2009年斯伦贝谢发布ECLIPSE油藏数植模拟软件操作技巧中文版

合集下载

油藏数值模拟与CMG操作简介

油藏数值模拟与CMG操作简介
史树彬
B611工作室 2009.3.23
1 什么是油藏数值模拟?
2 油藏数值模拟软件介绍 3 油藏数值模拟能干些什么? 4 油藏数值模拟研究步骤如何? 5 CMG操作简介
油藏数值模拟的定义
油藏数值模拟就是用数值的方法来解油藏中流体( 相或组分)渗流的偏微分方程组。
所谓数值方法是一种近似的解法,即用离散化的 方法把连续函数转变成离散函数,用计算机来求解 。通常用的方法为有限差分法,也可用有限元法和 谱分析方法。
地层压力 Pb
原油体积系数与地层压力关系曲线
油藏数值模拟
原油物性
地层油粘度随压力变化关系
油藏数值模拟
原油物性
典型地层油溶解气油比曲线
• 岩石和流体的流动性质数据
油水相渗曲线 油气相渗曲线 毛管力曲线
注意:油气相渗曲线资料少,可借用 相渗曲线和毛管力曲线饱和度端点值应匹配 毛管力曲线对纯油区可以忽略,但对过渡带必须考虑
·天然裂缝油气藏的模拟应用双重介质的裂缝模型;
对··凝视研析油油、究气气对田田开含象发富、以气及或目注平的气气油大、田小油开可采采藏应用情用组组 份况份或进模黑型油行;模 分型·稠;析油开,发从用热而采确注蒸定汽应模型用;什么软件进行 此··注而项各对种一目化般的学油剂藏数的,值三模次拟模采可拟油选应用研用常究化规学油。模气型田; 开发的黑油
·完井数据:射孔、补孔、压裂、堵水、解堵日期、层位、井指数等; ·生产数据:平均日产油、日产水、日产气、平均油气比和含水比等; ·压力数据:井底流压、网格压力等。 ·动态监测资料(分层测试、吸水、产液剖面等)
4.其它数据
主要包括算法选择、输入输出控制、油水井约束界限、油井定压定产等参 数。
基本数据资料

油藏数值模拟基础培训(第六讲)

油藏数值模拟基础培训(第六讲)

油藏数值模拟基础培训REGION/SOLUTION要点分析分区设置REGION:油藏不同部位可能有不同的流体属性,比如不同断块的油密度,粘度不同,或你的油藏岩性在纵向或垂向有变化,那你就需要在你的模型中设置流体或岩性分区。

储量分区FIPNUM:如果你想输出模型不同部位的储量,你需要设置储量分区流体分区PVTNUM:如果你的模型不同部位流体PVT属性不同,你需要设置流体分区。

岩性分区SATNUM:如果你的模型不同部位岩性不同,需要用不同的相渗曲线和毛管压力曲线,你需要设置岩性分区。

平衡区分区EQLNUM:如果你的模型有不同的油水或油气界面,你需要设平衡区分区设置REGION:我们假设你的模型有东西两个断块,两断块被封闭断层分割。

东断块的油比西断块的油密度重,在你提供油藏流体PVT表时你需要提供两个表,一个是密度重的PVT表,另一个是密度轻的PVT表。

在你的分区部分将东断块的流体分区值设为1,将西断块流体分区值设为2。

软件在计算东断块的流体流动时将自动用第一个PVT表(密度重的PVT表),在计算西断块流体流动时用第二个PVT表(密度轻的PVT表)。

分区设置REGION:REGION部分关键字储量分区:REGION部分FIPNUM1 2 3 … /流体分区:PROPS部分PVTOtable1 /table2 /table3 /PVDGtable1 /table2 /table3 /PVTWtable1 /table2 /PROPS部分PVTWtable1 /table2 /table3 /DENSITYtable1 /table2 /table3 /ROCKtable1 /table2 /REGION部分PVTNUM1 2 3 … /岩性分区:PROPS部分SWOFtable1 /table2 /table3 /SGOFtable1 /table2 /table3 /REGION部分SATNUM1 2 3 … /平衡区分区:SOLUTION部分EQUILline1 /line2 /line3 /RSVDtable1 /REGION部分EQLNUM1 2 3 … /分区设置REGION:同一个流体区内可以有不同的平衡区,但用一个平衡区内不容许存在不同的流体区。

