设备的选型和设计计算

合集下载

化工设备选型及设计计算

化工设备选型及设计计算

化工设备选型及设计计算1. 简介化工设备的选型及设计计算在化工工程设计中起着至关重要的作用。

合理的设备选型和设计计算可以提高生产效率、降低生产成本,同时保证设备的安全运行。

本文将介绍化工设备的选型和设计计算的基本原理和方法。

2. 化工设备选型2.1 设备选型的原则在进行设备选型时,需要考虑以下几个原则:1.工艺要求:设备的选型必须满足工艺流程的要求,包括温度、压力、流量、反应时间等方面。

2.材料的适应性:设备的材料必须能适应工艺介质的性质,包括酸碱性、腐蚀性、温度和压力等。

3.经济性:设备的选型应综合考虑设备的投资和运行成本。

2.2 设备选型的步骤设备选型的步骤一般包括以下几个方面:1.确定工艺流程:首先需要确定工艺流程,包括反应过程、分离过程等。

根据工艺流程确定所需的设备种类。

2.评估设备性能:评估设备的性能指标,包括设备的传热效率、传质效率、搅拌效果等。

3.比较不同设备类型:根据设备的性能指标,比较不同种类的设备,选择经济合理且能满足工艺流程要求的设备。

4.考虑设备的维护和运行成本:除了设备的投资成本外,还需要考虑设备的维护和运行成本,包括能耗、人力和维护费用等。

3. 化工设备设计计算3.1 设计计算的目的化工设备的设计计算是为了确定设备的主要参数和尺寸,包括设备的体积、负荷、结构等。

3.2 设计计算的基本原理设备的设计计算是根据工艺流程和设备的选型结果进行的。

根据工艺流程,可以确定设备的工艺参数,如温度、压力、流量等。

根据设备的选型结果,可以确定设备的尺寸和结构。

3.3 设计计算的步骤设计计算的步骤一般包括以下几个方面:1.确定工艺参数:根据工艺流程确定设备的工艺参数,如温度、压力、流量等。

2.确定设备的尺寸:根据工艺参数和设备选型结果,确定设备的尺寸,如设备的直径、高度等。

3.计算设备的负荷:根据工艺参数和设备的尺寸,计算设备的负荷,包括传热负荷、传质负荷等。

4.设计设备的结构:根据设备的尺寸和负荷,设计设备的结构,包括设备的支撑、连接等。

引风机设计计算与选型

引风机设计计算与选型

引风机设计计算与选型引风机是一种常见的工业设备,用于输送气体、增加气流速度和压力。

在工程设计中,引风机的设计计算与选型是非常重要的环节,直接影响设备的运行效果和能耗。

本文将从设计计算和选型两个方面进行探讨。

一、引风机设计计算引风机设计计算是为了确定设备的主要参数,包括风量、风压、功率等。

下面将介绍几个关键的设计计算。

1. 风量计算风量是引风机的主要性能指标之一,表示单位时间内通过引风机的气体体积。

风量的计算需要考虑气体的密度、温度、压力等因素。

一般来说,风量的计算可以通过流量计等仪器测量得到,也可以通过气体的质量流量和密度计算得到。

2. 风压计算风压是引风机提供的气体压力,是引风机的另一个重要性能指标。

风压的计算需要考虑气体的流速、管道的阻力、弯头和分支等因素。

