材料力学答疑辅导之应力状态

合集下载

材料力学第8章应力状态分析

材料力学第8章应力状态分析

点。设想以A点为中心,用相互垂直的6个截面截取一个边长无限小的立方
体,我们将这样的立方体称为单元体。取决于截取平面的倾角变化,围绕同 一个点,可以截取出无数个不同的单元体,
图8.1(b)为依附着杆件横截面所截取单元体(图8.1(c)为其平面图形式),而 图8.1(d)为依附着45°斜截面所截取的单元体。由于杆件轴向拉伸时,横 截面上只有正应力,且与杆件轴向平行的截面没有应力,因此,图8.1(b) 中的单元体只在左右两个面上有正应力作用。对于图8.1(d)中的单元体, 根据拉压杆斜截面应力分析(2.3节)可知,其4个面上既有正应力又有切应 力。
又有切应力。围绕A,B,C三点截取单元体如图8.2(d)所示,单元体的前后
两面为平行于轴线的纵向截面,在这些面上没有应力,左右两面为横截面的 一部分,根据切应力互等定理,单元体B和C的上下两面有与横截面数值相等
的切应力。至此,单元体各面上的应力均已确定。注意到图8.2(d)各单元
体前后面上均无应力,因此也可用其平面视图表示(见图8.2(e))。
图8.2
从受力构件中截取各面应力已知的单元体后,运用截面法和静力平衡条件, 可求出单元体任一斜截面上的应力,从而可以确定出极值应力。
围绕构件内一点若从不同方向取单元体,则各个截面的应力也各不相同。其
中切应力为零的截面具有特殊的意义,称为主平面;主平面上的正应力称为 主应力。一般情况下,过构件内任一点总能找到3个互相垂直的主平面,因
图8.3
运用截面法可以求出与 z 截面垂直的任意斜截面 ac 上的应力(见图 8.3
( a ))。设斜截面 ac 的外法线 n 与 x 轴的夹角为 α (斜截面 ac 称 为 α 截面),并规定从 x 轴正向逆时针转到斜截面外法线 n 时 α 角为正

材料力学应力状态分析

材料力学应力状态分析
x
y


对上述方程消参数(2),得:
o
x
x
x
x y 2 2 x y 2 2 ( ) ( ) xy 2 2
这个方程恰好表示一个圆,这个圆称为应力圆
圆心:
y
(
x y
2
,0)
半径:
R (
x y
2
) xy
2
2
应力圆:
y
x
x
B2
C
D( x , xy )
x
x
o

B1
o
y
( y , yx ) D’
三、证明:
OC OB1 B1C OB1 OB2 OB1 2 x y x y x 2 2
证得圆心位置:
2 1

A2 B2
C
D ( x , xy )
A1 B1

xy
x
D
A
R (
x y
2
)2 2 xy
x
R
c
D (x ,xy)
(y ,yx)
x y
2
D’

绘制步骤:
1、取直角坐标系—— o
x y x y 2 2 xy 2 2
30
单位:MPa 1 、 2、 3 ?
0 45 ;
0
空间应力状态: y y
x
z
x 40, y 60, xy 40, z 100(MPa)
z
xy 平面内的主应力:
x
max 80.7MPa, min 60.7MPa

材料力学:第八章-应力应变状态分析

材料力学:第八章-应力应变状态分析
斜截面: // z 轴; 方位用 a 表示;应力为 sa , ta
正负符号规定:
切应力 t - 使微体沿顺时针 旋转为正 方位角 a - 以 x 轴为始边、逆时针旋转 为正
斜截面应力公式推导 设α斜截面面积为dA, 则eb侧面和bf 底面面积分别为dAcosα, dAsinα
由于tx 与 ty 数值相等,同时
sa+90 ,ta+90
E
sa+90 ,ta+90
结论: 所画圆确为所求应力圆
应力圆的绘制与应用3
应力圆的绘制
已知 sx , tx , sy ,
画相应应力圆
t
先确定D, E两点位置, 过此二点画圆即为应力圆
Ds x ,t x , E s y ,t y
t
C OE
s 2 , 0
s 1 , 0
应力圆绘制 作D, E连线中垂线,与x轴相交即为应力圆圆心
tb sb
t
sa
O
C
ta
D
sa ,ta
t
s
E
sb ,tb
O
D
sa ,ta
C
s
E
sb ,tb
由|DC|=|CE|,可得sC值:
sC
s
2 β
+
t
2 β
s
2 α
+
t
2 α
2 sα sβ
点、面对应关系
转向相同, 转角加倍 互垂截面, 对应同一直径两端
应变状态
构件内一点处沿所有方位的应变总况或集合, 称为该点处的 应变状态
研究方法
环绕研究点切取微体, 因微体边长趋于零, 微体趋于所研究 的点, 故通常通过微体, 研究一点处的应力与应变状态