油藏数值模拟及数模软件入门

油藏数值模拟及数模软件入门

油藏数值模拟技术2023 年11 月名目一、关于“油藏数值模拟技术”〔一〕根本概念及作用〔二〕数据预备〔三〕模型初始化〔四〕生产史拟合〔五〕生产动态推测二、油藏数值模拟的主流软件系统简介三、油藏数值模拟技术的进展及进展方向〔一〕进展〔二〕进展方向四、使用 ECLIPSE 软件进展油藏数值模拟的过程简介一、关于“油藏数值模拟技术”油藏数值模拟技术是一门将油田开发重大决策纳入严格科学轨道的关键技术。

从油田投产开头,无论是单井动态,还是整个油田动态,都要进展监测与掌握。

油藏数值模拟是油田开发最优决策的有效工具。

油藏数值模拟技术从 20 世纪 50 年月开头争论至今,已进展成为一项较为成熟的技术,在油气藏特征争论、油气田开发方案的编制和确定、油气田开采中生产措施的调整和优化以及提高油气藏采收率方面,已渐渐成为一种不行欠缺的主要争论手段。

油藏数值模拟技术经过几十年的争论有了大的改进,越来越接近油气田开发和生产的实际状况。

油藏数值模拟技术随着在油气田开发和生产中的不断应用,并依据油藏工程争论和油藏工程师的需求,不断向高层次和多学科结合进展,将得到不断的进展和完善。

〔一〕根本概念及作用(1)根本概念油藏数值模拟:从地下流体渗流过程中的本质特征动身,建立描述渗流过程根本物理现象、并能描述油藏边界条件和原始状况的数学模型,借助计算机计算求解渗流数学模型,结合油藏地质学、油藏工程学重现油田开发的实际过程,用来解决实际问题。

油藏数学模型的分类,一般有四种方法:1)按流体中相的数目,划分为:单相流模型、两相流模型、三相流模型。

2)按空间维数,划分为:零维模型、一维模型、二维模型、三维模型。

3)按油藏特性类型,划分为:气藏模型、黑油模型、组分模型。

气藏模型按其组分的贫富,可以用黑油数值模型模拟,也可以用组分类型的数值模拟模型模拟。

所以,气藏模型也可以划进黑油或组分模型。

故数学模型一般分为黑油型和组分型两类模型。

4)按油藏构造特点、开采过程特征,分类为:裂缝模型、热采模型、化学驱模型、混相驱模型、聚合物驱模型等。

2009年斯伦贝谢发布ECLIPSE油藏数植模拟软件操作技巧中文版

2009年斯伦贝谢发布ECLIPSE油藏数植模拟软件操作技巧中文版

图1 组分数据
按照实验报告,在 PVTi 中建立各类实验,并选择相应参数,一般来说包括饱和压力实
ECLIPSE 数值模拟软件使用技巧 数值模拟软件使用技巧
1
Schlumberger
如何使用 PVTi 进行 PVT 实验拟合
验、等组分膨胀实验、差异分离实验或等容衰竭实验等,注意实验中各项参数的意义。
73如何使用如何使用如何使用如何使用pvti进行进行进行进行pvt实验拟合实验拟合实验拟合实验拟合schlumbergereclipse数值模拟软件数值模拟软件数值模拟软件数值模拟软件使用技巧使用技巧使用技巧使用技巧1第一部分第一部分第一部分第一部分eclipse前后处理软件使用技巧前后处理软件使用技巧前后处理软件使用技巧前后处理软件使用技巧如何如何如何如何使用使用使用pvti进行使用进行进行进行pvt实验实验实验实验拟合拟合拟合拟合众所周知pvt分析主要目的是为油藏模拟器提供一套能表征油藏流体性质的状态方程因而回归参数的选择是非常重要的它将决定着流体模型的质量
图2 PVTi中的相图曲线
选择合理的状态方程,一般来说选择三参数状态方程,如 PR3 或 SRK3 方程。绘制相 图及组分分布指形图,分析当前实验拟合曲线。 在 PVTi 中进行重组分劈分,一般来讲将重组分劈分成 2-3 个组分就可以了,但要注 意劈分质量,其含量不要差别过大,比例相近可能更较为合适;同时也需要保证劈分前后 样品的相图不能差别太大,尤其是在油藏温度附近。对特别重要的参数给较大的权重,如 饱和压力及气油比等,考虑相应精度,拟合实验数据,拟合相图。 劈分是为了更好的拟合,合并则是为了加快求解速度,但合并不是盲目组合,一般来 说我们可以尽量减少组分个数,4-10 个组分就足够了,当然对于混相驱模拟则至少需 14 个组分。合并时应遵循以下原则: • • • • • 性质相近(如分子量),Log(K)值与 P(压力)关系曲线趋势一致; 同分异构体一般合并,如 Ic4 与 Nc4 合并为 C4,IC5 与 NC5 合并为 C5; 在 N2 和 CO2 浓度较低时,N2 与 CH4 合并,CO2 与 C2H6 合并; C1 一般保留成独立组分; 注入的组分需要保留独立。

