竹材的研究
竹材物理力学性质的研究

竹材物理力学性质的研究竹材是一种优质的木材,拥有很高的使用价值。
对竹材物理力学性质的研究,为确定其用途、利用率提供了重要的理论基础。
本文主要介绍了竹材物理力学性质的研究,包括竹材的形状特征、竹材的木质素特征、竹材的力学特性、竹材耐久性特性及其其他性能特征等内容。
一、竹材的形状特征竹材的形状特征主要有圆柱形,圆柱形的竹材具有较大的内力,耐久性高;此外,还有椭圆形,椭圆形的竹材具有较大的内力,耐久性也较高;另外还有圆角矩形、四角形,这类竹材的使用价值也较高。
二、竹材的木质素特征竹材的木质素的主要成分有:淀粉、木质素、胶质成分等。
淀粉是一种多糖,它可以增加竹材的强度,木素提供竹材韧性,胶质改善了竹材的力学性能和耐久性。
三、竹材的力学特性竹材具有良好的弹性,在一定变形下仍可恢复原来的形状,是一种介质有限的弹性体。
其冲击强度可达800~1000NmMpa,表明竹材具有较高的强度。
四、竹材耐久性特性竹材具有较高的耐久性,能抵抗海洋气候等恶劣环境,且耐久性随温度和湿度的变化而变化,能抵抗腐朽潮湿环境。
五、竹材其他性能特征竹材具有优良的机械性能,耐久性较高,能耐受较大的应力变动。
具有较高的耗散性和韧性,能抑制构件的塑性变形,并可以抗振动的能力。
综上所述,竹材的形状特征、木质素特征、力学特性、耐久性特性及其他性能特征具有重要的研究意义,一定程度上为确定竹材用途和利用率提供了参考和重要依据。
针对竹材物理力学性质的研究,我国对竹材进行了广泛的研究。
但是,由于实验条件不一致,不同地区的研究结果参差不齐,需要进一步的研究。
未来,应以竹材物理力学性质的变化为研究重点,从木材力学理论、热物理性质、多级抗弯特性等方面,深入探究竹材的物理力学性质,为竹材的用途提供科学依据。
总之,对竹材物理力学性质的研究具有重要的现实意义,有助于提高竹材利用率,为更广泛的应用发挥出更大的潜力。
希望我国政策部门可以加大竹材科学研究工作的力度,为我国竹材产业发展做出应有贡献。
竹材物理力学性能研究

随含水率的增高而降低,但当竹材处于绝干条件下时,因质地变脆强度反 而降低,而顺纹抗拉,纵劈和弦向静曲强度和含水率关系不明显。
四、苦竹(Pleioblastus amarus)
苦竹为多用途复轴混生型竹种,广布于江苏、安徽、江西和福建等丘陵山地。 其竿不仅为良好的造纸原料,还可制作箫、笙、管、笛等民间乐器,文房四宝 中的笔管、风铃等各种竹制工艺品,各种果蔬花卉棚架,标枪、旗杆等各种体 育运动器材。
经方差分析和均值多重比较,竿龄对苦竹竹材的物理力学性质影响显著。但苦 竹竹材的各项物理力学性质在2年以后,差异在不断减少,3年以后的各项性质差 异均不显著,物理力学性质在3年以后趋于稳定,并稳定在较高水平;在竹林的 培育中,苦竹竹材作为结构用材的采伐竹龄应在3~5年。竹竿部位与苦竹材物 理力学性质有关。竹竿自基部至顶部,体积全干缩率和含水率逐渐减少,基本密 度和力学强度逐渐提高。
管束的部分。竹肉是界于竹皮和髓环组织间的部分,横切面上有维管束分
布。维管束是在竹材横切面上,见到的许多呈深色的菱形斑点,在纵切面 上它呈顺纹股状组织。维管束在竹壁内的分布一般自外而内由密变疏。竹
肉内侧与竹腔相邻的部分为髓环,其上也无维管束分布。在生产习惯上,
常将竹壁厚度的不同组织由外至内称之为竹青、竹肉和竹黄三个部分。
五、雷竹(Phyllostachys praecox)