材料力学应力状态分析

材料力学应力状态分析

材料力学应力状态分析材料力学是研究物质内部力学性质和行为的学科,其中应力状态分析是材料力学中的重要内容之一。

应力状态分析是指对材料内部受力情况进行分析和研究,以揭示材料在外力作用下的应力分布规律和应力状态特征,为工程设计和材料选用提供依据。

本文将从应力状态的基本概念、分类和分析方法等方面展开讨论。

首先,我们来介绍一下应力状态的基本概念。

应力是指单位面积上的力,是描述物体内部受力情况的物理量。

在材料力学中,通常将应力分为正应力和剪应力两种基本类型。

正应力是指垂直于截面的应力,而剪应力是指平行于截面的应力。

在实际工程中,材料往往同时受到多种应力的作用,因此需要对应力状态进行综合分析。

其次,我们将对应力状态进行分类。

根据应力的作用方向和大小,可以将应力状态分为拉应力状态、压应力状态和剪应力状态三种基本类型。

拉应力状态是指材料内部受到拉力作用的状态,压应力状态是指材料内部受到压力作用的状态,而剪应力状态是指材料内部受到剪切力作用的状态。

这三种应力状态在工程实践中都具有重要的意义,需要我们进行深入的分析和研究。

接下来,我们将介绍应力状态分析的方法。

应力状态分析的方法有很多种,常用的有应力分析法、应变分析法和能量方法等。

应力分析法是通过应力分布的计算和分析来揭示应力状态的特征,应变分析法则是通过应变分布的计算和分析来揭示应力状态的特征,而能量方法则是通过能量原理和平衡条件来揭示应力状态的特征。

这些方法各有特点,可以根据具体情况选择合适的方法进行分析。

最后,我们需要注意的是,在进行应力状态分析时,需要考虑材料的本构关系、边界条件和载荷情况等因素,以确保分析结果的准确性和可靠性。

同时,还需要注意应力状态分析的结果对工程实践的指导意义,以便更好地指导工程设计和材料选用。

总之,材料力学应力状态分析是一个复杂而重要的课题,需要我们进行深入的研究和分析。

只有深入理解应力状态的特征和规律,才能更好地指导工程实践,为实际工程问题的解决提供科学依据。

材料力学 第八章:应力状态分析

材料力学 第八章:应力状态分析

2 )2
材料力学
整理可得:
(


x

2
y
)2
2


(
x

2
y
)2
x2
(3)
(3)式为以 、为变量的圆方程。
圆心坐标

(
x
y
,0)
横坐标为平均应力
2
半径

(
x

2
y
)2

2 x
为最大剪应力
材料力学
x x
y
x y
2

(
x

2
y
)2

2 x
材料力学
方法一:
27.5
x

2
y
x
y
2
cos(2 27.5) x
sin(2 27.5)
70 70 cos55 50sin 55 22
96MPa
96MPa
27.5
70MPa
62.5 50MPa 26MPa
117.5

x
上的应力对应-坐标系中的Dy点。Dy
点的横坐标
OF

、纵坐标
y
FDy

y
;连接
Dx、Dy与轴的交点C为圆心 , CDx 或
CDy 为半径画一圆,这个圆是该单元
体所对应的应力圆。
材料力学
n
y

x
y
x
x
y

F o
Dy
(y,y)
Dx(x,x) CK
材料力学
证明:
DxCK DyCF (对顶角) Dy FC DxKC (直角)