Eclipse油藏数值模拟软件基本操作讲解总PPT课件

Eclipse油藏数值模拟软件基本操作讲解总PPT课件

65
66
67
68
69
70
71
72
73
74
75
76
77
开井时率
78
79
80
要点: 1.加输出内容的关键 词。
选择输出项
81
Data –Summary
添加输出关键字
注释
82
Data –Summary
关键字 FOPR/FWPR/WIR/FGPR/FGIR/FGSR /FWCT/FGOR/FTPRFGS/FTPRIWT/F TIRIWT/FAQRWOPR /WWPR/WWIR /WGPR
Eclipse油藏数值 模拟软件基本操作讲解
山东省油气勘探开发工程技术技术研究中心
1
第一部分
整体概述
THE FIRST PART OF THE OVERALL OVERVIEW, PLEASE SUMMARIZE THE CONTENT
2
新建一个office
3
4
点击Data
5
模型设置
6
General
551720 6801007 2000.00 2000.00
551720 6801007 3057.79 3057.79
551720 6801007 3078.62 3078.62
551720 6801007 3099.45 3099.45
551720 6801007 3120.29 3120.29
34
点击Schedule
35
Schedule
要点 一.导入数据
1.准备 生产历史数据文件(*.vol)、 措施数据文件(*.ev)、 井斜数据文件(*.cnt & *.dev) 网格数据文件(*.grid) 属性数据文件(*.init)