雷竹为禾本科竹亚科刚竹属的优良笋用竹种,出笋早,笋味鲜美。主要分布 于浙江,江苏与安徽南部也有少量分布。
竹材的物理力学性质是其重要的材质指标,而搞清雷竹材质及其变异规律是 其合理高效利用的基础。目前,国内关于雷竹高产栽培技术的研究很多,但 对雷竹材质变异的研究尚未见报道。对雷竹的物理力学性质进行了测试与分 析,为雷竹的有效合理利用提供科学依据。
重组竹材制造技术的研究

重组竹材制造技术的研究竹子是我国重要的森林资源之一。
以竹代木,将有助于缓解我国木材供需之间的矛盾。
近年来,我国竹产业有了较大的发展,但目前,竹材能够大规模工业化利用的只有毛竹(Phgllochys heterocycla var pubscense)并且其利用率一般均在50%以下,而其它竹种还尚未大规模工业化利用。
本研究在借鉴国外重组材的制造技术研究基础上,通过改进设备和生产工艺,达到全竹利用的目的。
重点研究了重组竹材的单元制备技术,重组竹材的浸胶工艺、组坯工艺和热压工艺及其性能的测试分析,得出如下结论:(1)通过对竹束的加工效果的对比分析和竹束预处理的研究,得到碾压疏解机对竹束的加工效果最好;对竹束表面进行砂光处理,提高了重组竹材的力学性能,而对竹束进行高温炭化处理,降低了重组竹材的胶合性能。
(2)通过对重组竹材浸胶工艺的研究,控制胶黏剂的固含量,竹束的浸胶量最易控制;浸胶时间的改变对竹束浸胶量影响较小;增大浸胶压力,可以较大的提高竹束的浸胶量;本试验范围内,随着竹束浸胶量的降低,重组竹材的物理力学性能呈下降趋势。
(3)组坯竹束全部使用条状竹束重组竹板材的密度变异系数最小,混合使用条状竹束和片状竹束的次之,全部使用片状竹束重组竹板材的密度变异系数最大;提出了一种重组竹材板坯组坯装置和组坯方法。
(4)竹种、胶黏剂固含量、热压温度和密度等对重组竹的物理力学性能具有明显影响。
其中重组竹的密度影响最大,密度从0.83g/cm3增大到1.05g/cm3,重组竹材的各项力学性能也随着增大,密度与MOR、MOE、IB成抛物线关系。
(5)利用本研究制备的不去竹青、竹黄的重组竹材的力学性能优于竹帘胶合板、竹材胶合板和其它三种重组竹材产品;本研究制备的重组竹材的耐循环水煮、干燥的能力优于其它三种重组竹材产品;循环湿热氙灯联合处理试验结果表明,本研究制备的重组竹材具有一定的耐室外老化性能。
竹材力学性能研究

3 结 论
1 )准 静 态 拉 伸 试 验 中 , 节 间试 样 在 断裂 破 坏 时 由
于维管 束 的滑移 而 断 裂 口层 次不 齐 , 带竹 节 的试 样 在
竹 节 处 断 裂 。 中 速 拉 伸 试 验 中 节 间试 样 相 对 准 静 态 拉 伸 下 的 断 裂 口要 齐 整 。 2 )准 静 态 拉 伸 试 验 中 , 节 间 试 样 的 抗 拉 强 度 最 大, 可达 1 9 1 . 2 3 MP a ; 带 竹 节 的 竹 材 在 竹 节 处 的 抗 拉 强度最 大 为 8 6 . 0 5 MP a , 竹 节 承 受 高 强 度 拉 伸 的 能 力 较节 间处 弱 。 3 )中 速 拉 伸 试 验 中 , 竹 材 的抗 拉 强 度会 随 着 竹龄 的增 加而 降低 , 竹 龄 对 竹 材 的 应 力 一 应 变 曲 线 有 较 大
[ 2 ]高 梦祥 ,郭 康权 ,杨 中平 .玉 米 秸 秆 的力 学 特 性 测 试研 究 [ J ] .农 业
机 械 学 报 ,2 0 0 3 , 3 4 ( 4 ) :4 7 ~4 9 .