应力状态-材料力学 经典

应力状态-材料力学 经典

将0值代入,得:
一点的应力状态
x y x - y 2 2 ( ) xy 2 2 x y x - y 2 2 - ( ) xy 2 2
应力状态/应力圆
主应力排序:
12 3



a
o 2
d
c
2qp

1
3 o
应力状态/应力圆
利用应力圆确定主应力
y
D

xy
A
x
a
yx
o B1 d
c
2q p

A 1
x y x - y 2 2 0c cA ( ) xy oA 1 1 2 2 x y x - y 2 2 oB1 0c - cB1 - ( ) xy 2 2 一点的应力状态
x



-
yx
xy
y
即又一次证明了剪应力的互等定理。
一点的应力状态
应力状态/应力圆
三、应 力 圆
(Mohr’s Circle for Stresses)
1、应力圆方程
x y x - y cos 2 - xy sin 2 2 2
5 4
FP 2
S平面
5 4 3 2
1
3
2 1
Mz x1 Wz
FP l Mz 4
2
3
x2
2
1
2
3
一点的应力状态
应力状态/应力状态的概念及其描述
主平面:单元体上剪应力为零的平面
主应力:主平面上的正应力
通过任意的受力构件中任意一点,总可以找到三个

材料力学-应力状态与应变状态分析

材料力学-应力状态与应变状态分析

s2 引起 1 s 2 E 2 s 2 E 3 s 2 E
s3 引起 1 s 3 E 2 s 3 E 3 s 3 E
小变形 i i i i i 1,2,3
1
1 E
s1
(s 2
s 3 )
广
2
1 E
s 2
(s 3
s1 )
义 虎 克 定
3
1 E
s 3
(s 1
s 2)
t T = 1 πD3 (1-a4) 16
1

1 E
[s1-
(s2+s3)]

1+
E
t
T=8.38 kN·m
二、体积应变
单元体边长:dx、dy、dz
体积:V0 = dx·dy·dz
dy
dx → dx +△dx = dx + 1dx = (1 + 1) dx
dy → dy +△dy = dy + 2dy = (1 + 2) dy
体积的绝对增量:△V = V-V0 = V0 (1+ 2+ 3)
单位体积增量:
V V0
1 2
3
体积应变 体积的相对增量
1 2
E
(s1
s2
s
3)
讨论:
V V0
1 2
E
(s1 s 2
s 3)
⒈ 若 s1 + s2 + s3>0,
则 >0 →△V >0,即体积增大;
若 s1 + s2 + s3<0,
s2
s3 dsz 1
dx
dz → dz +△dz = dz + 3dz = (1 + 3) dz

13-1应力状态理论-材料力学

13-1应力状态理论-材料力学

• (3)式中两式相减与(4)式比较:
max min
max

22
my in
maxx2

y
2


2 xy
• (3)式中两式相加:
mmmmianiaxnx
maxx2mx yi2nyx2
x

2
2. 应力圆作法
y
yx
B
xy
A x
x y

2
a (x ,xy)
fc

o
Re
b (y ,yx)
•在- 坐标中,取对应于单元体A、B面的点a、b; • a、b两点连线交轴于c点; •以c为圆心ac为半径作圆。
x y

2
a (x ,xy)
fc

o
Re
b (y ,yx)
9、单向应力状态:三个主应力中只有一个主应力不等于零的 应力状态叫单向应力状态。例如:拉压杆 叫单向应力状态,纯弯曲状态。
■原始单元体的画法(各侧面应力已知的单元体)
P
P
1、截取无限小六面体作为单元体;
1)截取横截面; 2)在横截面上平行于边缘截取小矩形; 3)从横截面开始沿边缘截取小立方体;
2、分析单元体各个面的含义,分清哪个面是横截面;


I p梁
M y
Iz
x
x

QS
z
Izb

z
z
zx zy
xz yz
y

xy
yx
y
3、原始单元体:各侧面应力已知的单元体
M y
Iz
QSz

Izb
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
材料力学答疑 应力状态和强度理论
相关文档
最新文档