Eclipse-100-油藏数模软件使用手册

Eclipse-100-油藏数模软件使用手册

Eclipse 100 油藏数模软件使用手册二OO四年十月目录1 Eclipse 油藏模拟软件特点 (1)1.1Eclipse软件91年A版本的新进展概况 (1)1.2Eclipse100软件特点 (1)2 数据文件综述 (12)2.1 RUNSPEC部分 (15)2.2 GRID部分 (19)2.3 EDIT部分 (24)2.4 PROPS部分 (25)2.5 REGIONS部分 (31)2.6 SOLUTION部分 (32)2.7 SUMMARY(汇总)部分 (35)2.8 SCHEDULE部分 (42)3 关键字描述(按字母顺序排列) (47)ACTNUM 活节点的识别 (47)ADD 在当前BOX中指定的数组加一个常数 (48)ADDREG 给某一流动区域内指定的数组加一个常数 (49)ADDZCORN 给角点深度数组加一个常数 (49)APIGROUP 给API追踪中的油PVT表分组 (51)APIVD API追踪平衡的深度与原油比重(API)的关系 (51)AQANTRC 指定分析水层的示踪剂浓度 (51)AQUANCON 定义分析水层的相关数据 (52)AQUCON 数值化水层与油藏的连接 (53)AQUCT 说明Carter—Tracy水层的特征数据 (54)AQUFET Tetkovich水层说明数据 (55)AQUFETP 说明Fetkovich水层的特征数据 (56)AQUNUM 给一个网格块赋值一个数值化水层 (57)AQUTAB Carter—Tracy水层的影响函数表 (58)BDENSITY 盐水地面密度 (59)BOUNDARY 定义在打印网格表中显示的网格范围 (59)BOX 重新定义当前输入的BOX (60)CECON 生产井射开节点的经济极限 (61)COLLAPSE 识别在压缩VE选择中可压塌的单元 (62)COLUMNS 设置输入数据文件的左右范围 (62)COMPDAT 井完井段说明数据 (63)COMPFLSH 井射孔段的闪蒸转化比 (65)COMPIMB 井射开网格的渗吸表号 (67)COMPINJK 用户定义的注入井相对渗透率 (68)COMPLUMP 为自动修井而将射开网格归在一起 (69)COMPRP 重新标定井射开节点的饱和度数据 (70)COMPVE 垂直平衡(V.E.)运行时,井射孔深度的重设定 (72)COORD 坐标线 (75)COORDSYS 坐标系统信息 (76)COPY 从一个数组拷贝数据到另一数组 (77)COPYBOX 从一个BOX向另外一个拷贝一组网格数据 (77)CRITPERM 对VE节点压缩的渗透率标准 (78)DATE 输出日期到汇总文件 (79)DATES 模拟者事先指定报告日期 (79)DATUM 基准面深度,用于深度校正压力的输出 (80)BEBUG 控制检测输出 (80)DENSITY 地面条件下流体密度 (81)DEPTH 网块中心深度 (82)DIFFC 每一个PVT区域的分子扩散数据 (82)DIFFDP 在双重介质运行中,限制分子扩散 (83)DIFFMMF 基质一裂缝的扩散乘子 (83)DIFFMR R方向的扩散乘子 (83)DIFFMTHT θ方向扩散系数乘子 (84)DIFFMX X方向的扩散乘子 (84)DIFFMY Y方向的扩散乘子 (85)DIFFMZ Z方向的扩散乘子 (85)DIFFR R方向的扩散系数 (86)DIFFTHT θ方向的扩散系数 (86)DIFFX X方向扩散系数 (87)DIFFY Y方向扩散系数 (87)DIFFZ Z方向扩散系数 (88)DPGRID 对裂缝单元使用基质单元的网格数据 (88)DR R方向网格的大小 (88)DRSDT 溶解GOR的增加的最大速度 (89)DRV R方向网格大小(矢量) (89)DRVDT 挥发油的OGR的增加的最大速度 (90)DTHETA θ方向的网格大小 (90)DTHETAV 网格的角度大小(向量) (91)DX X方向的网格大小 (91)DXV X方向网格大小(向量) (91)DY Y方向网格大小 (92)DYV Y方向网格大小(向量) (92)DZ Z方向网格大小 (92)DZMTRX 基质块的垂直尺寸 (93)DZMTRXV 基质岩体块的垂直尺寸(向量) (93)DZNET 净厚度 (93)ECHO 接通重复输出开关 (94)EDITNNC 改变非相邻连接 (94)EHYSTR 滞后作用参数和模型选择 (95)END 标志SCHEDULE部分的结束 (95)ENDBOX 将BOX恢复到包含全部网格 (95)ENDNUM 端点标定与深度区域号 (95)ENKRVD 相对渗透率端点与深度关系表 (96)ENPTVD 饱和度端点与深度关系表 (97)EQLNUM 平衡区号数 (98)EQUALS 在目前的BOX中设置数组为常数 (99)EQUIL 平衡数据详述 (99)EXTRAPMS 对表的外插请求预告信息 (101)FIPNUM 流体储量区域号 (102)GCONINJE 对井组井/油田注入率的控制/限制 (102)GCONPRI 为“优先”而设的井组或油田产量限制 (104)GCONPROD 井组或油田的产率控制或限制 (104)GCONSALE 井组或油田的售气控制产率 (107)GCONSUMP 井组的气消耗率和引进率 (109)GCONTOL 井组控制目标(产率)允许差额 (110)GECON 井组或油田的经济极限数据 (111)GLIFTLIM 最大井组人工举升能力 (112)GRAVITY 地面条件下的流体密度 (113)GRIDFILE 控制几何文件网格的容量 (113)GRUPRIG 给井组配置修井设备 (113)GRUPTREE 建立多级井组控制的树状结构 (114)GSEPCOND 井组设置分离器 (115)IMBNUM 渗吸饱和度函数据区域号 (115)IMBNUMMF 基质—裂缝渗吸区域号 (116)IMPES 建立IMPES求解过程 (117)IMPLICIT 重建全隐式求解 (117)INCLUDE 包含数据文件名 (117)INIT 要求输出初始文件 (118)INRAD 径向模型的内径 (118)KRG 标定气相对渗透率的端点 (118)KRNUM 方向性相对渗透率表格数 (119)KRNUMMF 基岩—裂缝流动饱和度表号 (120)KRO 标定油相对渗透率端点 (120)KRW 标定水相对渗透率端点 (121)LOAD 调入一个SAVE文件以便执行一个快速重起动 (122)MESSAGES 重设置打印和停止限定的信息 (123)MINPV 设置活动网格的最小孔隙体积 (124)MINPVV 建立一个有效网格的最小孔隙空间 (124)MISCNUM 混合区数目 (125)MONITOR 请求实时显示输出 (125)MULTIPLY 当前定义区中的数组 (126)MULTR R方向传导率乘子 (126)MULTTHT THETA方向传导率乘子 (127)MULTX X方向传导率乘子 (127)MULTY Y方向传导率乘子 (127)MULTZ Z方向传导率乘子 (128)NEWTON 输出迭代计数到汇总文件 (128)NEWTRAN 标定使用块拐角传导率 (128)NEXTSTEP 建立下一时间步最大值 (129)NNC 非相邻连接的直接输入 (129)NOECHO 关闭输出的响应 (130)NOGGF 压缩网格几何模型文件 (130)NODPPM 非双孔的渗透率乘子 (130)NOWARN 压制ECLIPSE警报信息 (130)NTG 厚度净毛比 (130)OILAPI 初始原油API值,以便API示踪选择 (131)OLDTRAN 标定块中心传导率 (131)OLDTRANR 标定任意一块中心传导率 (131)OPTIONS 开启特别程序选择 (132)OUTRAD 径向模型外半径 (134)OVERBURD 岩石负载压力表 (135)PERMR R方向绝对渗透率 (135)PERMTHT θ方向绝对渗透率 (136)PERMX X方向绝对渗透率 (136)PERMY Y方向绝对渗透率 (136)PERMZ Z方向绝对渗透率 (137)PINCH 建立尖灭层上下的连接 (137)PINCHOUT 建立尖灭层上下的连接 (138)PMAX 模拟中的最大压力 (138)PMISC 与压力有关的可混性表 (138)PORO 网格孔隙度 (139)PORV 网格孔隙体积 (140)PRESSURE 初始压力 (140)PRIORITY 为井的优先级选项设置系数 (140)PRVD 原始压力与深度关系表 (142)PSEUDOS 为PSEUDO包要求输出的数据 (142)PVCO 含气原油PVT性质 (142)PVDG 干气的PVT性质(无挥发油) (144)PVDO 死油的PVT性质(无挥发气) (145)PVTG 湿气的PVT性质(有挥发油) (145)PVTNUM PVT区数目 (146)PVTO 活性油的PVT^性质(有溶解气) (147)PVTW 水PVT性质 (148)PVTWSALT 含盐的水PVT函数 (149)QDRILL 在钻井队列中安置井 (150)RESTART 设置重启动 (151)RESVNUM 对一给定油藏输入角点坐标数据 (153)ROCK 岩石压缩系数 (153)ROCKNUM 岩石压实表格区数 (154)ROCKTAB 岩石压实数据表 (154)ROCKTABH 滞后岩石压实数据表 (155)RPTGRID 从GRID部分输出控制 (156)RPTONLY 摘要输出的常规限制 (158)RPTPROPS 控制PROPS部分的输出 (158)RPTREGS 控制REGIONS部分的输出 (159)RPTRST 输到RESTART文件的控制 (159)RPTRUNSP 控制RUNSPEC部分的数据输出 (160)RPTSCHED 控制SCHEDULE部分的输出 (160)RPTSMRY 控制SUMARY部分的输出 (163)RPTSOL 控制SOLUTION部分的输出 (163)RS 初始溶解气油比 (165)RSCONST 为死油设置的一个常数Rs值 (165)RSCONSTT 为每一个死油PVT表设置的一个常数Rs值 (166)RSVD 用于平衡选择的RWJ深度关系表 (166)RUNSUM 所需的SUMMARY数据的制表输出 (167)RV 初始挥发油气比 (167)RVCONST 为干气设置的一个常数Rv值 (167)RVCONSTT 为每个干气PVT表设置一个常数Rv值 (168)RVVD 用于平衡选择的Rv与深度关系表 (168)SALT 