Ga o Me n g x i a n g,Gu o Ka n g q a a n,Ya n g Z h o n gp i n g .S t u d y o n me —
第 6期
高洪 一 等 : 竹 材 力学 性 能 研 究
的 竹 材 的抗 拉 强 度 相 差 不 大 。 由 于 竹 材 节 处 维 管 束 分 布稀 疏 且 弯 曲 , 在拉 伸 时更 容易 受 到破 坏 , 随 着 竹 龄 的 增大 , 纤维束变粗 , 相 应 的 维 管 束 承 受 载 荷 的 能 力 变 强, 使 得抗 拉强 度增 强 。由表 1 可 以看 出 , 竹 龄 为 3年 的竹 材试 样 拉 伸 强 度 最 大 , 为 1 9 1 . 2 3 MP a ; 带 有 竹 节
竹材的力学性能及磨料磨损性能研究

在经 磨光 和 抛 光 后 的 试 件 横 切 面 上 沿 竹 黄 到 竹
青 的半径上等距设定 A , ,, 3个观察点 , A A 共 以每个
点为 中心 , 生 物 体 视 显 微 镜 的矩 形 视 野 内 ( r × 在 6m a 8 m) 把 纤维 细 胞 ( 括 视 野 边 上 的部 分 纤 维 细 胞 ) a r , 包 用 曲线 标记 出来 , 统会 自动求 出纤 维 细 胞 的 面 积 Q 系 并 除 以视野 面 积 即可 得 纤 维 比量 ( ) % 。每 个 视
1 试 验方 法
试验 以 自然 风 干 的毛 竹 ( hl s cy e r yl P y ot h sh t o c l a ec e vr u ecn ) 研究 对 象 , a bses 为 p 试样 取 自 2年 生 竹 的 两个
竹节 之 间 的 竹 干 。从 基 部 起 锯 成 3等 份 , 别 编 号 , 分 获取 3种竹 纤 维 密 度 试 样 。 为 了保 证 各 种 试 件 取 自 竹秆 上 相对 一 致 的位 置 , 圆筒 剖 开 , 称 取 材 , 做 将 对 各
冲击 断 口具有 解 理 断 裂 特征 , 为典 型 的脆 性 断裂 断 口。竹 纤 维 具 有 比基 体 高 的 耐 磨 性 , 损 表 面 以 微 犁 切 和 微 磨
开 裂 为 主 要损 伤 特 征 。竹 材 的 耐磨 性 能 随 竹纤 维 含 量 的升 高 而 提 高 。
关键词 :竹材 ;纤维 ;密度 ;力学性能 ;磨料磨损
21 0 1年 7月
农 机 化 研 究
第 7期
竹 材 的 力 学 性 能 及 磨 料 磨 损 性 能 研 究
孙俊 杰 ,王 智芹 ,王 宝 Leabharlann ,叶 伟 ,邓 志 华 ,马云 海
探讨竹材在建筑工程中的应用

探讨竹材在建筑工程中的应用摘要:近年来,建筑业迅速成长为我国支柱性产业之一,本文介绍了竹材的特性,并对其在建筑工程中的应用进行了探讨。
关键词:建筑工程;竹材加工;力学性能中图分类号:k826.16 文献标识码:a 文章编号:一、竹材的特性作为绿色材料,现代竹材纤细致密,具有良好的物理力学性能和加工性能,可视为钢材和混凝土材料的有益补充,其主要力学性能见表1。
由表1可知,竹材的力学性能稍逊于钢铁,而优于其他传统建筑材料。
此外,竹材的密度较低,约为7.5kn/m3,是混凝土的1/4,砖墙砌体的1/3。
在绿色指标上,竹材吸收co2量是普通树木的4倍,具有自净作用,对环境影响小。
在具有导热系数低、尺寸稳定性佳、韧性较好和保温隔热等诸多特点的同时,竹材也存在耐候性较低、抗弯矩能力稍弱、结构整体刚性较差和易脆性破坏等缺点。
这些不足在实际使用中应当充分考虑。
另外,近些年来还出现了以竹材和其他材料为主要原料的竹材复合结构,如:竹-玻璃钢复合材料、竹-木复合材料和竹筋混凝土等。
