工程力学-材料力学之应力应变状态分析
如何理解工程力学中的应力与应变?

如何理解工程力学中的应力与应变?在工程力学的广袤领域中,应力与应变是两个至关重要的概念。
它们不仅是理解材料力学性能的基石,也是解决众多工程实际问题的关键。
对于初学者来说,这两个概念可能显得有些抽象和难以捉摸,但只要我们耐心剖析,就能发现其中的奥秘。
让我们先来谈谈应力。
应力,简单来说,就是单位面积上所承受的内力。
想象一下,你手里拿着一根橡皮筋,当你用力拉伸它时,橡皮筋内部就会产生抵抗拉伸的力。
如果我们把橡皮筋的横截面积考虑进去,计算出单位面积上的内力,这就是应力。
应力的单位是帕斯卡(Pa),它表示每平方米所承受的力的大小。
在实际的工程应用中,我们常常会遇到不同类型的应力,比如拉伸应力、压缩应力和剪切应力。
拉伸应力出现在材料被拉长的时候,就像刚刚提到的拉伸橡皮筋;压缩应力则相反,发生在材料被压缩的情况下,比如把一根柱子压短;而剪切应力则常见于材料受到平行于其表面的力的作用,例如用剪刀剪断一张纸。
为了更深入地理解应力,我们来考虑一个具体的例子。
假设我们有一根横截面面积为 1 平方厘米的金属杆,我们对它施加一个 100 牛顿的拉力。
那么,这根金属杆所承受的应力就是 100 牛顿除以 00001 平方米(1 平方厘米= 00001 平方米),即 1000000 帕斯卡。
接下来,我们再看看应变。
应变是用来描述物体形状或尺寸变化程度的量。
它是一个无量纲的量,也就是说,它没有单位。
应变可以分为线应变和角应变。
线应变表示物体在某一方向上长度的相对变化。
如果一根原来长度为 L 的杆子,在受到外力作用后长度变成了 L',那么线应变就等于(L' L)/L 。
还是以刚才的金属杆为例,如果它原来的长度是1 米,被拉伸后变成了 101 米,那么线应变就是(101 1)/ 1 = 001 。
角应变则用于描述物体角度的变化。
比如说,一个原本是直角的物体,在受到外力作用后角度发生了改变,这个角度的变化量就是角应变。
工程力学中的应力与应变分析方法探讨

工程力学中的应力与应变分析方法探讨在工程力学中,应力与应变是研究材料和结构力学性能的重要概念。
应力是指单位面积内的力的大小,而应变则是指材料的形变程度。
应力与应变的分析方法是工程力学中的核心内容之一,本文将对工程力学中的应力与应变分析方法进行探讨。
一、应力分析方法在工程力学中,常用的应力分析方法有静力学方法、接触力学方法和弹性力学方法。
静力学方法是通过平衡方程分析物体所受到的力,并计算得出应力分布情况;接触力学方法则是研究物体间的接触行为,通过接触区域的应力分布来分析力的传递情况;弹性力学方法则是应用弹性力学原理,通过杨氏模量和泊松比等参数计算得出应力分布情况。
静力学方法是应力分析中最基本的方法之一,它基于物体所受到的力的平衡条件进行分析。
静力学方法分为静力学平衡和弹性力学平衡两种情况。
静力学平衡是指物体在外力作用下不发生形变,通过将物体分解为若干个力的平衡条件方程来求解各个部位的应力;而弹性力学平衡则是物体在外力作用下发生形变,通过应力-应变关系来求解应力分布情况。
静力学方法在工程力学中应用广泛,可以分析各种载荷下的应力情况。
接触力学方法是研究物体与物体之间接触行为的力学方法,通过分析接触面的应力分布来推导出力的传递情况。
在实际工程应用中,接触力学方法广泛用于轴承、齿轮、摩擦等接触问题的分析与设计。
接触力学方法主要利用弹性力学和接触力学理论,通过建立接触面的几何模型和接触条件,求解接触区域的应力分布。
弹性力学方法是应力分析中最常用的方法之一,它基于弹性力学理论,通过材料的弹性参数计算得出应力分布。
弹性力学方法广泛应用于材料和结构强度分析中。
弹性力学方法主要使用线弹性理论,通过杨氏模量和泊松比等参数来描述材料的弹性性能,根据应力-应变关系计算得出应力分布情况。
二、应变分析方法在工程力学中,常用的应变分析方法有光栅衍射法、电测法和应变计法。
光栅衍射法是利用光学原理来测量物体表面的应变分布情况,通过测量光栅的位移来计算应变大小;电测法则是利用电阻应变片等设备来测量物体表面的应变分布情况;应变计法则是通过安装应变计来测量物体表面的应变分布情况。
材料力学中的应力与应变关系