初始盐浓度 (169)SALTVD 用于平衡的盐浓度与深度关系 (169)SAVE 用于快速重启文件而需输出的SAVE文件 (170)SCALELIM 设置饱和度表的标度限制 (170)SDENSITY 在地面条件的混相气密度 (170)SEPVALS 分离测试的Bo和Rs值 (171)SGAS 初始气饱和度 (173)SGCR 临界气饱和度的标度 (173)SGFN 气体饱和度函数 (174)SGL 原生气饱和度的标度 (175)SGOF 气/油饱和度函数与气饱和度 (176)SGU 最大气饱和度的饱和度表的标度 (177)SIGMA 双重孔隙基岩—裂缝的连结 (178)SIGMAV 双重孔隙度基岩—裂缝的连结(向量) (178)SLGOF 气/油饱和度函数与液体饱和度 (179)SOF2 油饱和度函数(2相) (180)SOF3 油饱和度参数(3相) (181)SOGCR 临界的气中含油饱和度的标度 (182)SOMGAS STONE1模型中含油饱和度最小值 (183)SOMWAT STONE1模型中最小油饱和度值 (184)SORWMIS 混相残余油饱和度数表 (185)SOWCR 标度临界水中含油的饱和度值 (186)SPECGRID 网格特性的详细说明 (187)STOG 油气表面张力与压力 (187)STONE1 三相油相对渗透率模型 (188)STONE2 三相油相对渗透率模型 (188)STOW 油水表面张力与对应压力 (188)SWAT 初始水饱和度 (189)SWATINIT 标定毛管压力的初始水饱和度 (190)SWCR 临界水饱和度的标度 (190)SWFN 水饱和度函数 (191)SWL 原生水饱和度的标定 (192)SWLPC 仅对毛管压力曲线标定原生水饱和度 (193)SWOF 水/油饱和度函数和对应的水饱和度 (193)SWU 饱和度数表中最大的含水饱和度的标定 (195)TBLK 示踪剂的初始浓度 (196)THPRES 门限压力 (196)TLMIXPAR Todd-Longstaff混合参数 (197)TNUM 示踪剂浓度区 (198)TOPS 每个网格的顶面深度 (198)TRACER 被动的示踪剂名 (199)TRACTVD 为示踪剂要求“流率极限传输” (199)TRANR R方向的传导率 (199)TRANTHT θ方向的传导率 (200)TRANX X方向的传导率 (200)TRANY Y方向的传导率 (201)TRANZ Z方向的传导率 (201)TSTEP 把模拟器推向新的报告时间 (202)TUNING 设置模拟器控制参数 (202)TVDP 初始示踪浓度与深度表 (204)TZONE 过度带控制选择 (205)VAPPARS 油挥发控制 (205)VEDEBUG 对垂向平衡和压缩垂向平衡选择控制调整 (205)VEFRAC 垂向平衡曲线系数的应用 (206)VEFRACP 垂向平衡拟毛管压力系数的使用 (207)VEFRACPV 垂向平衡拟毛管压力系数的使用 (207)VFPINJ 对注水井输入V.F.P表 (208)VFPPROD 对生产井输入V.F.P表 (209)WBOREVOL 对井筒贮存设置体积 (212)WCONHIST 历史拟合井观测产量 (213)WCONINJ 设有组控制的注入井的控制数据 (215)WCONINJE 对注入井控制数据 (217)WCONPROD 对生产井控制数据 (218)WCUTBACK 井减少限制 (220)WCYCLE 井自动循环开与关 (222)WDRILRES 防止在同一网格中同时开两口井 (222)WDRILTIM 新井自动开钻的控制条件 (223)WECON 生产井的经济极限数据 (224)WEFAC 设置井的效率系数(为停工期) (226)WELDEBUG 个别井的跟踪输出控制 (226)WELDRAW 设置生产井的最大允许压差 (227)WELOPEN 关闭或重开井或井的射开层 (228)WELPI 设置井的生产/注入指数值 (229)WELPRI 设置井的优先数 (229)WELSOMIN 自动开井的最小含油饱和度 (230)WELSPECS 井的综合说明数据 (230)WELTARG 重新设置井的操作目标或限制 (232)WGASPROD 为控制销气而设置的特别产气井 (233)WGRUPCON 为井组控制而给井设置指导产率 (234)WHISTCTL 给历史拟合井设置覆盖控制 (235)WLIFT 自动换管串和升举的开关数据 (235)WLIMTOL 经济和其它限制的容差分数 (236)WORKLIM 每次自动修井所花的时间 (237)WPIMULT 用给定值乘以井射开层地地层系数 (237)WPLUG 设置井的回堵长度 (238)WSALT 设置注入井的盐浓度 (238)WTEST 命令对已关着的井进行周期性测试 (239)WTRACER 给注水井设置示踪剂浓度 (240)ZCORN 网格块角点的深度 (241)1Eclipse 油藏模拟软件特点1.1Eclipse软件91年A版本的新进展概况详细说明见附录B11.新功能(1)提供了可供选择的通用的油PVT数据和饱和度数据的输入关键词;(2)对每一个PVT区设计了恒量Rs或Rv值;(3)分子扩散选择能模拟气的扩散和油的组份;(4)盐水选择能模拟不同矿化度盐水的流动。

