圆曲线的详细测设

合集下载

圆曲线的详细测设

圆曲线的详细测设

如图11-4 , ZY-1曲线长为K,所对圆第三节圆曲线的详细测设§ 11— 3圆曲线的详细测设一、偏角法测设圆曲线圆曲线的主点ZY 、QZ YZ 定出后,为在地面上标定出圆曲线的形状 ,还必须进行曲线的加密 工作。

曲线点:对圆曲线进行加密,详细测设定出的曲线上的加密点。

曲线点的间距:一般规定R > 150m 时曲线点的间距为 20m 50m< R<150m 时曲线点的间距为 10m 。

R<50m 时曲线上每隔5m 测设一个细部点; 在点上要钉设木桩,在地形变化处还要钉加 桩。

曲线测设:设置曲线点的工作,常用的方法有 : 偏角法和切线支距法。

1.偏角法的测设原理:1 )偏角:即弦切角2)原理:根据偏角(31 )及弦长(c )测设曲线点。

如图11-4 :从ZY 点出发,根据偏角3 1及弦长( (ZY-1)测设曲线点1;根据偏角3 2及弦长C (1 一 2)测设曲线点2…等。

2 •偏角及弦长的计算:(1)偏角计算:原理:偏角(弦切角)等于弦所对应的圆心角的一半。

心角: 则相应的偏角 K180 * Crr *R nK 180^122R n 当所测曲线各点间的距离相等时 ,以后各点的偏角则为第一个偏角 31的累计倍数。

即:c 申K180* A^!=r =——* ------------' 2 2R 打勇=2毎> 11>2E二适....S n =诂 1 j |(2)弦长计算(如图11-4)严密计算公式:S /r _ ___ I(' -2R sill 3 sin z, c= 2A?sin {I 2 R 2I※弦弧差(弦长与其相对应的曲线长之差):弦弧差=K - C i = L i3/ (24R 2)当R=450m时,20m的弦弧差为2mm•••当R>400m时,不考虑弦弧差的影响。

由于铁路曲线半径一般很大,20m的弦长与其相对应的曲线长之差很小,就用弦长代替相应的曲线长进行圆曲线测设。

第六章(4) 曲线测设

第六章(4) 曲线测设

(2)坐标计算
xi R sin i
yi R(1 cosi )
i
Li
•180
R
(3)测设方法? 优点:各点测设相互独立,不产生误差积累 缺点:检核条件少
4、极坐标法 根据仪器点和待测点的坐标,计算距离和方位角,
然后直接测设的方法,是目前应用最广泛的方法。 5、RTK法(坐标转换)
二、复曲线测设 两条或两条以上半径不同的同向圆曲线组成的曲线称为复 曲线。 切基线法 JD1~JD2为切基线,GQ为主副曲线的公切点
8.7 103 mm
4.圆曲线参数方程 坐标系同前:
xi R sin i m yi R(1 cosi ) P
式中:i
180
R
(li
l0 ) 0
0
l0 2R
β、m、p为缓和曲线参数
若αi以弧度表示,并顾及
0
l0 2R
,则有:
i
li
l0 R
0
li
l0 R
l0 2R
li
0.5l0 R
(2n
l 2n2
0
1)!(2 R) 2 n1
(4n
3)
[例]已知某曲线设计时选配的圆曲线半径R = 200 m,
缓和曲线长l0 = 70 m,若n=2试按上式估算坐标计算的截 断误差。
[解]
R3 x
705 4!4004
1000 9
3.0 101 mm
R3 y
706 5!4005
1000 11
DK126+891.92
(三)主点放样 步骤: (1)仪器安于JD点,瞄准线路前进方向的后方,沿视线方向 量切线长T,即得ZY点 (2)同理瞄准前进方向,在视线上量T可得YZ点

