分式的定义学案

合集下载

中学七年级数学下册(9.1.1 分式的概念)教学案+练习(无答案) 沪科版 教案

中学七年级数学下册(9.1.1 分式的概念)教学案+练习(无答案) 沪科版 教案

9.1.1分式的概念教案【学习目标】1、知识与技能:能用分式表示现时情境中的数量关系,了解分式的概念,明确分式与整式的区别;2、过程与方法:经历用字母表示实际问题中的数量关系的过程,进一步发展符号感;3、情感、态度与价值观:在用分式表示现时情境中的数量关系中体会分式的模型思想,感受数学知识的应用价值。

【学习内容】课本第87至88页【学习流程】一、课前准备(预习学案见附件1)学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。

二、课堂教学(一)合作学习阶段。

(15分钟左右)(课堂引导材料见附件2)教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。

组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。

教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。

(二)集体讲授阶段。

(15分钟左右)1.各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。

2.教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。

3.各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。

(三)当堂检测阶段(10分钟)(当堂检测材料见附件3)为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。

(注:合作学习和集体讲授可以根据课堂的需要进行交叉或整体交换秩序)三、课后作业(课后作业见附件4)教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。

四、板书设计五、课后反思附件1:9.1.1分式的概念(预习学案)班级:姓名:家长签名:日期:【预习目标】能用分式表示现时情境中的数量关系,了解分式的概念,明确分式与整式的区别。

【预习内容】课本第87至88页【预习流程】(一)旧知回顾1.请写出两个单项式和两个多项式_________________________________2.单项式和多项式统称为___________________。

数学学案(分式)1

数学学案(分式)1

第17章 分式(第1课时)姓 名:学习课题:分式的概念 学习目标:1、能判断一个代数式是否为分式。

2、能说出分式有意义的条件。

3、会求分式值为零时,字母的取值。

学习重点:分式的概念,分清分式、整式、有理式。

学习难点:求分式值为零时,字母的取值。

学习过程: 一、准备练习(一)自学教材第2页,并完成“做一做” (二)试根据所学完成下列题目:(1)小明t 小时走了s 千米的路,则他走这段路的平均速度是 千米/时; (2)若某果园m 平方米产果n 千克, 则平均每平方米产果 千克;(3)一件工作,甲独做a 天完成,乙独做b 天完成,若甲、乙合作完成工作需要 天 小结:一般的,形如BA(A 、B 是整式,且B 中含有 ,B ≠ )的式子,叫做分式。

其中A 叫做分式的分子,B 叫分母。

整式和分式统称 。

二、自我尝试1、指出下列有理式中,哪些是分式?x 1, 21(x +y ), 3x , xm -2,3-x x,1394y x +,x 32, xy 32, πa ,x-322、当x 取什么值时,下列分式(1)有意义?(2)值为零? (1)534-x x;(2)22+-x x ; (3)142++x x ; (4)x21;三、要点突破例1:下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x; (3)y x xy +2; (4)33yx -.例2:当x 取什么值时,下列分式(1)有意义?(2)值为零?(1)11-x ; (2)322+-x x .小结:1、在整式中,由于字母表示的数只作加法、减法、乘法、乘方运算,所以字母的取值可以是 ;而在分式中,含字母表达的数作为除数,因为除数为零时,式子没有意义。

因此,分式的 取值不能为 。

2、分式的值为零所需要的条件为 。

四、自我检测1、某工厂原计划a 天完成b 件产品,若现在需要提前x 天完成,则现在每天要比原来多生产产品 件。

2、某次考试中,有a 人的平均分为m 分,其余的b 人的平均分为n 分,则这次考试的平均分是 分。

第17章分式 全章学案

第17章分式  全章学案

《分式的概念》学案一、知识梳理:1、_________________________________________叫分式。

当________________时,分式有意义;当_________________时,分式无意义;当__________________时,分式值为零;当______________时,分式值为1。

2、_____________和____________________统称为有理式。

二、课堂精练:1、下列各式:①3x ②x 215 ③ x y 4272- ④πe 7 ⑤yx a572- ⑥x x 22,其中整式有__________________,分式有________________,有理式有____________________________。

