它涉及到外观设计、内部结构设计、电路设计等多个方面。
以下是设备设计的一些要点:1. 外观设计外观设计是产品的第一印象,它能够直接影响用户对产品的认知和接受度。
在外观设计中,需要考虑以下因素:•产品的定位和目标用户群体•产品的功能和特点•产品的材质和工艺通过合理的外观设计,可以使产品更加吸引人,提升用户体验。
2. 内部结构设计内部结构设计是设备的骨架,它决定了设备的稳定性和可靠性。
在内部结构设计中,需要考虑以下因素:•设备的布局和模块划分•板卡和连接件的选择•散热和防尘措施通过合理的内部结构设计,可以提高设备的稳定性,减少故障率。
3. 电路设计电路设计是设备的核心部分,它决定了设备的功能和性能。
在电路设计中,需要考虑以下因素:•电源系统的设计和选择•信号处理和控制电路的设计•电路的稳定性和抗干扰能力通过合理的电路设计,可以提高设备的性能,增加其功能和实用性。
选型的考虑因素设备的选型是在设计的基础上进行的,它涉及到诸多因素的综合考虑。
以下是设备选型的一些考虑因素:1. 性能需求根据设备的使用场景和应用需求,需要对设备的性能进行明确的规定。
例如,设备的处理能力、存储容量、传输速率等。
在选型过程中,需要与供应商进行充分的沟通,确保选型的设备能够满足产品的性能需求。
2. 成本控制成本是企业生产力的重要因素,因此在选型过程中需要充分考虑成本的控制。
需要综合考虑设备价格、运营成本、维护成本等因素,寻找性价比最高的设备。
3. 可靠性和稳定性设备的可靠性和稳定性直接影响到产品的质量和用户体验。
在选型过程中,需要考虑设备的质量口碑、供应商的信誉、售后服务等因素,确保选型的设备能够稳定运行。
设备的设计与选型

精选ppt
第二节 专业设备的设计与选型
• 一、专业设备设计与选型的依据 • 二、专业设备设计与选型的程序和
内容 • 三、计算选型实例
精选ppt
一、专业设备设计与选型的依据
1、工艺计算结果 成品量、物料量、汽、水、空气、冷耗量
2、工艺操作的最适外部条件 温度、压力、真空度等
Δt1=32-20=12 (℃ )
Δt2=32-27=(5℃)
Δtm=8 (℃ ) P118
换热面积(牛顿传热定律公式)
A=Q/(K×Δtm) =4.18×6000×440/(4.18×500×8)
=660(m2)
每m3发酵液每小时传给冷却器的最大热量 4.18×6000kJ/(m3h)
竖式列管式换热器K=4.18×500kJ/(m3h ℃) 精选ppt
面积
精选ppt
二、发酵设备设计与选型的内容(12)
(7)设备的传动搅拌和动力消耗的计算。 (8)设备结构的工艺设计。 (9)支撑方式的计算选型。 (10)壁厚的计算选择。 (11)材质的选择和用量的计算。 (12)其他特殊情况的考虑。
精选ppt
三、计算选型实例
• 对发酵产品要充分了解。产品之间差异大 生产特点、原料性质来源、现阶段生产水平 可能达到的技术经济指标、有效生产天数、 各个环节生产周期
精选ppt
(6)搅拌轴功率的计算
修正的迈凯尔(Michel.B.J)公式求搅拌功率, 并由此选择电机。 淀粉水解糖低浓度细菌醪,可视为牛顿流体。 1、计算Rem 2、计算不通气时搅拌功率P0 3、计算通气时的搅拌功率Pg 4、求电机功率 谷氨酸发酵按1kW/m3发酵醪,550m3装440m3 取功率大于440kW的电机
(完整word版)设备设计与选型

设备设计与选型7.1全厂设备概况及主要特点全厂主要设备包括反应器6台,塔设备3台,储罐设备8台,泵设备36台,热交换器19台,压缩机2台,闪蒸器2台,倾析器1台,结晶器2台,离心机1台,共计80个设备。
本厂重型机器多,如反应器、脱甲苯塔、脱重烃塔,设备安装时多采用现场组焊的方式.在此,对反应器、脱甲苯塔等进行详细的计算,编制了计算说明书。
对全厂其它所有设备进行了选型,编制了各类设备一览表(见附录).7。