材料力学中的应力与应变关系材料力学是研究材料在受力作用下的力学行为和性能的学科,应力与应变关系是其中的核心内容之一。
本文将讨论材料力学中的应力与应变的概念及其数学表示,以及应力与应变之间的线性关系与非线性关系。
一、应力的概念及表示应力是指材料单位面积上的内部力,常用符号σ表示。
根据受力情况的不同,可以分为正应力、切应力和体积应力。
正应力是指与作用力方向垂直的内部力,常用符号σ表示;切应力是指与作用力方向平行的内部力,常用符号τ表示;体积应力是指作用在体积内的内部力,常用符号p表示。
正应力的数学表示为σ = F/A,其中F为作用力的大小,A为受力面积。
切应力的数学表示为τ = F/A,其中F为切力的大小,A为受力面积。
体积应力的数学表示为p = F/V,其中F为体积力的大小,V为受力体积。
二、应变的概念及表示应变是指材料在受力作用下产生的形变程度,常用符号ε表示。
根据变形方式的不同,可以分为线性应变和体积应变。
线性应变是指在受力作用下,材料产生的长度或角度发生变化,常用符号ε表示;体积应变是指在受力作用下,材料产生的体积发生变化,常用符号η表示。
线性应变的数学表示为ε = ΔL/L0,其中ΔL为长度变化量,L0为原始长度。
体积应变的数学表示为η = ΔV/V0,其中ΔV为体积变化量,V0为原始体积。
三、应力与应变的线性关系在一定范围内,应力与应变之间可以表现为线性关系。
根据胡克定律(Hooke's Law),线性弹性材料的应力与应变之间满足σ = Eε,其中E为弹性模量。
弹性模量是材料刚度的度量,表示材料单位应力产生的单位应变。
常见的弹性模量有杨氏模量、剪切模量和泊松比。
杨氏模量的数学表示为E = σ/ε,其中σ为应力,ε为线性应变。
剪切模量的数学表示为G = τ/γ,其中τ为切应力,γ为切应变。
泊松比的数学表示为ν = -εv/εh,其中εv为垂直方向的线性应变,εh为水平方向的线性应变。
工程力学7第七章应力状态和应变状态分析

x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
0
x y
2
(
x y
2
)
2
2
2 x
y
y
y
2
090
0
x y
2
(
x y
2
2、为什么要研究一点的应力状态 单向应力状态和纯剪切应力状态的强度计算
σmax≤ [σ] τ
max≤[τ
]
梁截面上的任意点的强度如何计算?
分析材料破坏机理
F F F F T
T
3、怎么研究一点的应力状态
单元体
•各面上的应力均匀分布
• 相互平行的一对面上 应力大小相等、符号相同
满足:力的平衡条件 切应力互等定理
§7-2 平面应力状态分析
一、解析法:
1.任意斜面上的应力 y
y
y
y
y
n
y
x
a
x
e
d
x
x
x
bz
x
x
x
e
x
x
y
f
yy
x
x
b
c
y
y
y
f t
应力的符号规定同前 α角以从x轴正向逆时针 转到斜面的法线为正
(设ef的面积为dA)
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
工程力学c材料力学部分第七章 应力状态和强度理论

无论是强度分析还是刚度分析,都需要求出应力的极值, 无论是强度分析还是刚度分析,都需要求出应力的极值,为了找 到构件内最大应力的位置和方向 需要对各点的应力情况做出分析。 最大应力的位置和方向, 到构件内最大应力的位置和方向,需要对各点的应力情况做出分析。
受力构件内一点处所有方位截面上应力的集合,称为一点的 受力构件内一点处所有方位截面上应力的集合,称为一点的 研究一点的应力状态时, 应力状态 。研究一点的应力状态时,往往围绕该点取一个无限小 的正六面体—单元体来研究。 单元体来研究 的正六面体 单元体来研究。
σ2
σ2
σ1
σ1
σ
σ
σ3
三向应力状态
双向应力状态
单向应力状态 简单应力状态
复杂应力状态 主应力符号按代数值的大小规定: 主应力符号按代数值的大小规定:
σ1 ≥ σ 2 ≥ σ 3
平面应力状态的应力分析—解析法 §7−2 平面应力状态的应力分析 解析法
图(a)所示平面应力单元体常用平面图形(b)来表示。现欲求 )所示平面应力单元体常用平面图形( )来表示。现欲求 垂直于平面xy的任意斜截面 上的应力 垂直于平面 的任意斜截面ef上的应力。 的任意斜截面 上的应力。