实习四切线支距法圆曲线详细测设

实习四切线支距法圆曲线详细测设

实习四 圆曲线详细测设——切线支距法一、实习目的及要求1. 学会用切线支距法详细测设圆曲线。

2. 掌握切线支距法测设数据的计算及测设过程。

二、仪器设备与工具1. 由仪器室借领:经纬仪1台、皮尺1把、小目标架3根、测钎若干个、方向架1个、记录板1块。

2. 自备:计算器、铅笔、小刀、记录计算用纸。

三、实习方法与步骤1.切线支距法原理:切线支距法是以曲线起点YZ 或终点ZY 为坐标原点,以切线为X 轴,以过原点的半径为Y 轴,根据曲线上各点的坐标(X ,Y )进行测设,故又称直角坐标法。

如图9-1所示,设P 1、P 2…为曲线上的待测点,l i 为它们的桩距(弧长),其所对的圆心角为i ϕ,由图可以看出测设元素可由下式计算 :式中:2. 测设方法(1)在实习前首先按照本次实习所给的数据计算出所需测设数据。

(2)根据所算出的圆曲线主点里程测设圆曲线主点。

(3)将经纬仪置于圆曲线起点(或终点),标定出切线方向,也可以用花杆标定切线方向。

(4)根据各里程桩点的横坐标用皮尺从曲线起点(或终点)沿切线方向量取x 1、x 2、x 3……,得各点垂足,并用测钎标记之,如图4-1所示。

(5)在各垂足点用方向架标定垂线,并沿此垂线方向分别量出y 1、y 2、y 3……,即定出曲线上P 1、P 2、P 3……各桩点,并用测钎标记其位置。

sin (1cos )x R y R ϕϕ==-180l R ϕπ︒=⋅图4-1 切线支距法测设原理(6)从曲线的起(终)点分别向曲线中点测设,测设完毕后,用丈量所定各点间弦长来校核其位置是否正确。

也可用弦线偏距法进行校核。

五、实习数据已知:圆曲线的半径R =100 m,JD2的里程为K4 +296.67,桩距l =10 m,按切线支距整桩距法设桩,试计算各桩点的坐标(x,y),并详细测设此圆曲线(转角视实习场地现场测定)。

切线支距法详细测设圆曲线数据记录表日期:班级:组别:观测者:记录者:交点号交点里程转角观测结果盘位目标水平度盘读数半测回右角值右角转角盘左盘右曲线元素R(半径)= T(切线长) =E(外距)=α (转角) = L(曲线长)= D(切曲差)=主点桩号ZY 桩号: QZ 桩号: YZ桩号:各中桩的测设数据桩号曲线长x y 备注略图:计算:检核:。

1—圆曲线测设-支距法和偏角法

1—圆曲线测设-支距法和偏角法
讲题:圆曲线(circle curve) 的测设
内容提要:
§8.2单圆曲线的测设
单圆曲线主点测设
单圆曲线详细测设
2021/10/10
1
§8.2单圆曲线(circle curve)的测设 圆曲线测设的传统方法:主点测设——详细测设 一、单圆曲线主点(major point)的测设
1、曲线要素的计算 (已知转角α及半径R)
9
2、偏角法(method of deflection angle)
分为:长弦偏角法、短 弦偏角法
(1)长弦偏角法
i1 i
1)计算曲线上各桩点至 ZY
YZ
ZY或YZ的弦线长ci及其与
切线的偏角Δi。
2)再分别架仪于ZY或YZ 点,拨角、量边。
2021/10/10
10
长弦偏角法单圆曲线坐标计算
i
设某单圆曲线偏角α=34012′00″,R=200m,主点桩号 为ZY:K4+906.90,QZ: K4+966.59 ,YZ: K5+026.28,按每20m一个桩号的整桩号法,计算各 桩的切线支距法坐标。
解:
2021/10/10
7
用EXCEL软件计算圆曲线切线支距法
2021/10/10
8
2021/10/10
i
2
li 90
R
ci 2R sin i或
展开为 ci
li
li3 24 R 2
ZY
i1 i
YZ
特点:
测点误差不积累。
宜以QZ 为界,将曲线 分两部分进行测设。
2021/10/10
11
(2)短弦偏角法
与长弦偏角法相比: 1)偏角Δi相同。 2)计算曲线上各桩 点间弦线长ci 3)架仪于ZY或YZ 点,拨角、依次在 各桩点上在量边, 相交后得中桩点。