2反应器设计7.2.1概述反应是化工生产流程中的中心环节,反应器的设计在化工设计中占有重要的地位。
7.2。
2反应器选型反应器的形式是由反应过程的基本特征决定的,本反应的的原料以气象进入反应器,在高温低压下进行反应,故属于气固相反应过程。
气固相反应过程使用的反应器,根据催化剂床层的形式分为固定床反应器、流化床反应器和移动床反应器。
1、固定床反应器固定床反应器又称填充床反应器,催化剂颗粒填装在反应器中,呈静止状态,是化工生产中最重要的气固反应器之一。
固定床反应器的优点有:①反混小②催化剂机械损耗小③便于控制固定床反应器的缺点如下:①传热差,容易飞温②催化剂更换困难2、流化床反应器流化床反应器,又称沸腾床反应器。
反应器中气相原料以一定的速度通过催化剂颗粒层,使颗粒处于悬浮状态,并进行气固相反应.流态化技术在工业上最早应用于化学反应过程。
流化床反应的优点有:①传热效果好②可实现固体物料的连续进出③压降低流化床反应器的缺点入下:①返混严重②对催化剂颗粒要求严格③易造成催化剂损失3、移动床反应器移动床反应器是一种新型的固定床反应器,其中催化剂从反应器顶部连续加入,并在反应过程中缓慢下降,最后从反应器底部卸出.反应原料气则从反应器底部进入,反应产物由反应器顶部输出,在移动床反应器中,催化剂颗粒之间没有相对移动,但是整体缓慢下降,是一种移动着的固定床,固得名。
本项目反应属于低放热反应,而且催化剂在小试的时候曾连续运行1000小时不发生失活,所以为了最大限度的发挥催化剂高选择性和高转化率的优势,减少催化剂损失,流程的反应器采用技术最成熟的固定床反应器。
过程设备设计与选型的主要内容

过程设备设计与选型的主要内容过程设备设计与选型是指对工业过程设备进行设计和选择的过程。
它包括了以下主要内容:1.设计要求和规范:明确工业过程的要求和规范,例如生产能力、操作参数、工艺流程、环境要求等。
这些信息将对设备的设计和选型产生重要影响。
2.工艺流程分析:对整个工艺流程进行分析,包括原料处理、反应过程、处理和分离、产品收集等。
了解每个步骤的输入、输出、温度、压力和流量等参数,以及所需的操作和设备。
3.设备选型:根据工艺流程要求,选择适合的设备。
这可能涉及到反应器、分离器、加热器、冷却器、储存罐、泵和阀门等等。
设备的选择应考虑工艺要求、可靠性、安全性、可维护性、可操作性和经济性等因素。
4.材料选择:选择适合的材料来制造设备。
材料的选择应考虑流体的特性(如腐蚀性、温度和压力)、设备的寿命和成本等因素。
5.设备设计和布局:根据工艺要求和设备选型,进行设备细节设计和布局。
这包括设备的大小、形状、连接管道和支撑结构等。
6.安全性分析:对设备的安全性进行评估和分析,防止潜在的危险和意外。
这可能需要进行风险评估、安全阀和爆破片的设计、操作规程等。
7.运营成本分析:评估设备的运营成本,包括能耗、维护成本、备件需求和人工成本等方面的考虑。
8.经济性分析:评估设备的投资回报,包括设备的购买成本、运营成本以及技术和市场风险等。
以上是过程设备设计与选型的主要内容。
这个过程需要综合考虑工艺要求、设备的性能和可用性、安全性、经济性以及可操作性等因素,以确保设备的良好运行和工业过程的有效实施。
设备设计与选型

设备设计与选型引言设备设计与选型是在工程项目中非常重要的一步。
合理的设备设计与选型可以确保项目的顺利进行和高效运作。
在本文中,我们将介绍设备设计与选型的一些基本概念和流程,并提供一些建议,以帮助您进行有效的设备设计和选型。
设备设计基本概念设备设计是指根据项目需求和技术要求进行设备的详细设计过程。
在设备设计中,需考虑诸多因素,如项目的规模、功能要求、性能指标、可靠性要求、成本效益等。
设备设计的基本概念包括:1.功能要求:明确设备需要实现的功能,如控制、传感、监测等功能。
2.性能指标:确定设备需要达到的性能指标,如精度、响应速度、输出功率等。