一般来说,风压的计算可以通过风压计等仪器测量得到,也可以通过流速和管道阻力计算得到。

3. 功率计算引风机的功率是指引风机所消耗的电能或机械能。

功率的计算需要考虑风量、风压和效率等因素。

一般来说,功率的计算可以通过电表或功率计等仪器测量得到,也可以通过风量、风压和效率的关系计算得到。

二、引风机选型引风机的选型是根据设计要求和工况条件,选择适合的引风机型号和规格。

下面将介绍几个关键的选型因素。

1. 设计要求引风机的选型首先要根据设计要求确定,包括风量、风压、噪声、效率等指标。

根据设计要求,可以确定引风机的基本参数范围,如风量范围、风压范围等。

2. 工况条件引风机的选型还需要考虑工况条件,包括气体的温度、湿度、粉尘含量等。

不同的工况条件对引风机的材质、密封性能、耐腐蚀性能等都有一定要求,因此需要根据实际工况选择适合的引风机。

3. 经济性引风机的选型还需要考虑经济性。

不同的引风机型号和规格的价格、能耗等都有差异,需要综合考虑设备的投资成本、运行成本和维护成本,选择经济性最好的引风机。

总结:引风机的设计计算与选型是工程设计中非常重要的环节。

设计计算需要确定风量、风压、功率等主要参数,选型需要考虑设计要求、工况条件和经济性等因素。

化工设备的选型和设计计算

化工设备的选型和设计计算

5.2 贮罐
分类
A.立式贮罐 平底平盖系列、平底锥系列底 90°无折边锥形底平盖系列、立式球形封头系列 90°折边锥形底、椭圆形盖系列、立式椭圆封头系列 以上系列适用非易燃易爆、非剧毒化工液体 B.卧式贮罐 卧式无折边球形封头系列 :适用非易燃易爆、非剧毒 化工液体。P≤0.07MPa 卧式有折边球形封头系列 :化工液体。P=0.25~4.0MPa
温度、压力和化学性质、物性参数取提有关设备
的负荷、流程中的地位与流程中其他设备的关系
等数据。 ② 设计换热器流程 将换热的工艺流程仔细探讨,以利于充分利用热 量和热流。
③ 设计换热器的材质 根据介质的腐蚀性和其它有关性,按照操作压力、
温度、材料规格和制造价格,合理选择。
④ 选择换热器的类型。
⑤ 确定换热器中冷热流体的流向,根据截体的性质,
叉式装卸车、手动液压装卸车、圆筒搬运车、液压升
降台等,指标:起重重量、升高高度、空载行走速
度等。
C.运输设备 移动式皮带输送机、气垫式输送机、螺旋输送机、 载货电梯等
D.给料设备 电磁振动给料机、振动漏斗等,技术指标:进了 尺寸、激振电动机 型号与功率、激振力等 E.破碎设备
粗碎颚式破碎机、环锤式破碎机、锤式破碎机等。
内热式回转 炉 外热式回转 炉
直立圆筒形炉-垂直燃烧式(底烧)
箱式炉-卧式-水平燃烧式
垂直燃烧式(底烧)
管式炉
卧管(水平管) 水平燃烧式 特殊燃烧式 立式炉 垂直燃烧式(底烧) 立管(垂直管) 水平燃烧式 管式炉特殊燃烧式
冷却塔
干式 直接式 间接式 自然通风 冷却塔分类 湿式 机械通风 抽风式 开放式 逆流式 横流式 逆流式 横流式 鼓风式 -逆流式
第5章 设备的选型和设计计算