三、圆曲线测设

三、圆曲线测设

曲线长L
圆直点 YZ
量取外矢距E,得QZ点。
α/2 半径R α R
圆心O
p
四、圆曲线的详细测设
x
T
切线支距法
一种直角坐标法 N
T
JD
x E
α
原点:ZY或YZ
yi
QZ
X轴:过原点切线
Y轴:过原点半径
桩点坐标计算
v
p
YZ
பைடு நூலகம்
li
ZY
xi
M
li 180 i R

i
α/2 R α R
xi R sin i
一、圆曲线元素的计算
圆曲线主点: 直圆点ZY、 曲中点QZ、 圆直点YZ 圆曲线元素: 切线长T、 曲线长L、 外矢距E、 切曲差D 已 知元素: 圆曲线半径R和偏角α
交点JD
α
切线长T 外矢距E 曲中点QZ 曲线长L 圆直点YZ 切线长T
切线长度: T R tan 曲线长度:L=R
外矢距:E= R cos


直圆点ZY

180


R R (sec


1)
R
a 2
切曲差: 2T-L D=
α O
二、圆曲线主点里程的计算
已知:交点JD里程、圆曲线半径R、偏角α
交点JD
ZY点里程=JD点里程-T
切线长T
α
L 2
YZ点里程=ZY点里程+L
直圆点ZY
曲中点QZ
曲线长L
QZ点里程=YZ点里程-
yi R(1 cos i )
y O
四、圆曲线的详细测设
x
T

第四讲2、圆曲线

第四讲2、圆曲线

24 图12-
Байду номын сангаас
• 1、要增加曲线测设例题 • 2、极坐标法用例题介绍 • 3、曲线测设技巧和方法
2 1
δ 3 = 3 ⋅ δ1
L
δ n = n ⋅ δ1

由于《测规》规定,圆曲线的中桩里程宜为20 m的整倍数,而通常在ZY、QZ、YZ附近的曲 线点与主点间的曲线长不足20 m,则称其所对应的弦为分弦。分弦所对应的偏角可按式(11 -8)来计算。
(二)圆曲线详细测设举例
• • • • •
圆曲线详细测设前,曲线主点ZY、QZ、YZ己测设好,因此通常以ZY为测站,分别测设ZY~ QZ和YZ~QZ曲线段,并闭合于QZ作检核。 以上例资料为依据,举例说明测设的步骤与方法。 1.以ZY为测站 (1)偏角计算 已知ZY里程为DK53+621.56,QZ为DK 53+864.70,R = 500 m,曲线ZY QZ为顺时针转 (图12-20)。偏角资料计算见表12-12。由于偏角值与度盘读数增加方向一致,故称“正 拨”。
左 右
• •

R——圆曲线的半径。 α 、R为计算曲线要素的必要资料,是已 知值。α 可由外业直接测出,亦可由纸上 定线求得;R为设计时采用的数据。 圆曲线要素的计算公式,由图12-18得: • α
切线长 曲线长 外矢距 T=R ⋅ tan π L = R ⋅α ⋅ • o 180 α E0 = R ⋅ sec − R 2 2
(12-7) 图12-18

α 式中计算L时, 以度为单位。
(三)圆曲线主点里程计算
• •

主点里程计算是根据计算出的曲线要素,由一已知点里程来推算,一般沿里程增加的方向由 ZY QZ Y2进行推算。 如上例己知ZY点的里程为DK53+621.56,则各主点里程计算如下: • ZY DK53+621.56 • +L/2 243.14 • QZ DK53+864.70 • +L/2 243.14 • YZ DK 54+107.84 若已知交点JD的里程,则需计算出ZY或YZ的里程,由此推算其它主点的里程。