3.可靠性要求:设备的可靠性是保证设备长期运行的关键,需要考虑设备的寿命、稳定性和维护成本等。
4.成本效益:设备设计需要考虑成本效益,包括设备的采购成本、运行成本和维护成本等。
设备选型流程设备选型是根据设备设计需求和技术要求,筛选合适的设备进行购买的过程。
设备选型的流程主要包括以下几个步骤:1.确定设备需求:根据项目的功能要求、性能指标和可靠性要求,明确需要购买的设备的基本参数和规格。
2.市场调研:通过网络、参展和咨询等方式,了解市场上各种设备的类型、品牌、性能和价格等信息。
3.技术评估:对市场上符合需求的设备进行技术评估,包括设备的技术数据、性能测试和用户评价等。
4.制定选型方案:根据技术评估结果,制定设备选型方案,包括挑选设备的品牌、型号和规格等具体信息。
5.比较与选择:将不同设备的选型方案进行比较和权衡,选择最适合项目需求和预算的设备。
6.报价与采购:根据选定的设备型号和供应商,向供应商索取报价,与供应商进行谈判,并最终确定采购方案。
7.设备安装与调试:将采购的设备进行安装和调试,确保设备能够正常运行并满足项目需求。
设备设计与选型建议在进行设备设计和选型时,以下是一些常见的建议和注意事项:1.充分了解项目需求:在进行设备设计和选型之前,充分了解项目的功能要求、性能指标和可靠性要求等,确保选出的设备能够满足项目的实际需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三部分 设备设计计算与选型3.1苯∕甲苯精馏塔的设计计算通过计算D=1.435kmol/h ,η=FD F D x x ,设%98=η可知原料液的处理量为F=7.325kmol/h ,由于每小时处理量很小,所以先储存在储罐里,等20小时后再精馏。
故D=28.7h koml ,F=146.5kmol/h ,组分为18.0x =F ,要求塔顶馏出液的组成为90.0x D =,塔底釜液的组成为01.0x W =。
设计条件如下:操作压力:4kPa (塔顶表压); 进料热状况:自选;回流比:自选; 单板压降:≤0.7kPa ; 全塔压降:%52=T E 。
3.1.1精馏塔的物料衡算(1) 原料液及塔顶、塔底产品的摩尔分率苯的摩尔质量 11.78M A =kg/kmol甲苯的摩尔质量 13.92M B =kg/kmol18.0x =F 90.0x D = 01.0x W =(2) 原料液及塔顶、塔底产品的平均摩尔质量=F M 0.18×78.11+(1-0.18)×92.13=89.606kg/kmol=D M 0.9×78.11+(1-0.9)×92.13=79.512kg/kmol=W M 0.01×78.11+(1-0.01)×92.13=91.9898kg/kmol(3) 物料衡算原料处理量 F=146.5kmol/h总物料衡算 146.5=D+W苯物料衡算 146.5×0.18=0.9×D+0.01×W联立解得 D=27.89kmol/hW=118.52kmol/h3.1.2 塔板数的确定(1)理论板层数T N 的求取苯—甲苯属理想物系,可采用图解法求理论板层数。
①由物性手册查得苯—甲苯物系的气液平衡数据,绘出x —y 图,见下图3.1图3.1图解法求理论板层数②求最小回流比及操作回流比。
采用作图法求最小回流比。