2、下列分式中,一定有意义的是_____________A 、1522--x x B 、112+-x xC 、xx 312+ D 、12+x x3、题2中错误的选项要有意义,请你求各式的x 的取值范围。

4、要使分式12-+x x 的值为零,则x 的取值是____________________。

5、当________________时,分式)3)(1(2+-+x x x 无意义。

6、对于分式121-+x x ,当___________时,它的值为正;当______________时,它的值为负。

三、双基巩固:1、请你写出一个分式,满足当x=2时它无意义,这个分式可以是__________________;当x=2时它的值为零,这个分式可以是______________________。

2、当x_______________时,分式42-x x无意义。

3、若分式12922-+-x x x 的值为零,则x=____________________。

4、当x=-2时,分式a x bx ++无意义,当x=4时,分式\a x bx ++值为零,则a+b=__________________。

初中分式定义的教案

初中分式定义的教案

初中分式定义的教案【教学目标】1. 让学生理解分式的定义,掌握分式与整式的区别。

2. 培养学生运用分式解决实际问题的能力。

3. 培养学生的逻辑思维能力和团队合作能力。

【教学内容】1. 分式的定义及表示方法。

2. 分式与整式的关系。

3. 分式的基本性质。

【教学过程】一、导入(5分钟)1. 引导学生回顾整式的知识,复习整式的四则运算。

2. 提问:我们已经学习了整式,那么除了整式,还有其他形式的表达式吗?二、新课讲解(15分钟)1. 讲解分式的定义:分式是两个整式的比,其中分母不能为零。

2. 举例说明分式的表示方法,如a/b,其中a为分子,b为分母。

3. 分析分式与整式的关系:整式是没有分母的代数表达式,而分式是有分母的代数表达式。

4. 讲解分式的基本性质:分式的分子和分母同时乘以或除以同一个非零整式,分式的值不变。

三、课堂练习(15分钟)1. 让学生独立完成一些简单的分式题目,如分子、分母的加减乘除等。

2. 引导学生运用分式解决实际问题,如面积、体积的计算等。

四、总结与拓展(5分钟)1. 让学生总结本节课所学的分式的定义、表示方法和基本性质。

2. 提问:分式在实际生活中有哪些应用?3. 引导学生思考分式与整式之间的关系,探讨分式在数学中的地位和作用。

五、作业布置(5分钟)1. 让学生完成课后练习,巩固分式的基本运算。

2. 布置一些实际问题,让学生运用分式解决。

【教学反思】本节课通过讲解分式的定义、表示方法和基本性质,让学生掌握了分式的基础知识。

在课堂练习环节,学生能够独立完成一些简单的分式题目,并能运用分式解决实际问题。

但在拓展环节,学生对分式在实际生活中的应用还不够了解,需要在今后的教学中进一步加强。

总的来说,本节课达到了预期的教学目标,学生对分式有了基本的认识和理解。

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。

但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。

下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。

一定要让学生充分活动起来。

在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。

可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。

今后要防止类似事情的发生。

2、问题(1) 分式的运算错的较多。

分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。

所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。

其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。

(2)分式方程也是错误重灾区。

一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。

§17.1.1分式的概念导学案.doc

§17.1.1分式的概念导学案.doc

§ 17. 1. 1分式的概念学习目标:1.能用分式表示现实情境中的数量关系,体会分式是一种刻画现实世界中数量关系的数学模型。

2.了解分式的概念,能判断一个代数式是否为分式,会求分式的值.3.理解分式有意义的条件;在使分式有意义的条件下,会求分式的分母中所含的字母的取值范围;会确定分式的值为零的条件.(易错点)重点:分式的概念难点:理解分式无意义、有意义、值为。