这类新型结构兼具两种材料的特点,力学性能优越,能更好的满足现代建筑结构的性能要求,具有广阔的应用前景。
二、在建筑工程中的应用早在上世纪40年代,国外就开始研制竹胶合板,相继建成了竹纤维板和单板生产线。
近10年来,中国竹业生产也取得了较快发展。
目前,竹材不仅常被应用于建筑施工中的模板、脚手架和室内装修等方面,还出现在现代轻型住宅、大型高层建筑和桥梁的建设中。
按照竹材在建筑工程中的不同用途,文中将其分为基桩、框架、墙体和楼板3类。
2.1基桩竹材抗压强度大,可作土建基础用桩。
这些基桩一般用于临时平房或两层楼房。
同时,基桩不宜过长,以免在地下水的渗透下腐蚀发霉。
基桩的竹子宜选择直径大、竹肉厚和竹节节距短的,以获得较大的抗压强度。
对于小直径竹材可按需要将多根捆扎为一根,以替代大直径竹材。
未经防腐处理的竹柱使用年限较短,出于经济考虑,应对其进行防腐处理或埋入混凝土中,以延长使用寿命。
竹材物理力学性能研究

对竹材进行压缩处理,使其密度增 大,提高其抗压和抗弯强度。
竹材的防腐处理
化学防腐
使用防腐剂对竹材进行处理,以 防止其受潮、腐烂和虫蛀。
生物防腐
利用生物制剂对竹材进行处理, 使其具有抗菌、防虫性能。
真空或压力处理
将竹材置于真空或压力环境下进 行处理,以消除内部水分和气体,
提高防腐性能。
竹材的复合化处理
本研究对于促进竹材在建筑、桥梁等工程领域的应用,推动绿色建筑和可持续发展 具有重要意义。
02
CHAPTER
竹材的基本物理特性
密度与孔隙率
密度
竹材的密度通常在0.4-0.9g/cm³之 间,其密度取决于竹种和生长环境。 密度是影响竹材物理力学性能的重要 因素之一。
孔隙率
竹材内部具有发达的孔隙结构,孔隙 率较高,一般在20%-30%之间。这种 孔隙结构对竹材的力学性能和加工性 能有一定影响。
冲击韧性
• 冲击韧性:冲击韧性是指材料在受到冲击负荷时的抵抗破裂和 延性的能力。竹材的冲击韧性较好,能够吸收较大的冲击能量, 这与其纤维结构有关。
疲劳性能
• 疲劳性能:疲劳性能是指材料在反复承受一定负荷时抵抗 疲劳破坏的能力。竹材的疲劳性能较好,能够在一定循环 次数的负荷下保持较好的完整性。
04
弯曲性能与弹性模量
弯曲性能
竹材在承受弯曲负荷时的性能表现,通常以弯曲强度和弯曲模量来衡量。弯曲强 度是指竹材在弯曲状态下所能承受的最大负荷,弯曲模量则是指竹材在受到外力 作用时抵抗变形的能力。
弹性模量
弹性模量是衡量材料抵抗弹性变形能力的重要参数,通常以兆帕(MPa)表示。竹 材的弹性模量较高,能够达到20GPa左右,表明其具有较好的抗变形能力。
竹材研究进展情况报告

竹材研究进展情况报告竹材作为一种优质的可再生材料,拥有众多优点,如快速生长、高强度、较低的质量、抗震性能、环境友好等。
因此,竹材在建筑、家具、装饰、工艺品等领域得到广泛应用。
竹材的研究一直以来都备受关注,近年来取得了一些重要的进展。
首先,竹材的力学性能研究方面,近年来涌现出许多新的成果。
研究人员通过实验和数值模拟等方法,深入探究了竹材的强度、刚度、屈服性能等基本力学性质。
同时,研究人员还研究了竹材在不同湿度、温度、加载速率等条件下的力学性能变化规律,为竹材的设计和应用提供了重要依据。
其次,竹材加工和改性技术方面的研究也取得了显著进展。
传统竹材加工技术虽然使用广泛,但存在着一些问题,如材料损耗、加工精度不高等。
近年来,研究人员在竹材加工领域引入了一些先进的材料加工和改性技术,如数控加工、热处理、化学改性等,大大提高了竹材的加工效率和产品质量。
此外,竹材的耐久性研究也备受关注。
研究人员通过人工加速老化试验和自然暴露试验等方法,研究了竹材在不同环境条件下的耐久性能变化规律。
研究结果表明,合理处理和保护竹材可以延长其使用寿命,进一步推动了竹材的应用。
最后,竹材的环境影响和可持续性研究也在近年来得到了更多关注。