圆曲线测设

圆曲线测设
首先要按公式计算出每一测点的偏角和该 测点至曲线起点或终点的弦长,列表在表 中增加弦长一栏),然后在曲线起点或终 点安置全站仪,照准交点JD,配置水平角 读数为 ,即可根据每一测点偏角和弦长定 出所有测点。
偏 角(°′″)
正拨
反拨
0 00 00
360 00 00
0 23 25
359 36 35
0 57 48
359 02 12
1 32 10
358 27 50
2 06 33
357 53 27
2 40 56
357 19 04
3 15 18
356 44 32
3 49 41
356 10 19
4 24 04
355 35 56
(2)偏角法
偏角法测设圆曲线是以
曲线起点ZY或曲线终点
YZ为测站,计算出测站
至曲线上任一点弦线与
切线的夹角(弦切角,
也称偏角)和弦长C,据
此确定点位。 1)计算公式:
偏角:
l 180
2 2R π
弦长:

C 2R sin 2
2R sin
弧弦差:
l
C
l3 24R 2
4、主点放样
(1)用盘左位后视直线上的转点(ZD), 固定水平制动螺旋,沿视线方向定线,并 用钢尺量出切线长初步定出曲线起点 (ZY),钉下木桩,用铅笔标记点位,并 返测该段距离,当相对误差小于1/2000时, 取两次丈量结果的平均值准确定出ZY点。
(2)用望远镜瞄准另一切线的转点,固定水 平制动螺旋,按上法定出曲线终点(YZ) (打ZY或YZ点桩,用盘左、盘右其中一个盘 位即可)。
(3)把望远镜从切线方向转(180-α )/2 的角值,定出方向线(分角线),从交点沿 分角线方向量出外矢距E0,初步得曲中点 (QZ),(定下木桩,用铅笔定出点位)再 用另一盘位瞄准切线方向,转(180-α )/ 2角再定出分角线又得一曲中点位置,取正、 倒镜分中位置钉下小钉作为曲中点QZ。

圆曲线的详细测设

圆曲线的详细测设

一、圆曲线的详细测设在各类线路工程弯道处施工, 常常会遇到圆曲线的测设工作。

目前, 圆曲线测设的方法已有多种,如偏角法、切线支距法、弦线支距法等。

然而,在实际工作中测设方法的选用要视现场条件、测设数据求算的繁简、测设工作量的大小, 以及测设时仪器和工具情况等因素而定。

另外,上述的几种测设方法,都是先根据辅点的桩号(里程来计算测设数据,然后再到实地放样。

因此, 在实际工作中利用上述传统测设方法, 有时会因地形条件的限制而无法放样出辅点(如不通视或量距不便等,或放样出的辅点处无法设置标桩。

在本次毕业设计的论文课题中介绍的几种圆曲线测设的新方法, 不仅计算简单、测设便捷, 而且可在不需要知道曲线上某点里程的情况下进行, 从而避免了按预先给定的曲线点反算的测设数据放样不通视而转站的麻烦。

同时, 利用本文介绍的新方法, 还可以根据线路工程施工进度的要求, 灵活地选择性地放样出部分曲线; 也可以用于快速地确定曲线上某一加桩的位置;若用于线路验收测量,则更加方便,验测结果更具有代表性、更可靠。

二、全站仪在任意站测设圆曲线及方法交点偏角法测设方法用全站仪任意站测设圆曲线, 安置一次仪器就能完成全部工作。

虽然外业计算麻烦, 但对于不能设站的转点, 可谓方便灵活。

但它的不足之处仍然是计算烦锁, 对于不熟悉内业的外业工作者, 很难实际操作。

如果利用一些程序计算器, 编制输入:AB 的四组坐标和半径、九个数据的程序,可迅速得出放样数据,简化了外业工作。

为了放样工作的便利 , 可在平面控制网中纳入一些放样点 , 构成 GPS 同级全面网。

由于放样点间距离较近 , 在进行同步环和闭合环检验时可仅考虑各分量的较差 , 而不考虑相对闭合差。

因为 , 用相对闭合差来衡量是不合理的。

由于 GPS 接收机的固定误差 , 相位中心偏差以及观测时的对中误差均在 1mm ~5mm 之间 , 对于几十米的短边 , 其相对闭合差值势必较大。

3 平面控制网的设计主要考虑独立基线的选择以及异步闭合环的设计 , 要考虑构成尽可能多的闭合图形 , 并将网中处于边缘的观测点用独立基线连接起来 , 形成封闭图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆曲线的详细测设学生姓名:郑妮娟学号:08300486专业班级:工程测量与监理384403 指导教师:张晓雅摘要本文阐述了在公路、铁路的路线圆曲线测设中,一般是在测设出曲线各主点后,随之在直圆点或圆直点进行圆曲线详细测设。