机械简单的选型计算公式

机械简单的选型计算公式

机械简单的选型计算公式在机械设计中,选型计算是非常重要的一步,它直接关系到机械设备的性能和使用寿命。

选型计算需要考虑多个因素,包括负载、速度、功率等,而这些因素又会涉及到多个物理量的计算。

本文将介绍一些机械简单的选型计算公式,帮助读者更好地进行选型计算。

1. 轴承选型计算。

在机械设备中,轴承是承载转动部件的重要组成部分,它的选型计算需要考虑到负载、转速、轴承寿命等因素。

一般来说,轴承的额定动载荷可以通过以下公式计算:P = (C/P) (F0.3)。

其中,P为额定动载荷,C为基本动载荷,P为实际载荷。

基本动载荷可以通过轴承型录中的数据获取,实际载荷需要根据实际情况进行计算。

2. 传动带选型计算。

传动带是机械设备中常用的传动元件,它的选型计算需要考虑到功率、转速、中心距等因素。

传动带的带速可以通过以下公式计算:V = π D n。

其中,V为带速,D为传动带的直径,n为转速。

通过带速的计算,可以进一步计算传动带的长度和张紧力等参数。

3. 齿轮选型计算。

齿轮是机械设备中常用的传动元件,它的选型计算需要考虑到功率、转速、齿轮模数等因素。

齿轮的模数可以通过以下公式计算:m = (π D) / z。

其中,m为模数,D为齿轮的直径,z为齿数。

通过模数的计算,可以进一步计算齿轮的模数、齿宽等参数。

4. 泵选型计算。

泵是机械设备中常用的流体传动元件,它的选型计算需要考虑到流量、扬程、效率等因素。

泵的功率可以通过以下公式计算:P = (Q H ρ g) / η。

其中,P为功率,Q为流量,H为扬程,ρ为流体密度,g为重力加速度,η为泵的效率。

通过功率的计算,可以进一步计算泵的轴功率、电机功率等参数。

以上是机械简单的选型计算公式,希望对读者有所帮助。

在进行选型计算时,需要根据实际情况综合考虑多个因素,确保选型计算的准确性和可靠性。

同时,也可以借助计算软件和在线计算工具进行选型计算,提高工作效率和准确性。

灌溉水泵选型设计计算公式

灌溉水泵选型设计计算公式

灌溉水泵选型设计计算公式在农业生产中,灌溉是非常重要的一环节,而水泵则是灌溉系统中的核心设备之一。

为了确保灌溉系统的正常运行,需要对水泵进行合理的选型设计。

本文将介绍灌溉水泵选型设计的计算公式,并对其中涉及的参数进行详细解析。

一、灌溉水泵选型设计计算公式。

1. 总扬程计算公式。

总扬程Ht= Hs + Hf + Hl。

其中,Hs为静水压头,Hf为摩擦损失,Hl为动水头。

2. 流量计算公式。

Q= A V。

其中,A为管道横截面积,V为流速。

3. 功率计算公式。

P= Q Ht ρ g / η。

其中,ρ为水的密度,g为重力加速度,η为水泵效率。

4. 选型公式。

根据实际情况确定所需的总扬程和流量,然后结合水泵的性能曲线,选取合适的水泵型号。

二、参数解析。

1. 总扬程。

总扬程是指水泵在工作时所需克服的所有水力损失和摩擦损失的高度总和。

在灌溉系统中,总扬程的计算是非常重要的,它直接影响着水泵的选型和工作效率。

2. 流量。

流量是指单位时间内通过管道横截面的水量,它与灌溉系统的覆盖面积和作物的需水量有直接关系。

在选型设计中,需要根据实际情况确定所需的流量,然后选择合适的水泵型号。

3. 功率。

水泵的功率是指单位时间内所需的能量,它与流量、总扬程和效率有直接关系。

在选型设计中,需要根据实际情况确定所需的功率,然后选择合适的水泵型号。

4. 选型。

在确定所需的总扬程、流量和功率之后,需要结合水泵的性能曲线,选取合适的水泵型号。

通常情况下,可以通过水泵厂家提供的性能曲线图来进行选择,确保选取的水泵能够满足实际工作需求。

三、结语。

灌溉水泵选型设计是灌溉系统中的关键环节,它直接影响着灌溉系统的运行效率和节能性能。

通过合理的计算公式和参数解析,可以有效地进行水泵选型设计,确保灌溉系统的稳定运行。

希望本文的介绍能够对灌溉水泵选型设计有所帮助,为农业生产提供更好的支持。

设备的设计与选型

设备的设计与选型
• 引进优良菌株 • 新型生化反应器
精选ppt
第二节 专业设备的设计与选型
• 一、专业设备设计与选型的依据 • 二、专业设备设计与选型的程序和
内容 • 三、计算选型实例
精选ppt
一、专业设备设计与选型的依据
1、工艺计算结果 成品量、物料量、汽、水、空气、冷耗量
2、工艺操作的最适外部条件 温度、压力、真空度等
Δt1=32-20=12 (℃ )
Δt2=32-27=(5℃)
Δtm=8 (℃ ) P118
换热面积(牛顿传热定律公式)
A=Q/(K×Δtm) =4.18×6000×440/(4.18×500×8)
=660(m2)
每m3发酵液每小时传给冷却器的最大热量 4.18×6000kJ/(m3h)
竖式列管式换热器K=4.18×500kJ/(m3h ℃) 精选ppt
面积
精选ppt
二、发酵设备设计与选型的内容(12)
(7)设备的传动搅拌和动力消耗的计算。 (8)设备结构的工艺设计。 (9)支撑方式的计算选型。 (10)壁厚的计算选择。 (11)材质的选择和用量的计算。 (12)其他特殊情况的考虑。
精选ppt
三、计算选型实例
• 对发酵产品要充分了解。产品之间差异大 生产特点、原料性质来源、现阶段生产水平 可能达到的技术经济指标、有效生产天数、 各个环节生产周期
精选ppt
(6)搅拌轴功率的计算
修正的迈凯尔(Michel.B.J)公式求搅拌功率, 并由此选择电机。 淀粉水解糖低浓度细菌醪,可视为牛顿流体。 1、计算Rem 2、计算不通气时搅拌功率P0 3、计算通气时的搅拌功率Pg 4、求电机功率 谷氨酸发酵按1kW/m3发酵醪,550m3装440m3 取功率大于440kW的电机