ECLIPSE操作技巧

ECLIPSE操作技巧

ECLIPSE操作技巧1.NWM模型数据准备1)输入VOI(Volume of Interest)这里您可以点击Create用Polygon创建井筒附件的研究区域,或直接用More…>Import导入您先定义好的研究区域。

如下图左侧所示。

2)获取井轨迹无论是水平井还是垂直井,都需要进行Reconstruct,这里建议您对直井和水平井采取不同的方法。

对于垂直井,打开Wells面版,右键选择目标井出现Reconstruct,选择All…出现提示对话框,点击Yes,井轨迹将实现自动获取,出现在VOI Wells文件夹下的Wells目录中,如下图所示。

对于水平井,建议您输入井轨迹文件,以使NWM读取出更准确的井轨迹。

首先选中该井,再点击File>Import>Deviation Surveys…导入该井对应的井轨迹文件,如下图所示。

3)定义井的完井事件首先,导入井的完井事件数据,右键选择该井,点击Reconstruct>Bore Events…,如下图所示。

之后可以对井事件数据进行修改,右键点击井,选择Bore Events>Edit弹出窗口,选择相应的完井事件并点击Edit Event,在弹出窗口中修改完井数据。

也可以点击New event添加新的完井事件数据。

4)定义多段井模型右键选中目标井,选择Segmentation>Optional,ECLIPSE会自动创建优化的多段井分段。

您可以点击Edit对默认的分段进行编辑。

2. 直角网格加密这里可以定义加密网格的位置、加密个数与设置不等距加密,操作流程如下:· 选择直角坐标系加密· 选择加密网格· 在3D中选择加密网格所在区域· 设置加密个数· 设置加密权重(不等距加密)· 生成加密网格首先,打开Grid面版,选择Cartesian LGR,点击Host Cells弹出NWM-Host Cells对话框,选中Edit using VOI(via step in and layers),点击Close,如下图所示点击Refinement弹出Cartesian Refinement对话框,这里可以选择不同的加密方式,例如选中All cells in K,同时在3D窗口中选中某个LGR的某个加密目标层(选中后呈现灰白色),就可以对该层进行加密参数设置,如下图所示。

斯伦贝谢Eclipse软件

斯伦贝谢Eclipse软件

ECLIPSE 2013.1 发布2013年7月18日:斯伦贝谢发布了ELCIPSE 2013.1版本描述:ECLIPSE系列软件体系为石油工业提供了最完整、最全面、最强大的数值模拟研究工具,涵盖各个类型油气藏的数值模拟,有效解决各领域复杂难题——从构造、地质、流体乃至开发方案,帮助您快速、精确、高效地预测储层生产动态!ECLIPSE系列软件体系支持全部类型油气藏模型的构建——黑油、组分、热采以及流线模型。