其中施工测量是整个施工进程和每一施工工序中的首要工作,其内容主要是建立平面控制网和高程系统,测定线路关键点,细部点的测设,中线(线路轴线),对圆曲线进行施工放样测量,并在施工进程中进行相关的测量等,以确保施工质量和施工过程的安全。

本文通过仪器安置不同地方进行多种圆曲线测设,提出了偏角法、切线支距法和全站仪法详细测设圆曲线的方法,对圆曲线上各点进行测设。

关键词:圆曲线、详细测设目录引言 (1)1.圆曲线测设的目的意义 (1)2. 圆曲线的主点测设 (2)2.1圆曲线要素计算 (2)2.2 主点里程计算 (3)2.3主点测设: (3)3.圆曲线的详细测设 (4)3.1 偏角法详细测设圆曲线 (4)3.2切线支距法详细测设圆曲线 (5)3.3全站仪法测设圆曲线 (7)5 圆曲线的详细测设案例: (9)结论 (11)致谢 (12)参考文献 (13)引言线路测量,包括公路、铁路、运河、供水明渠、输电线路、各种用途的管道工程等。

这些工程的主体一般是由直线和曲线构成,长度可能延伸十几公里以至几百公里,它们在勘测设计及施工测量方面有不少共性。

当线路由一个方向转到另一个方向时,必须用曲线来连接。

曲线的形式较多,其中,圆曲线(又称单曲线)是最常用的曲线形式。

圆曲线的测设一般分为两步进行:首先是圆曲线主点的测设,即圆曲线的起点(直圆点ZY)、中点(曲中点QZ)和终点(圆直点YZ)的测设;然后在各主点之间进行加密,按照规定桩距测设曲线的其他各桩点。

1.圆曲线测设的目的意义铁路和公路线路由于受地形、地质或其他原因的影响,经常要改变方向。

为了满足行车方便要求,需要在两直线段之间插入平面曲线把它们连接起来。

线路上采用的平面曲线通常有圆曲线、综合曲线、回头曲线、复曲线。

在线路上选用的连接曲线的种类应取决于线路等级、曲线、半径、及地形因素等。

例如,二级公路上,在平原区的曲线半径大于2500m,山岭重丘地区的曲线半径大于600m,可采用圆曲线。

本文主要介绍圆曲线详细测设。

圆曲线是指道路平面走向改变或竖向改变坡度时所设置的连接两相邻直线段的圆弧形曲线。

2. 圆曲线的主点测设圆曲线主点测设之前,需要有标定路线方向的交点(JD)和转点(ZD )。

在空旷地面打一木桩作为路线交点JD ,然后向两个方向(路线的转折角约等于120°)眼神30 m 以上,定出两个转点ZD1和ZD2,插上测钎。

图2-1:圆曲线的主点测设2.1圆曲线要素计算在JD1点安置经纬仪,以一个测回测定转折角,计算路线偏角。

设计圆曲线的半径R=50m ,按下列公式计算圆曲线元素(切线长T 、曲线长L 、外失距E 、切曲差D ), (1-0)(1-1)(1-2)D =2T-L(1-3)用安置于JD1点的经纬仪先后瞄准ZD1,ZD2定出方向,用钢尺在该方向上测设且切线长T ,定出圆曲线的起点(直圆点)ZY 和圆曲线的终点(圆直点)YZ ,打下木RL **=απ180)12(sec-*=αR E 2tan*RR T =桩,重新测设一次,在木桩顶上标出ZY 和YZ的精确位置。

