设备设计与选型
化工厂装置的设备选型与设计原则

化工厂装置的设备选型与设计原则化工厂装置的设备选型与设计原则是确保化工生产过程的高效运行和安全性的重要环节。
本文将从设备选型和设计原则两个方面进行探讨。
一、设备选型在化工厂装置的设备选型中,需要考虑以下几个方面。
1. 工艺要求:根据生产工艺的要求,选择适合的设备。
不同的化工生产过程需要不同的设备,如反应器、蒸馏塔、搅拌槽等。
设备的选型要满足工艺参数和操作要求,确保生产过程的顺利进行。
2. 材料选择:根据介质的性质选择合适的材料。
化工生产中,介质的性质可能包括高温、高压、腐蚀性等特点,因此设备的材料选择非常重要。
选用耐腐蚀、耐高温、耐压的材料,能够提高设备的使用寿命和安全性。
3. 设备性能:考虑设备的性能指标,如传热效率、传质效率、能耗等。
设备的性能直接影响到生产效率和产品质量,因此在选型时需要综合考虑。
4. 经济性:设备选型还需要考虑经济性因素。
选择性价比高的设备,能够降低投资成本和运营成本,提高企业的经济效益。
二、设计原则化工厂装置的设计原则是确保设备的安全性和可靠性,保障生产过程的顺利进行。
1. 安全设计:化工装置的设计必须考虑安全因素。
包括设备的结构强度、防爆措施、防火措施等。
在设计过程中,需要充分考虑设备的安全性,采取相应的措施确保操作人员和设备的安全。
2. 可维护性设计:设备的维护保养对于化工装置的正常运行至关重要。
因此,在设计过程中要考虑设备的可维护性,包括易于拆卸、易于清洁、易于更换等方面的设计。
3. 节能设计:化工生产过程中,能源消耗是一个重要的成本。
因此,在设计过程中要考虑节能措施,如合理利用余热、采用高效传热设备等,以降低能源消耗。
4. 环保设计:化工生产对环境的影响是不可忽视的。
在设计过程中要考虑环境保护因素,选择环保设备和工艺,减少废水、废气、废渣的排放,保护环境。
5. 灵活性设计:化工生产过程中,市场需求和工艺技术可能会发生变化。
因此,在设计过程中要考虑设备的灵活性,方便进行工艺调整和设备改造。
化工设备设计与选型

化工设备设计与选型化工行业是一个广泛的行业领域,包括石油化工、冶金化工、化学品制造、塑料加工等众多领域。
在化工生产过程中,化工设备的设计和选型起着至关重要的作用,直接影响着生产效率、产品质量和安全性。
本文将就化工设备的设计和选型进行探讨。
一、化工设备设计1. 设计原则在化工设备的设计中,有几个重要的原则需要遵循。
首先是安全性原则,化工设备应具备可靠的安全保护措施,防止事故发生。
其次是可操作性原则,设备的设计应符合操作人员的实际需求,方便操作和维护。
最后是高效性原则,化工设备应设计合理,充分利用能源,提高生产效率。
2. 设计步骤化工设备的设计一般包括以下几个步骤:(1)确定设计目标:根据生产需求和工艺流程确定设备的主要参数,如产量、温度、压力等。
(2)制定设备流程图:根据工艺流程和设备参数,绘制出设备的流程图,明确设备的组成部分和操作顺序。
(3)进行设计计算:根据设备的工作原理和流程图,进行设计计算,包括热力计算、强度计算等,确保设备的设计合理。
(4)绘制设备图纸:根据设计计算结果,绘制设备的详细图纸,包括设备的结构图、布置图、管道图等。
(5)进行方案评审:将设计图纸提交给专业人员进行评审,对设计方案进行优化,确保设备设计符合实际需求。
(6)进行设备制造:经过方案评审后,开始进行设备的制造和安装,确保设备的质量和安全性。
二、化工设备选型1. 选型原则在进行化工设备选型时,需要考虑以下几个原则。
首先是适用性原则,选择的设备应适用于具体的生产工艺和工艺参数。
其次是可靠性原则,选择的设备应具备良好的运行稳定性和可靠性,以确保生产过程的连续性和稳定性。
最后是经济性原则,选择的设备应具备较低的投资和运行成本,以提高生产效益。