的条件。

学习过程:一.温故知新情境导入(用2分钟时间快速解决下面问题,看谁做的又快又正确!)被除数1.填空:被除数;除数=判答,除数如:34-4= ( ).2.类比:被除式:除式= (商式),例女口: 7 :P= , a 4- 3b= , x4- (x+y)= , (a-b) +4= , 14- (a-x)= , (x2-2xy+y2) 4- (2x-y) =3.做一做:(1)面积为2平方米长方形一边长3米,它的另一边长为米;(2)面积为S平方米长方形一边长a米,它的另一边长为米;(3)一箱苹果售价)元,总重四千克箱重〃千克,贝悔千克苹果的售价是;(4)正n边形的每个内角为度.(5)有两块棉田,有一块x公顷,收棉花m千克,第二块y公顷,收棉花n千克,这两块棉田平均每公顷的棉产量是.(6)根据一组数据的规律填空:1,—……_____________ (用n表示).4 9 16二.合作交流探索发现(用4分钟时间阅读课本第2-3页内容,并探究解决以下面问题:)㈠探究:1、观察上面列出的式子,与以前学过的式子有什么不同?2s m — n 1—9—9,~53 a p rr2、分数是不是整式?㈡讨论:上面所列举式子中的2是分数,其余式子与分数有何区别,它们之间有何共同特征?3如一是分式.XA ㈢归纳:形如仝(A 、B 都是整式,B 中含有字母,且BAO)的式子,叫做分式.其中A 叫做分式 B 的分子,B 叫做分式的分母. 2是单项式,所以它是整式. 整式和分式统称有理式. 3㈣概念辨析加深理解问题1:下列各式中哪些是整式,哪些是分式?(1) - (2) - (3)兰匕(4)竺二^ (5) 0(6)—^—: (7) - ; (8)73+1. x 2 x+ y 3m-n n 解:属于整式的有:: 属于分式的有:.㈤辨析训练:判断下列各式中哪些是有理式?哪些是分式?⑴兰⑵工⑶_公⑷卫⑸《⑹栏t⑺£1 71 x-1 a-b 2 x y/x-2x —3 解:属于有理式的有: ; 属于分式的有:.归纳小结:判断一个式子是否是分式,只看式子的形式,. 理解运用总结方法 (用3分钟时间解决下面3个问题,看谁思维敏捷,动手能力强,行动快!) 问题2:当x 是什么数时,下列式子有意义?(1)工 (2)三x-2 4x+lx + 2问题3:当x 是什么数时,分式 一的值为零? 2x —5总结:分式值是0的条件是 .归纳小结: ________________________________________________________________跟踪练习:当x 是什么数时,分式些些(1)有意义;(2)值为零. x~ — 4〔各抒己见,看谁说得全). 综合运用拓展提高(用4分钟时间探究下面3个问题,看谁做的又快又准确!)X + [1. 当X 是什么数时,分式一的值为正?可能为负吗?x — 1X — n 2. ----------------------- 已知分式 ,当蛇3时,分式的值为0,当疗-3时分式无意义,求©力的值. 2ax + b3.探究:要使分式旦的值为非负数,a 、入应满足的条件是(). bA. a'O, b"B. aWO, bVGC. aNO, b>0D. &NO,力>0 或 aWO, b<0. 总结反思,归纳升华知识梳理:1.分式的概念:____________________________2.分式有意义:____________________________3.分式无意义:____________________________4.分式的值为零:__________________________方法与规律:运用了类比方法和分类讨论思想..达标检测体验成功(每题10分,共100分)1.下列说法正确的是()AA.形如-的式子叫分式;B.分母不等于零时分式有意义;BC.分式值为零,分式无意义;D.分子为零,分式值为零.22.(2012.淮安)若分式---- 有意义,则x应满足的条件是()x~3A. #0B. xN3C. U3D. A=33.(2012福建)当分式一*—没有意义时,x的值是()x — 2A. 2B. 1C. 0D. —24.当乂= ___________ 时,分式里」的值为零.X + 144b 2x2 -15.在代数式一竺,—x+y,—,刍二中,分式有_____________________ 个.2 x-y 3a JL6.下列各①二②-+^③-三2y 2 2④一-—⑤/ X X—⑥—+——O.5m+ 5 P 2 3y分式有(填序号)7.要使分式上一的值为正数的条件是_________ .1-4%2 23 38.观察下列各式:2 X——2+—, 3 X — =3+—,1 12 24 44X-=4+-……则符合上述规律的一个等式是•3 39.要使分式/ '同「3的值为°,则x的值为(x-2)(x+3)io.当x _____ 时,代数式上2有意义.x— 3。