用经纬仪瞄准YZ,水平读盘读数置于0°00′00,照准部旋转b/2,定出转折角的分角线方向,用钢尺测设外距E,定出圆曲线中点QZ 。

2.2 主点里程计算位于道路中线上的曲线主点桩号由交点的桩号推算而得。

设交点JD1的桩号为2+103.48,根据圆曲线元素,计算曲线主点的桩号:ZY点里程=JD点里程-T (1-4)QZ点里程=ZY点里程+L/2 (1-5)YZ点里程=ZY点里程+L (1-6)由于曲线较长,除三点以外,还应设计计算出曲线上细部点里程,一般是与ZY点相邻的第一个细部点的里程数凑整,通常按5m,10m,20m弧长推算其他细部点里程和桩号。

2.3主点测设:在交点(JD)安置经纬仪,如上图2-1所示,以望远镜瞄准ZD1直线方向上的一个转点,沿该方向量切线长T得ZY点,再以望远镜瞄准ZD2直线上的一个转点,沿该方向量切线长T得YZ点,平转望远镜至内分角线方向,量E,用盘左、盘右分中法得QZ点,在ZY、QZ、YZ三个主点均要打方桩,桩顶加钉小钉标志点位。

为了保证主点的测设精度,以利于曲线的详细测设,切线长度应往返丈量,其相对误差大于1/2000时,取其平均位置。

3.圆曲线的详细测设主点测设后,还要设置更多的曲线桩才能比较确切地反映圆曲线的形状。

圆曲线的细部放样,就是指测设除主点桩以外的一切曲线桩。

在各类线路工程弯道处施工,常常会遇到圆曲线的测设工作。

目前,圆曲线测设的方法已有多种,如偏角法、切线支距法、全站仪法测设等。

然而,在实际工作中测设方法的选用要视现场条件、测设数据求算的繁简、测设工作量的大小,以及测设时仪器和工具情况等因素而定。

另外,上述的几种测设方法,都是先根据辅点的桩号(里程)来计算测设数据,然后再到实地放样。

因此,在实际工作中利用上述传统测设方法,有时会因地形条件的限制而无法放样出辅点(如不通视或量距不便等),或放样出的辅点处无法设置标桩。

3.1 偏角法详细测设圆曲线设圆曲线上里程没10m整需要测设里程桩,则l0=10m,l1为曲线上第一个整10m 桩P1与圆曲线起点ZY间的弧长,图3-1:偏角法详细测设圆曲线用偏角法详细测设圆曲线,按下式计算测设P1点的偏角△1和以后每增加10m弧长的各点的偏角增量△0:等细部点的偏角按下式计算:2SR2sR1/1LRI⎪⎪⎭⎫⎝⎛δδ⎪⎪⎭⎫⎝⎛μμ+=(1-7)……曲线起点至曲线上任一细部点P1的弦长C1按下式计算:曲线上相邻整桩间的弦长C 0按下式计算:曲线上任两点间的弧长l与弦长C之差(弦弧差)按下式计算:根据以上这些公式和算得的曲线主点桩号,计算圆曲线偏角法测设数据,记录于附录表2中。

偏角法详细测设圆曲线的步骤如下:1.安置经纬仪于ZY点,瞄准JD1,变换水平读盘读数为0°00′00″;2.顺时针方向转动照准部,使水平读盘读数为△1,从ZY点在经纬仪所指方向上用钢尺测设C1,得到P1的位置,用测钎标出;3.再顺时针方向转动照准部,使水平读盘读数为△2,从P1点用钢尺测设弦长C 0,与经纬仪所指方向相交,得到P2点的位置,也用测钎标出,以此类推,测设各桩。

4.曲线总长较短时,也可根据经纬仪所指偏角方向,从曲线起点量弦长C i,得到P i点的位置:测设至圆曲线终点YZ可作检核;YZ的偏角应等于a/2,从曲线上最后一点量至YZ应等于其计算的弦长。

3.2切线支距法详细测设圆曲线相对坐标系中细部点坐标(x i ,y i )以圆曲线起点为坐标原点,切线为x 轴,半径为y 轴,建立相对坐标系,如图3-2所示:图3-2:切线支距法详细测设圆曲线(1-8)(1-9)以Rl ii =δ代入上式并用级数展开得: (1-10)(1-11)切线支距法详细测设圆曲线的步骤如下:1.如图3-2所示,安置仪器在JD 位置,定出JD 到ZY 和JD 到YZ 两条直线段的方向。