2. 选型方法化工设备的选型可以采用以下方法:(1)参考规范和标准:根据行业规范和标准,选择符合要求的设备。
(2)咨询专业人士:咨询专业工程师或设备供应商,了解不同设备的性能和优缺点,进行选择。
设备的设计与选型概述

设备的设计与选型概述引言设备的设计和选型是产品开发过程中关键的一步。
合理的设计与选型能够直接影响到产品的性能、功能和可靠性,因此在产品设计阶段需要认真对待。
本文旨在概述设备的设计与选型过程,介绍设计的要点和选型的考虑因素,以帮助读者了解设备的设计与选型的重要性。
设计的要点设备的设计是产品开发阶段中的核心环节,它涉及到外观设计、内部结构设计、电路设计等多个方面。
以下是设备设计的一些要点:1. 外观设计外观设计是产品的第一印象,它能够直接影响用户对产品的认知和接受度。
在外观设计中,需要考虑以下因素:•产品的定位和目标用户群体•产品的功能和特点•产品的材质和工艺通过合理的外观设计,可以使产品更加吸引人,提升用户体验。
2. 内部结构设计内部结构设计是设备的骨架,它决定了设备的稳定性和可靠性。
在内部结构设计中,需要考虑以下因素:•设备的布局和模块划分•板卡和连接件的选择•散热和防尘措施通过合理的内部结构设计,可以提高设备的稳定性,减少故障率。
3. 电路设计电路设计是设备的核心部分,它决定了设备的功能和性能。
在电路设计中,需要考虑以下因素:•电源系统的设计和选择•信号处理和控制电路的设计•电路的稳定性和抗干扰能力通过合理的电路设计,可以提高设备的性能,增加其功能和实用性。
选型的考虑因素设备的选型是在设计的基础上进行的,它涉及到诸多因素的综合考虑。
以下是设备选型的一些考虑因素:1. 性能需求根据设备的使用场景和应用需求,需要对设备的性能进行明确的规定。
例如,设备的处理能力、存储容量、传输速率等。
在选型过程中,需要与供应商进行充分的沟通,确保选型的设备能够满足产品的性能需求。
2. 成本控制成本是企业生产力的重要因素,因此在选型过程中需要充分考虑成本的控制。
需要综合考虑设备价格、运营成本、维护成本等因素,寻找性价比最高的设备。
3. 可靠性和稳定性设备的可靠性和稳定性直接影响到产品的质量和用户体验。
在选型过程中,需要考虑设备的质量口碑、供应商的信誉、售后服务等因素,确保选型的设备能够稳定运行。
(完整word版)设备设计与选型

设备设计与选型7.1全厂设备概况及主要特点全厂主要设备包括反应器6台,塔设备3台,储罐设备8台,泵设备36台,热交换器19台,压缩机2台,闪蒸器2台,倾析器1台,结晶器2台,离心机1台,共计80个设备。
本厂重型机器多,如反应器、脱甲苯塔、脱重烃塔,设备安装时多采用现场组焊的方式.在此,对反应器、脱甲苯塔等进行详细的计算,编制了计算说明书。
对全厂其它所有设备进行了选型,编制了各类设备一览表(见附录).7。
2反应器设计7.2.1概述反应是化工生产流程中的中心环节,反应器的设计在化工设计中占有重要的地位。
7.2。
2反应器选型反应器的形式是由反应过程的基本特征决定的,本反应的的原料以气象进入反应器,在高温低压下进行反应,故属于气固相反应过程。
气固相反应过程使用的反应器,根据催化剂床层的形式分为固定床反应器、流化床反应器和移动床反应器。
1、固定床反应器固定床反应器又称填充床反应器,催化剂颗粒填装在反应器中,呈静止状态,是化工生产中最重要的气固反应器之一。
固定床反应器的优点有:①反混小②催化剂机械损耗小③便于控制固定床反应器的缺点如下:①传热差,容易飞温②催化剂更换困难2、流化床反应器流化床反应器,又称沸腾床反应器。
反应器中气相原料以一定的速度通过催化剂颗粒层,使颗粒处于悬浮状态,并进行气固相反应.流态化技术在工业上最早应用于化学反应过程。