二、最大正应力和最大剪应力
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
τα =
令
σ x −σ y
2
sin 2α + τ x cos 2α
dσ α =0 dα
σ x −σ y
2
sin 2α +τ x cos2α = 0
可见在 τ α
=0
第八章2应力应变状态分析

第八章2应力应变状态分析应力应变状态分析是研究材料或结构在外力作用下所产生的应力和应变的过程。
应力是单位面积上的内力,用于描述材料或结构对外力的抵抗能力。
而应变是形变相对于初始状态的变化量,用于描述材料或结构的变形程度。
针对材料或结构的应力应变状态进行分析,可以帮助我们了解其力学性能和稳定性,为工程实践提供重要依据。
应力应变状态分析是弹性力学的基本内容之一、根据材料的力学性质和外力的作用,可以得到不同的应力应变状态。
在弹性力学中,线弹性和平面应变假定是常用的简化假设。
线弹性假定材料仅在拉伸和压缩的方向上有应力,而在横截面上的应力是均匀分布的。
一维拉伸和挤压是线弹性应力应变状态的基本类型。
平面应变假定材料在一个平面内有应力,而在垂直于该平面的方向上无应力。
二维平面应变是平面应变应力应变状态的基本类型。
在应力应变状态分析中,我们通常关注应力和应变之间的关系。
最常见的是材料的应力-应变曲线。
应力-应变曲线描述了材料在外力作用下的力学行为,可以帮助我们了解材料的强度、塑性和韧性等性能。
在弹性阶段,应力-应变曲线呈线性关系,符合胡克定律。
而在屈服点之后,材料会发生塑性变形,应力不再是线性关系。
当应力达到最大值时,材料会发生破坏。
除了应力-应变曲线外,还有一些其他重要的参数和指标可用于描述应力应变状态。
例如,弹性模量是描述材料刚度的重要参数,表示单位应力引起的单位应变量。
剪切弹性模量描述了材料抵抗剪切变形的能力。
同时,杨氏模量和泊松比也是用于描述材料力学性质的常用参数。
应力应变状态分析在材料工程、结构工程以及土木工程等领域具有重要应用。
通过对材料和结构的应力应变状态进行分析,可以帮助我们评估其性能和强度,并且对设计和优化具有指导意义。
例如,在结构工程中,通过应力应变状态分析可以确定材料的承载能力和极限状态,从而确保结构在设计荷载下的安全运行。
然而,应力应变状态分析也面临一些挑战。
首先,材料的力学性质和变形行为往往是非线性的,需要使用复杂的数学模型进行描述。
材料力学应力状态分析

材料力学应力状态分析材料力学是研究物质内部力学性质和行为的学科,其中应力状态分析是材料力学中的重要内容之一。
应力状态分析是指对材料内部受力情况进行分析和研究,以揭示材料在外力作用下的应力分布规律和应力状态特征,为工程设计和材料选用提供依据。
本文将从应力状态的基本概念、分类和分析方法等方面展开讨论。
首先,我们来介绍一下应力状态的基本概念。
应力是指单位面积上的力,是描述物体内部受力情况的物理量。
在材料力学中,通常将应力分为正应力和剪应力两种基本类型。
正应力是指垂直于截面的应力,而剪应力是指平行于截面的应力。
在实际工程中,材料往往同时受到多种应力的作用,因此需要对应力状态进行综合分析。
其次,我们将对应力状态进行分类。
根据应力的作用方向和大小,可以将应力状态分为拉应力状态、压应力状态和剪应力状态三种基本类型。
拉应力状态是指材料内部受到拉力作用的状态,压应力状态是指材料内部受到压力作用的状态,而剪应力状态是指材料内部受到剪切力作用的状态。
这三种应力状态在工程实践中都具有重要的意义,需要我们进行深入的分析和研究。
接下来,我们将介绍应力状态分析的方法。
应力状态分析的方法有很多种,常用的有应力分析法、应变分析法和能量方法等。
应力分析法是通过应力分布的计算和分析来揭示应力状态的特征,应变分析法则是通过应变分布的计算和分析来揭示应力状态的特征,而能量方法则是通过能量原理和平衡条件来揭示应力状态的特征。
这些方法各有特点,可以根据具体情况选择合适的方法进行分析。
最后,我们需要注意的是,在进行应力状态分析时,需要考虑材料的本构关系、边界条件和载荷情况等因素,以确保分析结果的准确性和可靠性。