研究人员对竹材的生命周期进行了评估,探究了竹材在不同阶段对环境的影响。
此外,研究人员还将竹材与其他材料进行了对比,评估了竹材的可持续性。
这些研究为竹材的进一步推广和应用提供了科学依据。
总之,竹材的研究进展取得了一系列重要成果,涵盖了力学性能、加工和改性技术、耐久性、环境影响和可持续性等方面。
这些研究为竹材的应用提供了科学支撑,同时也为进一步完善竹材的性能和推动其广泛应用提供了参考。
未来,竹材的研究将继续深入,为我们提供更多可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CCA防腐木
防水性差,抗酸碱性差,抗紫外线性差 ,开裂,需油漆维护。 安装组装及处理木材较复杂。
使用寿命
价格 木质自然外 观 密度 防滑性能 防火等级 强度
10年以上
18000元/m3 强 1.23g/cm3 好 A 静曲强度220Mpa以上
1-5年
3500-14000元/m3 强 0.3-1.0g/cm3 一般 静曲强度33Mpa
七、竹材在项目中的运用 7.1、成功案例 八、总结
一、竹材的定义
来源于竹类植物的地上秆茎。由纤维素、半纤维素和木质素等主要成分组成。
二、竹材的特性
物理性质: 含水率:竹子生长时含水率很高,平均约为80%~100%,通常年龄愈 小,其新鲜材含水率愈高。
密度:竹材的基本密度在0.40~0.9g/cm3. 其实质密度约为1.481~0 1.514g/cm3.平均密度约为1.500g/cm3.竹子的绝干密度约为 0.79~0.83g/cm3。主要取决于维管束的密度及其构成。随竹种、年 龄、秆茎部位、立地条件和竹种发生变化。
原竹选择→竹材截断→竹筒剖分→竹条分片→竹片疏 解→蒸煮或炭化→干燥→浸胶→二次干燥→选料组坯 →模压成型→固化保质→锯边或开料→重组竹型材
冷压工艺 制成梁柱、高档地板、 高档集成材家具板
热压工艺 户外产品
五、户外重组竹与防腐木对比
对比项目 户外重组竹材料 CCA防腐木
制作工艺的 区别
具有高强度,高耐候性,高防腐性合高耐 燃点等特点。
常规规格:1860*137*18mm 密度:1.12g/cm3 静曲强度:150—180MPA
价格:228元/m2 硬度:110MPA 冲击强度:114.7Kg/cm3
六、竹材的生产工艺 六、竹材在建筑景观中的应用
6.3、贴面使用
常规规格:1860*100*12mm 价格:228元/m2 密度:1.12g/cm3 硬度:110MPA
户外重组竹材料
CCA防腐木
六、竹材在建筑景观中的应用
6.1、重组竹适用范围
别墅
会所
公共建筑
河道
小区地面
户外廊架
景观桥面
公园地面
城市绿网
景观小品
Байду номын сангаас
湿地
阳台露台
五、竹材在建筑景观中的应用 六、竹材在建筑景观中的应用 6.2、铺装使用
重组竹材广泛运用于生产户外地板、楼梯、各类家具、室内外装饰。干缩湿 胀率极小,不易变形具有较好稳定性、防水性、耐候性,美观耐用。
竹材、木材物理性能对比
材质 竹材 0.255 184.27 橡木 0.392 153.55 红松 0.459 98.10
干缩系数 (%)
抗拉强度 (MPa) 抗弯向度 (MPa) 抗压强度 (MPa) 项目 顺纹抗拉 (MPa) 顺纹抗压 (MPa)
108.52
65.39 竹材 楠竹 淡竹
110.03
竹材专题研究
>> 目录
一、竹材的定义 二、竹材的特性 2.1、物理特性 2.2、化学特性 2.3、力学特性 三、竹材的功能优势 3.1、对比表 四、竹子的加工生产工艺 4.1、竹集成材 4.2、重组竹材 五、重组竹材与防腐木的对比 六、竹材在建筑景观中的应用 6.1、重组竹的适用范围 6.2、铺装使用 6.3、贴面使用