流化床反应的优点有:①传热效果好②可实现固体物料的连续进出③压降低流化床反应器的缺点入下:①返混严重②对催化剂颗粒要求严格③易造成催化剂损失3、移动床反应器移动床反应器是一种新型的固定床反应器,其中催化剂从反应器顶部连续加入,并在反应过程中缓慢下降,最后从反应器底部卸出.反应原料气则从反应器底部进入,反应产物由反应器顶部输出,在移动床反应器中,催化剂颗粒之间没有相对移动,但是整体缓慢下降,是一种移动着的固定床,固得名。
本项目反应属于低放热反应,而且催化剂在小试的时候曾连续运行1000小时不发生失活,所以为了最大限度的发挥催化剂高选择性和高转化率的优势,减少催化剂损失,流程的反应器采用技术最成熟的固定床反应器。
设备的设计与选型

(二)连续操作设备生产能力、数量和容积的设计计算
设计连续操作设备的容量和主要尺寸的依据是:
(1)物料流量V(m3/s或t/s):根据设计的生产规 模,通过计算确定的。 (2)物料在设备中的逗留时间τ(s):取决于生产 工艺的要求。 (3)物料在设备各部位的流速ω(m/s)。
1.设备生产能力的确定
6.确定设备的主要尺寸。 7.对非标设备
应向设备专业设计人员提供设计条件和设备草图, 明确设备的类型、材质、基本设计参数等。
提出对设备的维修、安装要求,支撑要求及其他要 求(如防爆口、人孔、手孔、卸料口、液面计接口等)。
8.编制工艺设备一览表。
第二节 专业设备的设计与选型
一、专业设备设计与选型的依据
式中 100——发酵罐容积(t) 70%——填充系数 15%——发酵初糖浓度(还原糖) 48%——发酵转化率 80%——提取率 112%——精制收率 1%——染菌率
100×70%×15%×48%×80%×112% ×(1-1%)
=4.47 t/(罐·批)
2.设备容积的计算
Va
=
V0 t 24N j
第二节 通用设备的设计与选型
通用设备很多,主要:
(1)液体输送设备——各种泵; √
(2)气体输送设备——风机、压缩机、真空 泵;
(3)固体输送设备——各种给料机械设备、 气体输送设备。
原料豆 粕粉
水、碱
碱性蛋 白溶液
萃取灌 离心机
豆渣
盐酸 酸沉灌
水、碱
蛋白泥
离心机
中和灌
乳清水
灭菌
闪蒸
包装
成品
喷雾干燥
(1)由工艺计算确定的成品量、物料量、耗 汽量、 耗水量、耗风量、耗冷量等。 (2)工艺操作的最适外部条件。 (3)设备的构造类型和性能。
过程设备设计与选型的主要内容

过程设备设计与选型的主要内容过程设备设计与选型是指对工业过程设备进行设计和选择的过程。
它包括了以下主要内容:1.设计要求和规范:明确工业过程的要求和规范,例如生产能力、操作参数、工艺流程、环境要求等。
这些信息将对设备的设计和选型产生重要影响。
2.工艺流程分析:对整个工艺流程进行分析,包括原料处理、反应过程、处理和分离、产品收集等。
了解每个步骤的输入、输出、温度、压力和流量等参数,以及所需的操作和设备。
3.设备选型:根据工艺流程要求,选择适合的设备。
这可能涉及到反应器、分离器、加热器、冷却器、储存罐、泵和阀门等等。
设备的选择应考虑工艺要求、可靠性、安全性、可维护性、可操作性和经济性等因素。
4.材料选择:选择适合的材料来制造设备。
材料的选择应考虑流体的特性(如腐蚀性、温度和压力)、设备的寿命和成本等因素。
5.设备设计和布局:根据工艺要求和设备选型,进行设备细节设计和布局。
这包括设备的大小、形状、连接管道和支撑结构等。
6.安全性分析:对设备的安全性进行评估和分析,防止潜在的危险和意外。
这可能需要进行风险评估、安全阀和爆破片的设计、操作规程等。
7.运营成本分析:评估设备的运营成本,包括能耗、维护成本、备件需求和人工成本等方面的考虑。
8.经济性分析:评估设备的投资回报,包括设备的购买成本、运营成本以及技术和市场风险等。
以上是过程设备设计与选型的主要内容。
这个过程需要综合考虑工艺要求、设备的性能和可用性、安全性、经济性以及可操作性等因素,以确保设备的良好运行和工业过程的有效实施。