分式的概念教案教案

分式的概念教案教案

分式的概念课题:17.1.1 分式的概念共 1 课时第 1 课时教材分析:(1)①.地位、作用和前后联系。

本节课的主要内容是分式的概念以及掌握分式有意义、无意义、分式值为0的条件.它是在学生掌握了整式的四则运算、多项式的因式分解,并以六年级第一学期的分数知识为基础,对比引出分式的概念,把学生对“式”的认识由整式扩充到有理式.学好本节知识是为进一步学习分式知识打下扎实的基础,是以后学习函数、方程等问题的关键。

②.学情分析初二年级学生基础比较差,学习能力较弱.但通过预初年级分数的学习,头脑中已形成了分数的相关知识,知道分数的分子、分母都是具体的数,因此学生可能会用学习分数的思维定势去认知、理解分式.但是在分式中,它的分母不是具体的数,而是抽象的含有字母的整式,会随着字母取值的变化而变化.为了学生能切实掌握所学知识,在教学中特别设计了几组练习;对于教材中的例题和练习题,将作适当的延伸拓展和变式处理. (2)重点:1.分式的概念 2.分式有意义的条件 3.分式值为零的条件(3)难点:分式的概念,分式的值为零教学目标:知识技能目标:①理解分式的概念;②能求出分式有意义的条件过程性目标:①通过对分式与分数的类比,学生亲身经历探究整式扩充到分式的过程,初步学会运用类比转化的思想方法研究数学问题;②学生通过类比方法的学习,提高了对事物之间是普遍联系又是变化发展的辩证观点的再认识.情感与态度目标:①?通过联系实际探究分式的概念,能够体会到数学的应用价值;②?在合作学习过程中增强与他人的合作意识.教学方法:1.师生互动探究式教学以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初二学生的求知心理和已有的认知水平开展教学.学生通过熟悉的现实生活情景,发现有些数量关系仅用整式来表示是不够的,引发认知冲突,提出需要学习新的知识.引导学生类比分数探究分式的概念,形成师生互动,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.2.自主探索、研讨发现.知识是通过学生自己动口、动脑,积极思考、主动探索获得.学生在讨论、交流、合作、探究活动中形成分式概念、掌握分式有意义、分式值为0的条件.在活动中注重引导学生体会用类比的方法(如类比分数的概念形成分式的概念)扩展知识的过程,培养学生学习的主动性和积极性.本节课的教学,是在学生已有的分数知识基础上,创设情景,产生认知冲突,引导学生开展观察特点、类比归纳、讨论交流等探究活动,在活动中向学生渗透类比思想、特殊与一般的辩证唯物主义观点.突破点:由于部分学生容易忽略分式分母的值不能为0,所以在教学中,采取类比分数的意义,加强对分式的分母不能为0的教学.教学过程:(1)创意情境 引入新课(预计5分钟)传说,一次鲁班手被小草割破后,他通过仔细观察发现小草叶子边沿布满了草结果发明了锯。

八年级数学分式概念教案

八年级数学分式概念教案

授课教案学员姓名:_____ 授课教师:陈列_____ 所授科目:数学_____学员年级:八年级 上课时间_2013_年_03_月_02_日_13_时_00_分至_16_时00分共_3_小时 教学标题 分式的概念及其基本性质教学目标 理解分式的意义,掌握分式的基本性质教学重难点 分式基本性质的应用上次作业检查 一、分式的概念1、整式和分式统称有理数,即有理式⎧⎨⎩整式分式(整式包含单项式和多项式,单项式:只含有数与字母的积的代数式;多项式:几个单项式的和;)2、概念: 如果A 、B 是两个整式,并且B 中含有字母,B ≠0,那么式子A B叫做分式.其中A 叫做分式的分子,B•叫做分式的分母. 分式是不同于整式的另一类式子,如nm aa s-,等都是分式;且字母可以表示不同的数,因此分式比分数更具有一般性; 3、分式有意义或无意义的条件 分式A B有意义的条件:第一,B 中含有字母;第二,B ≠0.4、分式的值为零的条件 1)分子为0;2)分母不为05、分式的值的特殊情况 1)分式A B的值为负数,当且仅当A 、B 异号;2)分式的值为正数,当且仅当A 、B 同号;3)分式的值为整数,当且仅当A 是B 的整数倍。