同时,还需要注意应力状态分析的结果对工程实践的指导意义,以便更好地指导工程设计和材料选用。
总之,材料力学应力状态分析是一个复杂而重要的课题,需要我们进行深入的研究和分析。
只有深入理解应力状态的特征和规律,才能更好地指导工程实践,为实际工程问题的解决提供科学依据。
工程力学中的应力和应变的计算方法

工程力学中的应力和应变的计算方法在工程力学这一领域中,应力和应变是两个极其重要的概念。
它们对于理解材料在受力情况下的行为以及结构的稳定性和安全性起着关键作用。
接下来,让我们深入探讨一下应力和应变的计算方法。
应力,简单来说,就是单位面积上所承受的内力。
想象一下,我们有一根杆子,在它的横截面上受到一个力的作用。
这个力除以横截面的面积,得到的值就是应力。
应力的单位通常是帕斯卡(Pa)。
在计算应力时,我们需要先明确受力的类型。
如果是拉伸或压缩力,应力的计算公式为:应力=力/横截面面积。
例如,有一根横截面面积为 001 平方米的杆子,受到 1000 牛顿的拉力,那么应力= 1000/ 001 = 100000 帕斯卡。
如果是剪切力,应力的计算就稍微复杂一些。
对于矩形截面,剪切应力=剪力/(横截面面积 ×剪切面的距离)。
假设一个矩形截面的宽度为 b,高度为 h,受到的剪力为 V,那么剪切面上的平均剪切应力= 3V / 2bh 。
应变则是描述物体在受力时发生的变形程度。
它是相对变形量,没有单位。
应变分为线应变和角应变。
线应变是指物体在某一方向上长度的变化量与原始长度的比值。
如果一根杆子原来的长度是 L,受力后长度变成了 L',那么线应变=(L' L)/ L 。
角应变,也称为切应变,用于描述物体的角度变化。
例如,一个正方形在受力后变成了菱形,其角度的变化量就是角应变。
在实际工程中,应力和应变的关系通常通过材料的本构方程来描述。
对于线弹性材料,应力和应变之间存在线性关系,遵循胡克定律。
胡克定律在拉伸或压缩情况下可以表示为:应力=弹性模量 ×应变。
这里的弹性模量是材料的一个固有属性,反映了材料抵抗变形的能力。
不同的材料具有不同的弹性模量。
例如,钢材的弹性模量通常较大,这意味着它在受力时相对不容易发生变形;而橡胶的弹性模量较小,受力时容易产生较大的变形。
除了简单的拉伸和压缩情况,对于复杂的受力状态,如弯曲、扭转等,应力和应变的计算就需要运用更复杂的理论和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
σ1
μσ2
σ3
0
2
1 E
σ2
σ1
σ3
0
z
y
y
z
x
x
12
(Analysis of stress-state and strain-state)
解得
σ1
σ2
(1 1 2
)
σ
3
铜块的主应力为
0.34(1 0.34) 1 - 0.342
二、各向同性材料的体积应变(The volumetric strain for isotropic materials)
构件每单位体积的体积变化, 称为体积应变用θ表示.
各向同性材料在三向应力状态下的体应变
如图所示的单元体,三个边长为 a1 , a2 , a3 变形后的边长分别为
a1(1+,a2(1+2 ,a3(1+3
对于平面应力状态(In plane stress-state)
(假设 z = 0,xz= 0,yz= 0 )
y
1 εx E (σx μσ y )
εy
1 E
(σ y
μσx )
εz
μ E
(σ
y
σx)
z
xy
xy
G
y
yx xy
x
x
y yx xy x
6
(Analysis of stress-state and strain-state)
(Analysis of stress-state and strain-state)
1、纯剪切应力状态下的体积应变( Volumetric strain for
pure shearing stress-state)
σ1 σ3 τ xy σ2 0
0
即在小变形下,切应力不引起各向同性材料的体积改变.
y
y
(1) 正应力:拉应力为正, 压应力为负 (2) 切应力:对单元体内任一点取矩,若 产生的矩为顺时针,则τ为正;反之为负 z
yx xy x
x
(3) 线应变:以伸长为正, 缩短为负; z
(4) 切应变:使直角增者为正, 减小者为负.