设备设计与选型

设备设计与选型引言设备设计与选型是在工程项目中非常重要的一步。
合理的设备设计与选型可以确保项目的顺利进行和高效运作。
在本文中,我们将介绍设备设计与选型的一些基本概念和流程,并提供一些建议,以帮助您进行有效的设备设计和选型。
设备设计基本概念设备设计是指根据项目需求和技术要求进行设备的详细设计过程。
在设备设计中,需考虑诸多因素,如项目的规模、功能要求、性能指标、可靠性要求、成本效益等。
设备设计的基本概念包括:1.功能要求:明确设备需要实现的功能,如控制、传感、监测等功能。
2.性能指标:确定设备需要达到的性能指标,如精度、响应速度、输出功率等。
3.可靠性要求:设备的可靠性是保证设备长期运行的关键,需要考虑设备的寿命、稳定性和维护成本等。
4.成本效益:设备设计需要考虑成本效益,包括设备的采购成本、运行成本和维护成本等。
设备选型流程设备选型是根据设备设计需求和技术要求,筛选合适的设备进行购买的过程。
设备选型的流程主要包括以下几个步骤:1.确定设备需求:根据项目的功能要求、性能指标和可靠性要求,明确需要购买的设备的基本参数和规格。
2.市场调研:通过网络、参展和咨询等方式,了解市场上各种设备的类型、品牌、性能和价格等信息。
3.技术评估:对市场上符合需求的设备进行技术评估,包括设备的技术数据、性能测试和用户评价等。
4.制定选型方案:根据技术评估结果,制定设备选型方案,包括挑选设备的品牌、型号和规格等具体信息。
5.比较与选择:将不同设备的选型方案进行比较和权衡,选择最适合项目需求和预算的设备。
6.报价与采购:根据选定的设备型号和供应商,向供应商索取报价,与供应商进行谈判,并最终确定采购方案。
7.设备安装与调试:将采购的设备进行安装和调试,确保设备能够正常运行并满足项目需求。
设备设计与选型建议在进行设备设计和选型时,以下是一些常见的建议和注意事项:1.充分了解项目需求:在进行设备设计和选型之前,充分了解项目的功能要求、性能指标和可靠性要求等,确保选出的设备能够满足项目的实际需求。
设备设计与选型

设备设计与选型7.1全厂设备概况及主要特点全厂主要设备包括反应器6台,塔设备3台,储罐设备8台,泵设备36台,热交换器19台,压缩机2台,闪蒸器2台,倾析器1台,结晶器2台,离心机1台,共计80个设备。
本厂重型机器多,如反应器、脱甲苯塔、脱重烃塔,设备安装时多采用现场组焊的方式。
在此,对反应器、脱甲苯塔等进行详细的计算,编制了计算说明书。
对全厂其它所有设备进行了选型,编制了各类设备一览表(见附录)。
7.2反应器设计7.2.1概述反应是化工生产流程中的中心环节,反应器的设计在化工设计中占有重要的地位。
7.2.2反应器选型反应器的形式是由反应过程的基本特征决定的,本反应的的原料以气象进入反应器,在高温低压下进行反应,故属于气固相反应过程。
气固相反应过程使用的反应器,根据催化剂床层的形式分为固定床反应器、流化床反应器和移动床反应器。
1、固定床反应器固定床反应器又称填充床反应器,催化剂颗粒填装在反应器中,呈静止状态,是化工生产中最重要的气固反应器之一。
固定床反应器的优点有:①反混小②催化剂机械损耗小③便于控制固定床反应器的缺点如下:①传热差,容易飞温②催化剂更换困难2、流化床反应器流化床反应器,又称沸腾床反应器。
反应器中气相原料以一定的速度通过催化剂颗粒层,使颗粒处于悬浮状态,并进行气固相反应。
流态化技术在工业上最早应用于化学反应过程。
流化床反应的优点有:①传热效果好②可实现固体物料的连续进出③压降低流化床反应器的缺点入下:①返混严重②对催化剂颗粒要求严格③易造成催化剂损失3、移动床反应器移动床反应器是一种新型的固定床反应器,其中催化剂从反应器顶部连续加入,并在反应过程中缓慢下降,最后从反应器底部卸出。