可以通过工艺,提供多种颜色的选择 产品各项性能指标优于木塑与防腐木、被 广泛应用在包括建材、园林景观、建筑模 板、高强度支撑结构材料市场、风力发电 叶片市场。形成多产品系列。
应用领域区 别
对比项目
产品性能的 区别 安装简易程 度的区别
户外重组竹材料
放水,抗酸碱,抗虫蛀,抗真菌,抗紫外 线,不开裂,不变形,高强度。需维护。 卡口拼接安装简单。
木材代用的好材料。目前竹集成材、重组竹加工技术已日趋成熟,为
竹材提供了技术支持,而木材资源相对缺乏,合理的运用竹材将具有 重要意义。
2010 年上海世博会中,西班牙馆使用了 8524 块竹 藤编板,由长达25000米的钢骨管支撑,以竹做内 部装饰,营造出类似篮子造型的大型庭院式设计, 为游客营造出竹藤壮丽奇特的视觉效果。据悉,这 座竹藤版的鸟巢,不久前荣获了2010年英国皇家建 筑师协会国际建筑大奖。
八、总结
我国的竹资源极为丰富,与木材相比,竹材的强重比更高,是
环保
隔音 耐磨性能、抗 刮划能力 防水性能
生虫 竹材内含丰富的糖份、脂肪、淀粉、蛋白质等营养物质,在潮湿环境中容易 发霉 腐朽
生虫,发霉,腐朽
四、竹材的生产加工
竹集成材 是由一片片或一根根竹条经胶合压制而成的方材和板材。
板形、方形竹集成材的生产工艺流程。
四、竹材的生产加工
重组竹材 先将竹材疏解成通长的、相互交联并 保持纤维原有排列方式的疏松网状纤维束, 再经干燥、施胶、组坯成型、冷压或热压 而成的板状或其他形式的材料。
七、竹材在项目中的运用
7.1、成功案例
长城脚下的公社
竹屋
主要建筑材料选择了在中国与日本文化中 具有独特涵养的竹子。视竹子的密度与直径, 提供了各种不同的空间分割。为了充分利用这 些特性,设计师放置了一个竹子墙,就像长城 一样沿着基地斜面的一层竹子。
七、竹材在项目中的应用 七、竹材在项目中的运用
2010世界博览会 西班牙馆
是一种化学防腐剂,用于保护木材不受 细菌和昆虫的侵蚀。
对人健康的 影响程度的 区别 对土壤及环 境影响 表面及颜色 的区别
全程加工过程中甲醛释放量低于 0.2mg/100g,更低于0.5mg/100g欧洲E1级 标准. 环保产品,不会对环境造成破坏。
防腐木材中的砷(砒霜)可能引起膀胱癌 、肝癌和肺癌、当皮肤与木材产生表面 接触时,可能会粘些化学制品。 随着时间流逝,砷会慢慢的从CCA处理 的木材产品浸出,对环境造成破坏。 选择单一/刷漆 2003年12月30日以后,欧美国家的这些 CCA产品不能用于大部分民用建筑木材 处理,包括幼儿园,阳台,景观木材, 民用围栏,人行道。
62.23 木材 杨木 红松
65.30
32.80
水杉
204.2
65.5
198.4
84.6
65.2
22.4
101.4
34.3
84.2
40.6
小结:竹材顺纹抗拉强度约木材的2倍,单位重量抗拉强度约为钢材的3~4倍.
化学性质: 竹材主要化学成分为有机组成,是天然的高分子聚合物,主 要由纤维素(约55%)、木质素(约25%)和半纤维素(约20%)构 成。竹材的纤维素含量随着年龄的增加而略减,不同秆茎部位含 量也存在差异:从下部到上部略减。从内层到外层是渐增的。
力学性质: 非均质各项异性材料,密度小,强度大。是一种轻质高强 材 料。在某些方面优于木材,如顺纹抗拉强度约比密度相同的木材 高1/2。顺纹抗压强度高10%左右。竹材基本密度大,则纤维含量 大,机械性能高,力学强度就大。
三、竹材的特点
项目 竹材 1.竹子生长周期短(4-6年就可砍伐利用),栽植容易,是可再生的绿色资源。 2.竹材深加工产品为天然材质产品,不会对室内的环境造成污染。 竹子是天然的隔音材料 竹材由于材质坚硬、密度大而有很高的耐磨抗划能力。 好,竹材坚硬、遇水膨胀和干燥收缩系数小,不易变形。