吸收塔的设计选型和计算

吸收塔的设计选型和计算

吸收塔的设计选型和计算吸收塔是一种常见的化工设备,主要用于气体或液体物质的吸收和分离。

设计选型和计算是吸收塔设计过程中的重要环节,本文将对吸收塔的设计选型和计算进行详细介绍。

一、吸收塔的设计选型吸收塔的设计选型是根据工艺要求和操作条件来确定的。

在进行设计选型时,需要考虑以下几个方面:1. 工艺要求:根据需要吸收的物质性质和组成、吸收效率要求等,确定吸收塔的设计参数。

例如,选择适当的填料材料、塔径、塔高等。

2. 流体性质:吸收塔的设计选型还需要考虑流体的性质,包括流体的流量、温度、压力等。

根据流体性质选择适当的吸收剂和溶质。

3. 塔内流体分布:吸收塔内流体的分布对吸收效果有很大影响。

设计时需要考虑塔顶和塔底的液相和气相分布,以及填料层的布置方式。

4. 塔型选择:吸收塔的塔型有很多种,常见的有板式塔、填料塔、喷淋塔等。

选择适当的塔型可以提高吸收效率和操作性能。

二、吸收塔的计算吸收塔的计算是为了确定塔的尺寸和操作参数,以满足设计要求。

吸收塔的计算主要包括以下几个方面:1. 塔径计算:根据流体的流量和操作要求,计算出吸收塔的塔径。

塔径的大小直接影响到液相和气相的接触效果和传质速率。

2. 塔高计算:根据吸收效率、塔径和填料性能等因素,计算出吸收塔的塔高。

塔高的大小决定了流体在塔内停留的时间,对传质效果有重要影响。

3. 填料计算:选择合适的填料材料,并根据填料的性能参数,计算填料层的高度和填料比表面积。

填料的选择和布置对吸收效果有重要影响。

4. 液相和气相流速计算:根据液相和气相的流量和流速要求,计算出液相和气相的流速。

流速的大小会影响到液相和气相的接触程度和传质速率。

5. 塔内压降计算:根据流体的性质和操作要求,计算出吸收塔的压降。

压降的大小对塔的能耗和操作费用有影响。

吸收塔的设计选型和计算是一项复杂而关键的工作,需要综合考虑多个因素。

合理的设计选型和计算可以提高吸收塔的吸收效率和操作性能,降低能耗和成本。

(完整word版)设备设计与选型

(完整word版)设备设计与选型

设备设计与选型7.1全厂设备概况及主要特点全厂主要设备包括反应器6台,塔设备3台,储罐设备8台,泵设备36台,热交换器19台,压缩机2台,闪蒸器2台,倾析器1台,结晶器2台,离心机1台,共计80个设备。

本厂重型机器多,如反应器、脱甲苯塔、脱重烃塔,设备安装时多采用现场组焊的方式.在此,对反应器、脱甲苯塔等进行详细的计算,编制了计算说明书。

对全厂其它所有设备进行了选型,编制了各类设备一览表(见附录).7。

2反应器设计7.2.1概述反应是化工生产流程中的中心环节,反应器的设计在化工设计中占有重要的地位。

7.2。

2反应器选型反应器的形式是由反应过程的基本特征决定的,本反应的的原料以气象进入反应器,在高温低压下进行反应,故属于气固相反应过程。

气固相反应过程使用的反应器,根据催化剂床层的形式分为固定床反应器、流化床反应器和移动床反应器。

1、固定床反应器固定床反应器又称填充床反应器,催化剂颗粒填装在反应器中,呈静止状态,是化工生产中最重要的气固反应器之一。

固定床反应器的优点有:①反混小②催化剂机械损耗小③便于控制固定床反应器的缺点如下:①传热差,容易飞温②催化剂更换困难2、流化床反应器流化床反应器,又称沸腾床反应器。