反应原料气则从反应器底部进入,反应产物由反应器顶部输出,在移动床反应器中,催化剂颗粒之间没有相对移动,但是整体缓慢下降,是一种移动着的固定床,固得名。
本项目反应属于低放热反应,而且催化剂在小试的时候曾连续运行1000小时不发生失活,所以为了最大限度的发挥催化剂高选择性和高转化率的优势,减少催化剂损失,流程的反应器采用技术最成熟的固定床反应器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设备设计与选型6.1设备设计依据《钢制压力容器》 GB150《压力容器用钢板》 GB6654《奥氏体不锈钢焊接钢管选用规定》 HG20537.1《化工装置用不锈钢大口径焊接钢管技术要求》 HG20537.4《安全阀的设置和选用》 HG/T20570.2《爆破片的设置和选用》 HG/T20570.3《设备进、出管口压力损失计算》 HG/T20570.9《钢制化工容器设计基础规定》 HG20580《钢制化工容器材料选用规定》 HG20581《钢制化工容器强度计算规定》 HG20582《钢制化工容器结构设计规定》 HG20583《钢制化工容器制造技术规定》 HG20584《化工设备设计基础规定》 HG/T20643《压力容器无损检测》 JB4730《钢制压力容器焊接工艺评定》 JB4708《钢制压力容器焊接规程》 JB/T4709《钢制压力容器产品焊接试板的力学性能检验》 JB4744《压力容器用钢锻件》 JB4726-4726.2典型塔器设计计算与选型6.2.1概述塔设备是化工、石油化工和炼油等生产中最重要的设备之一,塔可以使气液相或者液液相之间进行紧密接触,达到较为良好的相际传质及传热的目的。
在塔设备中常见的单元操作有:吸收、精馏、解吸和萃取等。
此外工业气体的冷却与回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿和减湿等效果。
6.2.2设计依据《化工容器设计》王志文蔡仁良第三版化学工业出版社《化工设计概论》李国庭等著化学工业出版社《化工工艺设计手册》第二版化学工业出版社6.2.3设计原则作为主要用于传质过程的塔设备,首先必须使气液两相能充分接触,以获得较高的传质效率。
此外,为满足工业生产的需要,塔设备还得考虑下列各项要求:(1)生产能力大。
在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液、或液泛等破坏正常操作的现象;(2)操作稳定、弹性大。
当塔设备的气(汽)液负荷量有较大波动时,仍能在较高的传质效率下进行稳定的操作,并且塔设备应保证能长期稳定操作;(3)流体流动的阻力小,即流体通过塔设备的压降小。
这将大大节省生产中的动力消耗,以降低正常操作费用。
对于减压蒸馏操作,较大的压力降还将使系统无法维持必要的真空度;(4)结构简单、材料耗用量小,制造和安装容易。
这可以减少基建过程中的投资费用;(5)耐腐蚀和不易堵塞,方便操作、调节和检修。
事实上,对于现有的任何一种塔器,都不可能完全满足上述所有要求,但是我们可以在某些方面做到独特之处。
以此来达到较大的生产效率,提高企业的生产效益。
6.2.4塔结构尺寸确定依据塔设计依据于CAMCAD软件模拟结果。
经过灵敏度分析,得出最优塔板数和回流比,然后根据塔设计标准方法计算出各个塔的塔径与塔高。
6.2.5塔设备设计影响因素6.2.5.1与操作条件有关的因素(1)若气相传质阻力大(即气相控制系统,如低黏度液体的蒸馏,空气增湿等),宜采用填料塔,因填料层中气相呈湍流,液相为膜状流。
反之,受液相CO),宜采用板式塔,因为板式塔中液相呈湍流,用气体控制的系统(如水洗2在液层中鼓泡;(2)大的液体负荷系统,可选用填料塔,若用板式塔时宜选用气液并流的塔型或选用板上液流阻力较小的塔型。
此外,导向筛板塔盘和多降液管筛板塔盘都能承受较大的液体负荷;(3)低的液体负荷,一般不宜采用填料塔。