6、综合应用(尖子生P5 例1例2)7、分式的值为特殊情况的问题(尖子生P7 例1)二、 分式的基本性质1、分数的基本性质:分数的分子与分母都同乘以(或除以)一个不等于0的数,分数的值不变.2、分式的基本性质:分式的分子与分母都同乘以(或除以)同一个不等于0的整式,分式的值不变.如果A 、B 、M 是整式,A B=AM BM,A B=()()A MB M ÷÷(其中M 是不等于零的整式).注意:分式中的A ,B ,M 三个字母都表示整式,其中B 必须含有字母,除A 可等于零外,B ,M 都不能等于零.因为若B=0,分式无意义;若M=0,那么不论乘或除以分式的分母,都将使分式无意义. 3、分式符号的变化一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的定义 主备人:王军 审核人: 姓名 班级
学习目标:
1.了解分式产生的背景和分式的概念,了解分式与整式概念的区别与联系。

2.掌握分式有意义的条件,认识事物间的联系与制约关系。

重点:了解分式的形式B
A (A 、
B 是整式),并理解分式概念中的一个特点:分母中含有字母;一个要求:字母的取值限制于使分母的值不得为零.
难点:分式的一个特点:分母含有字母;一个要求:字母的取值限制于使分母的值不能为零. 预习导学:1.阅读课本第65—67页。

2.完成下列练习,看看他们的答案和我们以前学过的整式有什么不同?
(1)正n 边形的每个内角为多少度?
(2)一箱苹果售价a 元,箱子与苹果的总质量为m kg ,箱子的质量为n kg ,则每千克苹果的售价是多少中一种图书的原价是每册a 元,现降价x 元销售,当这种图书的元?
(3)有两块棉田,有一块x 公顷,收棉花m 千克,第二块y 公顷,收棉花n 千克,这两块棉田平均每公顷的棉产量是多少?
(4)文林书店库存一批图书,其库存全部售出时,其销售额为b 元.降价销售开始时,文林书店这种图书的库存量是多少?
答案:(1) (2) (3) (4)
不同之处:
合作探求:1.分式的定义:
(1)定义:
(2)你认为定义中应注意什么问题?
(3)练习:课本67页知识技能第1题。

2.分式有意义的条件:
(1)分式B
A 有意义的条件是:______________; (2)课本67页随堂练习第1题。

3.分式值为零的条件:
(1)分式B
A 的值为零的条件是:______________; (2)当x 取何值时,下列分式的值为零? ①x x 231-+ ②112--x x ③3
3--x x
当堂检测:(必做题)1.下列各式中,哪些是整式?哪些是分式?并且说明理由。

①5x -7, ②3x 2-1, ③123+-a b , ④7
)(p n m +, ⑤-5, ⑥1
222-+-x y xy x , ⑦72, ⑧c b +54. 2.当x 取何值时,下列分式有意义? ①18-x ; ②912-x ; ③1
22+x
3.当x 取何值时,下列分式的值为零? ①x x -+212 ②2152x
x -- ③392--x x ④))((32)2(-++x x x
4.当m=-5,n=3时,求分式
n m mn +2的值。

选做题:1.若分式
231-+x x 的值为负数,求x 的取值范围;
2.已知x=-1时,分式
a x
b x +-无意义,当x=4时分式a x b x +-的值为零,求a+b 的值。

3.分式
1
a b a -+的值为零时,实数a ,b 应该满足什么条件?
课后作业:1、下列各式中,无论x 取何值,分式都有意义的是( ) A .121x + B .21x x + C .231x x + D .2
221
x x + 2.当x 时,分式3x x -有意义.3.当x 时,分式121
x x -+无意义. 3、当x 时,分式125x x +-的值为0.那么当x 时,分式2212
x x x -+-的值为零. ★★4、当x 时,分式435x x +-的值为1;当x 时,分式435
x x +-的值为-1.。

相关文档
最新文档