反应器中气相原料以一定的速度通过催化剂颗粒层,使颗粒处于悬浮状态,并进行气固相反应.流态化技术在工业上最早应用于化学反应过程。

流化床反应的优点有:①传热效果好②可实现固体物料的连续进出③压降低流化床反应器的缺点入下:①返混严重②对催化剂颗粒要求严格③易造成催化剂损失3、移动床反应器移动床反应器是一种新型的固定床反应器,其中催化剂从反应器顶部连续加入,并在反应过程中缓慢下降,最后从反应器底部卸出.反应原料气则从反应器底部进入,反应产物由反应器顶部输出,在移动床反应器中,催化剂颗粒之间没有相对移动,但是整体缓慢下降,是一种移动着的固定床,固得名。

本项目反应属于低放热反应,而且催化剂在小试的时候曾连续运行1000小时不发生失活,所以为了最大限度的发挥催化剂高选择性和高转化率的优势,减少催化剂损失,流程的反应器采用技术最成熟的固定床反应器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压缩机、真空泵、制冷机 ➢固体物料输送设备——给料机械设备、气
流输送设备
5.1.1液体输送设备 A.概况
作用于液体原理分类 叶片式泵
离心泵(屏蔽泵、管道泵、自吸泵、无堵塞泵等) 轴流泵 旋涡泵 容积式泵 往复泵(活入泵,柱塞泵、计量泵等) 转子泵(齿轮泵、螺杆泵、滑片泵、蠕动泵等)
除此外还按照用途、结构特点分类
F.计量包装设备 台秤、地磅、配料秤、自动秤量机等
5.1.4输送设备选型
泵的选型 1、确定泵型 泵的基本形式、泵的的尺寸
2、 确定泵的流量和计算
① 流量的确定和计算 ② 扬程的确定 ③ 确定泵的安装高度。 ④ 确定泵的台数和备用台数。一般情况下只设一台泵,
特殊情况下也可两台同时操作。输送泥浆和特殊原料 的泵应设有备用泵。 ⑤ 校核泵的轴功率。 ⑥ 确定冷却水或驱动蒸汽的耗用量。 ⑦ 选用电动机。 ⑧ 填写泵的规格表。
B.仓储设备 叉式装卸车、手动液压装卸车、圆筒搬运车、液压升 降台等,指标:起重重量、升高高度、空载行走速 度等。
C.运输设备 移动式皮带输送机、气垫式输送机、螺旋输送机、 载货电梯等
D.给料设备 电磁振动给料机、振动漏斗等,技术指标:进了 尺寸、激振电动机 型号与功率、激振力等
E.破碎设备 粗碎颚式破碎机、环锤式破碎机、锤式破碎机等。 技术指标:最大进料力度、排料力度、公称排料 口处理能力、电机型号功率。
旋转式(罗茨鼓风机) 离心式(离心鼓风)
压缩机
A.分类
➢容积式 往复式(活塞式、膜式) 回转式(滑片式、螺杆式、转子式)
➢速度式
轴流式 离心式 混流式
B.活塞式空气压缩机
(1)中小型活塞式机类型 a)L型、V型、W型、卧式、立式等 b)水冷式、空冷式、单级、多级等 (2)工作原理 (3)技术指标:排气量、排气压力、进出口 气体温度、冷却水用量、功率等
非标准设备
需专门设计和特殊设备。非标准设备也是 化工厂生产中大量存在的设备,它是化工 厂生产的一种特色,非标准设备工艺设计 就是根据工艺要求,通过工艺计算提出、 材料、尺寸和其他一些具体要求。再由化 工设备专业进行机械设计,由有关工厂进 行制造。在设计非标准设备时,应尽量采 用已经标准化的图纸。
工艺设备的选型原则
第5章 设备的选型和设计计算
化工设备概况
化工设备是组成化工装置的基本单元,工程 设计的基础
从设计角度分类 标准设备(定型设备) 非标准设备(非定型设备)
标准设备
成批、系列生产的设备,可现成购买。 标准设备有产品目录或手册样本,有各种 型号,有不同生产厂家。
工艺设计的任务是根据生产需要,计 算并选择某种型号,以便订货。