因为填料塔要求一定量的喷淋密度,但网体填料能用于低液体负荷的场合;(4)液气比波动的稳定性,板式塔优于填料塔,故当液气比波动大时,选用板式塔。
6.2.5.2其他因素(1)对于多种情况,塔径小于800mm时,不宜采用板式塔,宜用填料塔。
对于大塔径塔设备来说,需进行加压或常压操作时,应优先选用板式塔;对于减压操作过程,宜采用新型填料;(2)一般填料塔比板式塔重;(3)大塔以填料塔造价便宜。
因填料价格约与塔体的容积成正比,板式塔按单位面积计算的价格,随塔径增大而减小。
6.2.6塔的分类与总体结构(1)分类①按操作压力:加压塔;常压塔;减压塔。
②按单元操作:精馏塔;吸收塔;解吸塔;反应塔;干燥塔;萃取塔。
③按形成相际接触界面:固定相界面;流动过程中形成相界面。
④按内件结构:其中按内部结构又可分为以下两种:a.板式塔,塔内装有一定数量的塔盘,是气液接触和传质的基本构件;属逐级(板)接触的气液传质设备;气体自塔底向上以鼓泡或喷射的形式穿过塔板上的液层,使气液相密切接触而进行传质与传热;两相的组分浓度呈阶梯式变化。
b.填料塔,塔内装有一定高度的填料,是气液接触和传质的基本构件;属微分接触型气液传质设备;液体在填料表面呈膜状自上而下流动;气体呈连续相自下而上与液体作逆流流动,并进行气液两相的传质和传热;两相的组分浓度或温度沿塔高连续变化。
(2)总体结构:①塔体:即塔外壳,包括筒节、封头、连接法兰等。
除操作压力(内压或外压)、温度外,要考虑风载、地震载荷、偏心载荷及试压、运输吊装时的强度、刚度、稳定性等要求。
②内件:塔板或填料及支承装置等。
③支座:塔体与基础的连接结构,一般采用裙式支座。
④附件:人孔或手孔、除沫器、接管、吊柱及扶梯、操作平台、保温层等。
板式塔与填料塔的主要结构特点列于表6-1:表 6-1 板式塔和填料塔的主要特点比较P↑,ρv ↑,流量又大,易引起液相严重返混;P↑,T↑,σ↑,填料塔中两相分离变难在实际操作中,塔盘的结构在一定程度上仍然影响着操作的流体力学状态和传质性能的优劣。
现将各种板式塔的优缺点及用途列于表 6-2:表 6-2 各种板式塔的优缺点及用途6.2.7塔设备设计举例根据以上基本原则,以 DMO精馏塔(T0201)为例,进行详细设计。
其它塔设备的设计与该精馏塔的设计方法相同。
6.2.7.1塔的基础数据根据T0201的处理量及物性,我们选择板式塔。
根据操作条件,物系的组成和特点及要达到的分离要求,考虑到设备的制造、维修成本,我们选浮阀塔作为本项目的塔类型。
塔设计依据于Aspen plus软件模拟结果。
经过灵敏度分析,得出最优塔板数为15和回流比为2.7。
T0201塔的基础参数如下表6-3 T0201塔参数6.2.7.2精馏塔结构设计我们将得到的aspen模拟数据输入到cup-tower中,进行计算,可得到塔的设计数据。
我们对塔也进行了详细计算。
(一)塔径的计算塔的直径根据适宜的空塔气速和蒸汽流量按下式求出:uV D Sπ4=max6.0u u =,max u 为空塔的泛点:VV L C u ρρρ-=maxC 为蒸汽负荷因子2.02020⎪⎭⎫ ⎝⎛=L C C σ,20C 根据Smith 图查得图中横坐标:3124.089.9644284.145.71583.58121=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛L V G L ρρ 图中纵坐标为L T h H -:板间距取m H T 6.0=,板上液层高度 m h L 078.0=,mm h H L T 522=-。