在图中对角线上,自点e (0.45,0.45)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为667.0y q =450.0x q = 故最小回流比为1.1217.0233.045.0667.0667.09.0x y y x q q qmin ==--=--=D R 取操作回流比为R=22.21.12min =⨯=R③求精馏塔的气、液相负荷L=RD=2.2×27.89=61.358kmol/hV=(R+1)D=(2.2+1)×27.89=89.248kmol/h858.2075.146358.611=+=+=F L L kmol/h248.891==V V kmol/h④求操作线方程精馏段操作线方程为3215.0x 6875.09.0248.8989.27x 248.89358.61x x y +=⨯+=+=D V D V L 提馏段操作线方程为0132.0x 329.201.0248.8952.118x 248.89858.207x x y 1111111-=⨯-==W V W V L — ⑤图解法求理论板层数采用图解法求理论板层数,如图5.1。
求解结果为总理论板层数T N =12.5(包括再沸器)进料板位置 6=F N(2)实际板层数的求取精馏段实际板层数 6.952.05==精N 取10提馏段实际板层数 42.1452.05.7==F N 取153.1.3精馏塔的工艺尺寸及有关物性数据的计算以精馏段为例计算。
(1) 操作压力计算塔顶操作压力 3.10543.101=+=D P kPa每层塔板压降a k 7.0P P =∆ 进料板压力3.112107.03.101=⨯+=F P kPa 精馏段平均压力a k 8.1082/3.1123.105m P P =+=)((2) 操作温度计算依据操作压力,由泡点方程通过试差法计算出泡点温度,其中苯,甲苯的饱和蒸气压由安托尼方程计算,计算过程略。
计算结果如下:塔顶温度1.82t =D ℃ 进料板温度5.99t =F ℃ 精馏段平均温度8.902/5.991.82t m =+=)(℃(3) 平均摩尔质量计算塔顶平均摩尔质量计算: 由9.0y x 1==D ,查平衡曲线得1x =0.916=m VD M 0.9×78.11+(1-0.9)×92.13=79.512kg∕kmol =m LD M 0.916×78.11+(1-0.916)×92.13=79.288kg∕kmol 进料板平均摩尔质量计算:由图解理论板得=F y 0.604查平衡曲线得=F x 0.388=m VF M 0.604×78.11+(1-0.604)×92.13=83.66kg∕kmol =m LF M 0.388×78.11+(1-0.388)×92.13=86.69kg∕kmol 精馏段平均摩尔质量:=m V M (79.512+83.66)/2=81.586 kg∕kmol=m L M (79.299+86.69)/2=82.99 kg∕kmol(4) 平均密度的计算(1)气相平均密度计算==mvm m m RT M P V ρ93.215.2738.90314.8586.818.108=+⨯⨯)(3/kg m (2)液相平均密度计算 液相平均密度依下式计算,即∑=i im a 1ρρL塔顶液相平均密度的计算:由D t =82.1℃,查手册得 A ρ=812.7kg∕m 3 =B ρ807.93/kg m5.8129.80704.07.81296.01m =+=)(LD ρ3/kg m 进料板液相平均密度的计算:由=F t 99.5℃,查手册得A ρ=793.13/kg m=B ρ790.83/kg m 进料板液相的质量分率350.013.92612.011.78388.011.78388.0a =⨯+⨯⨯=A 6.7918.79065.01.79335.01m =+=)(LF ρ3/kg m 精馏段液相平均密度为=m L ρ(812.5+791.6)/2=802.13/kg m(5) 液体平均表面张力计算液体平均表面张力依下式计算,即∑=i i m x σσL塔顶液相平均表面张力的计算由D t =82.1℃,查手册得=A σ21.24mN∕m =B σ21.42mN∕m=m LD σ0.9×21.24+0.1×21.42=21.25mN∕m进料板液相平均表面张力的计算:由=F t 