曲线上任意R 点ZY 坐标ii R X δsin *=)cos 1(i i R y δ-*=45231206R l R l l x i i i i +-=56342720242R l R l R l y i i i i +-=2. 自ZY点出发沿着到JD的方向,依次水平丈量Pi点的横坐标Xi,得到在横坐标轴上的垂足Ni。

3.在各个垂足点上用经纬仪标定出切线垂直方向,然后在该垂直方向上依次量取对应的纵坐标,就可以确定对应的碎部点Pi。

3.3全站仪法测设圆曲线用全站仪任意站测设圆曲线,安置一次仪器就能完成全部工作。

虽然外业计算麻烦,但对于不能设站的转点,可谓方便灵活。

但它的不足之处仍然是计算烦锁,对于不熟悉内业的外业工作者,很难实际操作。

如果利用一些程序计算器,编制输入:AB 的四组坐标和半径、九个数据的程序,可迅速得出放样数据,简化了外业工作。

为了放样工作的便利,可在平面控制网中纳入一些放样点,构成GPS同级全面网。

由于放样点间距离较近,在进行同步环和闭合环检验时可仅考虑各分量的较差,而不考虑相对闭合差。

因为,用相对闭合差来衡量是不合理的。

由于GPS接收机的固定误差,相位中心偏差以及观测时的对中误差均在1mm~5mm之间,对于几十米的短边,其相对闭合差值势必较大。

3)平面控制网的设计主要考虑独立基线的选择以及异步闭合环的设计,要考虑构成尽可能多的闭合图形,并将网中处于边缘的观测点用独立基线连接起来,形成封闭图形。

4. 圆曲线测设精度分析及注意事项在道路、渠道、管线等工程建设中,受地形、地质等条件的限制,线路总是不断转向。

为使车辆、水流等平稳运行或减缓冲击,常用圆曲线连接,因而圆曲线测设是线路测设的重要内容。

在公路、铁路的路线圆曲线测设中,一般是在测设出曲线各主点后,随之在直圆点或圆直点进行圆曲线详细测设。

其测设的方法很多,诸如偏角法、切线支距法等。

这些方法有一个共同点:均是在定测阶段放样出的线路交点处设站,以路线后视方向定向,在实地定出曲线主点,然后将仪器置于曲线主点(一般是在曲线起点)处,以路线交点为后视方向定向,进行圆曲线详细测设。

这些方法在实际施测过程中,由于各种地形条件的限制以及施测方法的特点,可能会出现以下三种情况:(1)在曲线主点处无法设站。

(2)后视方向太近,定向不准。

(3)误差积累较大。

为此,在交点可以设站的情况下,可以采用一种新的测设方法—交点偏角法。

本文提出的交点偏角法详细测设圆曲线方法,从上述的计算,测设的方法得知,它具有以下优点:1)计算方便、工作量省、易于实现公路测量的自动化。

从上述公式推导得知,只要知道待测设点至圆曲线中点间的弧长,便可计算出测设所需的数据;而且上述情况1.1和1.2的计算偏角和待测设点至交点水平距离公式相同,只是外矢距的计算方法不同,容易通过计算机语言编程实现公路测量的自动化。

另外,本方法不需在圆曲线主点重新设站,可以在测设圆曲线主点时,同时进行圆曲线详细测设,故工作量省。

2)测设方法简易、易于达到较高的测设精度。

一般的测设方法是在交点处设站测设出圆曲线的主点后,再在ZY(或YZ)点设站,以交点方向定向进行圆曲线细部测设。

由于圆曲线主点难免会存在误差,因此测设出的圆曲线误差会更大;而且在主点设站,后视方向可能较近,定向不准。

而交点偏角法只需在交点设站,以线路后视方向定向,容易达到较高的测设精度。

5 圆曲线的详细测设案例:例:深圳机荷一级汽车专用公路,某一圆曲线,计算行车速度80km/h ,交点JD 2里程桩号为K4+960,交点坐标见下表,计算得JD 2左偏角440 50’25’’。

相关文档
最新文档