由以上数据查的07.020=C ,则:077.0206.3107.0202.02.020=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=L C C σs m Cu V V L /24284.14284.189.964077.0max =-=-=ρρρ s m u u /2.126.06.0max =⨯=⨯=m u V D S 2.136002.162.501144=⨯⨯⨯==ππ 按《GB9019-2001T 》塔径尺寸圆整,则m D T 2.1= 实际塔截面积:2231.14m D A T T ==π实际空塔气速:s m A V u T S /32.131.13600/62.5011/===安全系数:62.02/23.1/==F u u ,在0.6-0.8安全系数范围内。
根据以上结果,初步认定塔径取1.2m 是合理的。
(二)塔板主要工艺尺寸计算塔板主要尺寸的确定:1.溢流装置采用双溢流型的平顶弓形溢流堰、弓形降液管、平形受液盘,且不设进口内堰。
(1)溢流堰长(出口堰长)w L 取m 48.02.17.07.0T w =⨯==D L堰上溢流强度h)m (/m 130~100h)m (/m 9348.0/236.60/335.25.2h ⋅<⋅==W L L ,满足筛板塔的堰上溢流强度要求。
(2)出口堰高w h对平直堰3/2w h ow )/(00284.0L L E h =由7.0/T w =D L 及9384.0/236.60/5.22.5w h ==L L ,取0.1=E ,于是: m 006.0m 490.0)924.0/236.60(0.100284.03/2ow >=⨯⨯=h (满足要求)因为w h 不能超过板间距的15%,故取得出口堰高为m h w 05.0= (3)降液管的宽度d W 和降液管的面积f A由7.0/T w =D L ,查弓形降液管几何关系图得142.0/T d =D W ,177.0/=T f A A即:m 17.0142.02.1d =⨯=W ,22TT 3m 1.1785.0==D A ,2f m 20.0=A 。
液体在降液管内的停留时间s 5s 2.7)3600/236.60/(6.020.0/T f >=⨯==h L H A τ(满足要求)(4)降液管的底隙高度o h液体通过降液管底隙的流速一般为0.07~0.25m/s ,取液体通过降液管底隙的流速m/s 25.0o='u ,则有:m 055.0360025.02.1236.60ow o =⨯⨯='=u L L h h (o h 不宜小于0.02~0.025m ,本结果满足要求)2. 阀孔孔径:孔径的大小直接影响塔板操作性能。
在开孔率、空塔汽速和液流量相同的条件下增大孔径,虽可减小板压降,不易阻塞,但漏液量增大,操作弹性降低。
一般工业上常用的孔径经常取mm 4~3,结合本设计mm d 390=为宜。
3. 阀孔中心距0t 和开孔率0Φ:开孔一般采用正三角形排列,筛孔中心距0t 取0t =75mm245.075399069.09069.0220=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛=td ϕ 所以开孔率0ϕ为24.5%,大于15%,开孔率过大,容易产生漏液,在操作时要特别注意控制操作条件,以免漏液。
4. 塔板厚度p t :在塔板结构强度、刚度许可的条件下,应尽可能选取较薄的板材制作塔板,这不仅可以降低干板压降,而且可以改善气液接触状态。
浮阀塔塔板有2mm 、3mm 、4mm 三种厚度的塔板,本塔选用3mm 厚度的塔板。
5. 浮阀数及排列方式: (1)浮阀数初取阀动能因数100=F ,阀孔气速为:s m F u V/6.82844.1100===ρ 每层塔板上浮阀个数个13536006.8039.0462.5011360042020≈⨯⨯⨯=⨯=ππu d V N s(2)浮阀的排列浮阀有多种排列方式,在本项目的反应器中,以三角形排列为好,各排浮阀垂直于液流方向,使气液两相均匀接触。