(Analysis of stress-state and strain-state)
(30)
-15.5MPa
σ1 σ2 15.5MPa σ3 30MPa
体积应变为
1 2
E
(σ1
σ2
σ3 )
1 2 100
0.34 103
(15.5
2
30)
1.95
104
最大切应力
max
1 2
(σ1
σ3 )
7.25MPa
13
(Analysis of stress-state and strain-state)
(σ1
μσ3 )
2.4 104
ε2
E
(σ1
σ3 )
3 105
ε3
1 E
(σ3
μσ1 )
1.7 104
a1 a2 a3(1 ε1 ε2 ε3 ) a1 a2 a3
a1 a2 a3 ε1 ε2 ε3
ε1
1 E
σ1
μσ2
σ3
1
2
E
(σ1
σ
2
σ3
)
ε2
1 E
σ2
μσ3
σ1
ε3
1 E
σ3
μσ1
σ28
y
xm
900
t
450
k
D
16
(Analysis of stress-state and strain-state)
y
xm
900
t
450
k
D
yபைடு நூலகம்
max
x
max
kk
-45°
3
1
解: 从圆筒表面 k 点处取出单元体, 其各面上的应力分量如图
所示可求得
σ y σ1 τmax 80MPa
σ x σ3 τmax 80MPa
ε1
1 E
σ1
μσ2
σ3
ε2
1 E
σ2
μσ3
σ1
ε3
1 E
σ3
μσ1
σ2
二向应力状态下(In plane stress-state)
设 3= 0
ε1
1 E
σ1
μσ2
ε2
1 E
σ2
μσ1
ε3
μ E
σ2
σ1
(Analysis of stress-state and strain-state)
σz
同理,在 x 、y 、z同时存在时, y , z 方向的线应变为
εy
1 E
σy
μσz
σx
εz
1 E
σz
μ
σy σx
在 xy,yz,zx 三个面内的切应变为
xy
xy
G
yz
yz
G
zx
zx
G
(Analysis of stress-state and strain-state)
(Analysis of stress-state and strain-state)
例题13 已知矩形外伸梁受力F1,F2作用. 弹性模量 E=200GPa,
泊松比 = 0.3 , F1=100KN , F2=100KN。
求:(1)A点处的主应变 1, 2 , 3
(2)A点处的线应变 x , y , z
点与其轴线成 45°和135°角,即 x, y 两方向分别贴上应变片,
然后在圆筒两端作用矩为 m 的扭转力偶,如图所示,已知圆筒
材料的弹性常数为 E = 200GPa 和 = 0.3 ,若该圆筒的变形在弹
性范围内,且 max = 100MPa , 试求k点处的线应变 x ,y 以及变
形后的筒壁厚度.
εx
1 E
σx
μ
σy
σz
εy
1 E
σy
μσz
σx
xy
εz
xy
G
1 E
σz
yz
μσ
yz
G
y
σx
zx
zx
G
εx ,ε y ,εz —— 沿x、y、z轴的线应变 γ xy ,γ yz ,γzx —— 在xy、yz、zx面上的角应变
2
m
1
3
a2
m
a1
a3
m
这两个单元体的体积应变相同
1
2
E
(σ1
σ2
σ3 )
1 2
E
3σm
单元体的三个主应变为
ε1
ε2
ε3
1 E
σm
μσm
σm
1
2 E
μ
σm
10
(Analysis of stress-state and strain-state)
σz 0
17
(Analysis of stress-state and strain-state)
k点处的线应变 x , y 为
εx
1 E
(σ x
μσ y )
1 E
( τ max
τmax )
(1
)
E τmax
5.2 104
5.2 104
1
E
x
E x 1 1
G E 1 τ x 1 m 80.2MPa
2(1 ) 2 ε1 2ε1 Wt
15
(Analysis of stress-state and strain-state)
例题12 壁厚 t =10mm , 外径 D=60mm 的薄壁圆筒, 在表面上 k
σz 单独存在时
εx
σx E
εx
μ
σy E
εx
μ
σz E
y
y z
x
z
z
y
x
x
(Analysis of stress-state and strain-state)
在 x 、y 、 z同时存在时, x 方向的线应变x为
εx
1 E
σx
μ
σy
1
2
E
(σ
x
σy
σz )
在任意形式的应力状态下, 各向同性材料内一点处的体