99.5℃,查手册得=A σ18.90mN∕m =B σ20.0mN∕mm LF σ=0.388×18.90+0.612×20.0=19.57mN∕m精馏段液相平均表面张力为m L σ=(21.25+19.57)/2=20.41mN∕m(6) 液体平均粘度计算液体平均粘度依下式计算,即i i m lg x μμ∑=L Lg塔顶液相平均粘度的计算由D t =82.1℃,查物性手册得=A μ0.302mPa·s =B μ0.306mPa·s Lg =m LD μ0.9Lg (0.302)+0.1Lg (0.306)解出 =m LD μ0.302mPa·s进料板液相平均粘度的计算:由=F t 99.5℃,查物性手册得=A μ0.256mPa·s =B μ0.265mPa·s m LF Lg μ=0.388Lg (0.256)+0.612Lg (0.265)解出 =m LF μ0.261mPa·s精馏段液相平均表面张力为=m L μ(0.302+0.261)/2=0.282mPa·s 3.1.4 精馏塔的塔体工艺尺寸计算(1) 塔径的计算精馏段的气、液相体积流率为=⨯⨯==93.23600586.81248.893600m m V V S VM V ρ0.690s /m 3 s m 0017.01.802360099.82358.6136003m m =⨯⨯==L L S LM L ρ 由max L V VC ρρυρ-= 式中C 由式计算,其中的20C 由课本查取,图的横坐标为21h h93.21.8023600007.036000017.0)(⨯⨯=V L V L ρρ=4.018 取板间距m 40.0=T H ,板上液层高度h L =0.06m ,则-T H h L =0.40-0.06=0.34m查图得20C =0.0720723.02041.20072.0)20(2.02.020=⎪⎭⎫ ⎝⎛==LC C σmax 1.196m s L V VC ρρυρ-== 取安全系数为0.7,则空塔气速为U=0.7max υ=0.7×1.196=0.837m∕s440.690 1.020.837SV D m πυπ⨯===⨯ 按标准塔径园整后为 D=1.2m塔截面积为221.20.942m 44T A D ππ==⨯=实际空塔气速为s m 883.0785.0693.0==υ (2) 精馏塔有效高度的计算精馏段有效高度为=-=T H N Z )(精精1(10-1)×0.4=3.6m 提馏段有效高度为=-=T H N Z )(提提1(15-1)×0.4=5.6m 在进料板上方开一人孔,其高度为0.8m故精馏塔的有效高度为Z==++8.0提精Z Z 3.6+5.6+0.8=10m3.1.5 塔板主要工艺尺寸的计算1 溢流装置计算因塔径为D=1.0m ,可选单溢流弓形降液管,采用凹形受液盘。
各项计算如下:(1) 堰长W l取W l =0.66D=0.66×1.0=0.66m(2)溢流堰高度W h取O W L W h h h -=选用平直堰,堰上液层高度OW h 由下式计算 即32h l 100084.2h ⎪⎪⎭⎫ ⎝⎛=W OW L E 近似取E=1,则 m 0013.0l 1100084.2h 32h =⎪⎪⎭⎫ ⎝⎛⨯=W OW L 取板上清液层高度L h =60mm故W h =0.06-0.013=0.047m(3)弓形降液管宽度f d A W 和截面积 由66.0l =DW 查课本图得0722.0f =TA A 124.0d =D W 故f A =0.0722T A =0.0722×0.785=0.0567m 2==D W 124.0d 0.124×1.0=0.124m 依下式验算液体在降液管中提留时间θ,即s 34.1336000017.040.00567.036003600h f =⨯⨯⨯==L H A T θ>5s故降液管设计合理。