B.技术指标 (1)型号 IH 50— 32— 160 A
叶轮直径第一次切割 叶轮名义直径(mm) 泵排出口直径(mm) 泵吸入口直径(mm) 泵的型号代号
(2)扬程 (3)流量 (4)必需汽蚀余量(NPSHr) (5)功率与效率
C.其他形式的泵
油泵 耐腐蚀泵 液下泵 屏蔽泵 隔膜泵
计量泵 齿轮泵 螺杆泵 旋涡 (1)排气量、进排气温度、压力以及流体等参
数 (2)各种压缩机常用气量压力范围 (3)空气含湿量 (4)吸气量和吸气状态
B.离心式压缩机的型号选择 (1)图表选型 通过厂家提供的曲线图选择型号和功率计算 (2)估算法选型
计算的数据有:气体常数、绝热指数、压缩 指数、进口气体实际流量、总压缩比、转 速、轴功率等
C.活塞式压缩机的型号选择 (1)一般原则
技术参数选择和结构参数选择,满足工艺 要求、气体物性要求 (2)选型基本数据 • 气体性质和吸气状态 • 生产规模或流程需要总供气量 • 流程需要排气压力 • 排气温度 (3)化工特殊介质使用压缩机的选择
5.2 贮罐
分类
A.立式贮罐 平底平盖系列、平底锥系列底 90°无折边锥形底平盖系列、立式球形封头系列 90°折边锥形底、椭圆形盖系列、立式椭圆封头系列 以上系列适用非易燃易爆、非剧毒化工液体 B.卧式贮罐 卧式无折边球形封头系列 :适用非易燃易爆、非剧毒
C.离心式空气压缩机
工作时,主轴带动叶轮旋转,空气自轴进入以很高 速度被离心力甩出叶轮,进入流通面积慢慢扩大的 扩压器中,时气体的速度降低而压力提高
D.螺杆式空气压缩机
螺杆式空气压缩机依靠螺旋形转子相互啮合而进行 气体压缩的。在∞形汽缸中平行放置两个高速回转、 按一定转动比相互啮合的螺旋形转子,形成进气、 压缩和排气过程。
制冷机 A 分类
(1)活塞式制冷机:应用范围广、高速、热效率 高等优点,缺点是结构复杂、运行稳定性差
(2)离心式制冷机:转速高 、制冷量大、运行 平稳、经济等 。缺点是效率低于活塞式制冷机
(3)螺杆式制冷机:与活塞式制冷机比,结构简 单,体积小、单机压缩比大等
(4)溴化锂吸收式制冷机:主要用于空气 调节制冷,结构简单、运行平稳、易于自 动化 (5)氨吸收式制冷机:适用于有余热或廉 价燃料且要求冷却水温度度低,水源充足 的地区
5.1.2 气体输送、压缩设备
通风机 鼓风机 压缩机 真空泵
通风机
低压离心通风机 风压≤1KPa 中压离心通风机 风压1KPa~ 3KPa 高压离心通风机 风压3KPa~ 15KPa
型号表示
9—19 No7.1—A
鼓风机
传动方式(有ABCD四种) 机号(数字表示叶轮直径mm/100) 型号代号(9 – 19 为高压离心式通风机)
合理性:满足工艺要求,设备与工艺
流程、生产规模、工艺操作条件、工艺 控制水平相适应。
先进性:设备运转可靠、自控水平、
生产能力、转化率、收率、效率要尽可 能达到先进水平。
安全性:
经济性:
系统性:不妨碍整个系统优化,保留适
当裕量。
5.1 物料输送设备
分类:
➢液体物料输送设备——泵 ➢气体物料输送、压缩、制冷设备——风机、
B.化工生产中常用的制冷机
(1)活塞式氨压缩制冷机 (2)离心式制冷机 (3)螺杆式制冷机
真空泵
几个重要参数
真空度 抽气速率 极限真空 抽气时间
类型
A.往复式真空泵 B.水循环真空泵 C.液环真空泵 D.旋片真空泵 E.喷射真空泵
5.1.3固体搬运及粉碎设备
A.起重设备 吊钩、手拉葫芦、电动葫芦、电动单梁起重机等,指 标有:跨度、最大起重量、运行速度等。
相关文档
最新文档