本版本升级了ELCIPSE黑油模拟器、组分模拟器和流线模拟器的部分功能。

化学驱提高采收率建模功能得到丰富,在ECLIPSE黑油模拟器中添加了模拟聚合物的选项,在ECLIPSE组分模拟器中添加了新的表面活性剂驱油模型。

与此同时,该版本秉承以往各版本,继续发展对Petrel油气藏工程研究平台集成工作流的支持。

本版本将与MEPO4.2绑定发放,用户可以从DVD中安装,也可以从网上下载。

MEPO是一款多重实现优化工具箱,帮助您提交、管理模拟数值模型。

油气藏工程师通过MEPO可以优化数值模拟工作流,实现工作流程半自动化。

MEPO最常用于辅助历史拟合、不确定性分析、敏感性分析以及油气田开发方案优化设计。

注释:ECLIPSE软件套装交互式前后处理程序仅支持Windows操作系统,目前我们仅提供重大Bug修复的售后服务。

我们向您推荐功能更为强大的Petrel油气藏工程研究平台作为ECLIPSE前后处理程序。

ECLIPSE软件包部分功能不支持Linux操作系统。

Eclipse Office, FloGrid, FloViz, Schedule模块仅支持Windows操作系统。

本版本的官方DVD中没有提供IBM ppc64专用模拟器,如果您需要,我们另行为您提供。

升级模块:ECLIPSE 2013.1模拟化学驱提高采收率技术•在ECLIPSE黑油模块扩展了聚合物选项,支持聚合物、冻胶高级建模,包括具有温度敏感性的聚合物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ECLIPSE 油藏数值模拟软件 油藏数值模拟软件 使用技巧 2009 V1
பைடு நூலகம்
斯伦贝谢科技服务(北京)有限公司 有限公司
Copyright Notice © 2009 Schlumberger. All rights reserved. No part of this manual may be reproduced, stored in a retrieval system, or translated in any form or by any means, electronic or mechanical, including photocopying and recording, without the prior written permission of Schlumberger Information Solutions, 5599 San Felipe, Suite 1700, Houston, TX 77056-2722. Disclaimer The License Agreement governs use of this product. Schlumberger makes no warranties, express, implied, or statutory, with respect to the product described herein and disclaims without limitation any warranties of merchantability or fitness for a particular purpose. Schlumberger reserves the right to revise the information in this manual at any time without notice. Trademark Information Software application names used in this publication are trademarks of Schlumberger. Certain other products and product names are trademarks or registered trademarks of their respective companies or organizations.
II
ECLIPSE 数值模拟软件使用技巧 数值模拟软件使用技巧
如何使用 PVTi 进行 PVT 实验拟合
Schlumberger
第一部分 ECLIPSE 前后处理软件使用技巧 如何使用 如何使用 PVTi 进行 PVT 实验拟合 实验拟合
众所周知 PVT 分析主要目的是为油藏模拟器提供一套能表征油藏流体性质的状态方 程,因而回归参数的选择是非常重要的,它将决定着流体模型的质量。本文将主要基于物 理学原理及数学分析,讨论 PVTi 中进行 PVT 实验数据拟合的问题。 从本质上来说,回归就是通过改变标准状态方程的参数,以达到计算的流体参数与提 供的实验数据相匹配的过程。在相应的观测温度及压力范围内,拟合好的流体模型是非常 有用的。同时需要注意,在这个范围之外该模型可能就不能完全代表流体的相态行为了。 注意,这里使用的数据包括油藏条件下,如衰竭试验;地面条件下,如分离器实验。 一、PVT 拟合基本流程 在做组分模型模拟时,组分数量太多将严重影响计算速度,通常来说 4-10 个组分就 足够了,那么如何选择组分呢?如何做回归呢?建议按照以下步骤进行: 根据 PVT 实验报告,在 PVTi 基本组分窗口下,输入组分的摩尔百分数或重量百分数, 注意其总和一定为 100%,并对重组分(C7+或 C12+)进行特征化,赋组分摩尔重量及比 重。
图1 组分数据
按照实验报告,在 PVTi 中建立各类实验,并选择相应参数,一般来说包括饱和压力实
ECLIPSE 数值模拟软件使用技巧 数值模拟软件使用技巧
1
Schlumberger
如何使用 PVTi 进行 PVT 实验拟合
验、等组分膨胀实验、差异分离实验或等容衰竭实验等,注意实验中各项参数的意义。
ECLIPSE 数值模拟软件使用技巧 数值模拟软件使用技巧
I


第一部分 ECLIPSE 前后处理软件使用技巧 ..............................................................................1 如何使用 PVTi 进行 PVT 实验拟合.........................................................................................1 如何使用近井筒模型创建水力压裂裂缝..................................................................................7 如何在 GRAF 软件中生成沿随水平段的产量曲线 ................................................................10 如何将 Petrel 网格导入 Eclipse ...........................................................................................12 如何简便调整网格水体的大小 ..............................................................................................13 如何使用结构化网格模型创建非结构化网格模型 .................................................................16 如何用 SCAL 查看端点标定曲线 ..........................................................................................26 如何创建观测数据并在 Office 中进行显示............................................................................29 如何从 SUMMARY 文件统计月度生产数据 ..........................................................................34 如何在 ECLIPSE Office 里可视化编辑网格属性 ..................................................................36 如何把角点网格转化成块中心网格 .......................................................................................39 第二部分 ECLIPSE 关键字使用技巧........................................................................................43 如何使用示踪剂功能分析注采情况 .......................................................................................43 如何灵活使用 UDQ、UDA 与 ACTIONX..............................................................................45 如何修改负压缩体积错误 .....................................................................................................51 如何正确理解 ECLIPSE 中井/井组控制................................................................................53 如何分层输出井的生产数据 ..................................................................................................58 如何使用井列表和动态井列表(E300)进行多井批操作 .....................................................59 如何在数模模型中建立倾斜的油水界面................................................................................61 如何使用 ACTIONX 按顺序和条件自动射孔完井 .................................................................63 如何用动态分区和 ACTION 关键词进行生产控制 ................................................................65 如何使用多段井(MSW)模拟多分支井 ..............................................................................66 第三部分 ECLIPSE 综合使用技巧 ...........................................................................................69 如何在 PETREL 中生成油柱高度等值线图 ..........................................................................69 如何将 VIP 模型数据转化为 ECLIPSE 数据格式..................................................................71 如何在 Linux 系统中配置 ECLIPSE 许可证随开机自动启动 ................................................73
相关文档
最新文档