伺服控制器原理图

合集下载

伺服系统概述 PPT课件

伺服系统概述 PPT课件

12 伺服系统概述
伺服系统的特点和功用
• 伺服系统与一般机床的进给系统有本质上差别,它能根据 指令信号精确地控制执行部件的运动速度与位置 • 伺服系统是数控装置和机床的联系环节,是数控系统的重 要组成
12 伺服系统概述
二、伺服系统基本类型
按控制原理分 有开环、闭环和半闭环三种形式 按被控制量性质分 有位移、速度、力和力矩等伺 服系统形式 按驱动方式分 有电气、液压和气压等伺服驱动形式 按执行元件分 有步进电机伺服、直流电机伺服和交 流电机伺服形式
12 伺服系统概述
气压系统与液压系统的比较
1.
2.
3. 4.
5.
空气可以从大气中取之不竭且不易堵塞;将用过的气体排入大 气,无需回气管路处理方便;泄漏不会严重的影响工作,不污 染环境。 空气粘性很小,在管路中的沿程压力损失为液压系统的干分之 一,易于远距离控制。 工作压力低.可降低对气动元件的材料和制造精度要求。 对开环控制系统,它相对液压传动具有动作迅速、响应快的优 点。 维护简便,使用安全,没有防火、防爆问题;适用于石油、化 工、农药及矿山机械的特殊要求。对于无油的气动控制系统则 特别适用于无线电元器件生产过程,也适用于食品和医药的生 产过程。
优点
操作简便;编程容易; 能实现定位伺服控制; 响应快、易与计算机 (CPU)连接;体积小、 动力大、无污染。
缺点
瞬时输出功率大;过载 差;一旦卡死,会引起 烧毁事故;受外界噪音 影响大。 功率小、体积大、难于 小型化;动作不平稳、 远距离传输困难;噪音 大;难于伺服。 设备难于小型化;液压 源和液压油要求严格; 易产生泄露而污染环境。
12 伺服系统概述
三、伺服系统基本要求
精度高: 稳定性好:

伺服系统包含哪些(基本组成_工作原理_应用)

伺服系统包含哪些(基本组成_工作原理_应用)

伺服系统包含哪些(基本组成_工作原理_应用)
伺服系统的结构组成机电一体化的伺服控制系统的结构、类型繁多,但从自动控制理论的角度来分析,伺服控制系统一般包括控制器、被控对象、执行环节、检测环节、比较环节等五部分。

下图给出了伺服系统组成原理框图。

图伺服系统组成原理框图
1.比较环节
比较环节是将输入的指令信号与系统的反馈信号进行比较,以获得输出与输入间的偏差信
2.控制器
控制器通常是计算机或PID控制电路,其主要任务是对比较元件输出的偏差信号进行变换处理,以控制执行元件按要求动作。

3.执行环节
执行环节的作用是按控制信号的要求,将输入的各种形式的能量转化成机械能,驱动被控对象工作。

机电一体化系统中的执行元件一般指各种电机或液压、气动伺服机构等。

4.被控对象
5.检测环节
检测环节是指能够对输出进行测量并转换成比较环节所需要的量纲的装置,一般包括传感器和转换电路。

伺服系统工作原理伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标的任意变化而变化的自动控制系统,即伺服系统是具有反馈的闭环自动控制系统。

它由计算机数字控制系统、伺服驱动器、伺服电动机、速度和位置传感器等组成。

计算机数字控制系统用来存储零件加工程序,根据编码器反馈回来的信息进行各种插补运算和软件实时控制,向各坐标轴的伺服驱动系统发出各种控制命令。

伺服驱动器和伺服电动机接收到计算机数字控制系统的控制命令后,对功率进行放大、变换与调控等处理,能够快速平滑调。

伺服控制器的工作原理与原理图解析

伺服控制器的工作原理与原理图解析

伺服控制器的工作原理与原理图解析伺服控制器是一种广泛应用于工业自动化领域的控制设备,它主要用于控制和调节伺服电机的运动。

伺服电机是一种具有高精度和高性能的电动机,在各种自动化设备和机器人中得到广泛应用。

伺服控制器通过合理的控制算法将输入的电信号转化为电机的转动,从而实现对被控对象的精准控制。

伺服控制器的工作原理可以简单描述为输入信号经过处理模块、控制模块和功率放大模块后,输出到伺服电机,使其按照预定的位置、速度或力矩进行运动。

下面将就伺服控制器的主要组成部分进行详细解析。

1. 处理模块:处理模块是伺服控制器的输入端,它接收各种输入信号并进行处理。

常见的输入信号包括位置指令、速度指令和力矩指令等。

处理模块一般会对输入信号进行放大、滤波和数字转换等处理,以确保输入信号的稳定性和准确性。

2. 控制模块:控制模块是伺服控制器的核心部分,它通过运算和比较实现对伺服电机的精确控制。

控制模块通常包含一个反馈传感器和一个控制器。

反馈传感器用于实时监测电机的运动状态,并将监测到的信号反馈给控制器。

控制器根据反馈信号与输入信号之间的差异,计算出相应的控制量。

控制模块中常用的控制算法包括位置控制算法、速度控制算法和力矩控制算法等。

位置控制算法通过比较电机的位置反馈信号和位置指令信号的误差,控制电机的加速度和速度,使其按照指定的位置运动。

速度控制算法通过比较位置反馈和速度指令信号的差异,调节电机的输出功率,使其按照指定的速度进行运动。

力矩控制算法根据力矩指令和电机的负载特性,调节电机的输出力矩,使其产生所需的力矩。

3. 功率放大模块:功率放大模块是伺服控制器的输出端,它负责将控制模块产生的控制信号放大到足够驱动伺服电机所需的功率。

功率放大模块一般采用晶体管、MOS管或IGBT等元件,能够实现高速、高效的功率放大。

除了上述核心部件外,伺服控制器还常常包括供电模块、通讯模块和保护模块等辅助部件。

供电模块提供伺服控制器所需的电源电压和电流,通讯模块用于与外部设备进行数据交互,保护模块主要负责对伺服控制器和伺服电机进行过载、过热和短路等故障保护。

伺服电机及其控制原理-PPT

伺服电机及其控制原理-PPT

开环伺服控制回路
位置控制 控制器 (NC装置)
步进 驱动器
步进马达
指令脉冲
脉冲马达
1脉冲 = 1步进角
例 步进角 0.36°的情况 1脉冲 → 0.36°的动作
1000脉冲 → 360°(1圈)
开环伺服控制回路
位置控制 控制器 (NC装置)
步进 驱动器
步进马达
位置 = 脉冲数 速度 = 脉冲频率
42
问题8:伺服电机过热(电机烧毁)。
原因:1、负载惯性(负荷)太大,增大电机和控制器 的容量;2、设备(机械)松动、脱落,重新确认设备 (机械)各部件;3、与驱动器接线错误,确认电机和 控制器名牌,根据说明书检查是否接线错误。4、电机 轴承故障。5、电机故障(接地、缺相等)
43
3.1 伺服控制器概述
伺服驱动器(servo drives) 又称为“伺服控制器”、“伺服放大器”,是 用来控制伺服电机的一种控制器,其作用类似 于变频器作用于普通交流马达,属于伺服系统 的一部分,主要应用于高精度的定位系统。
44
伺服控制器的作用
1、按照定位指令装置输出的脉冲串,对工件进行定位控制。 2、伺服电机锁定功能:当偏差计数器的输出为零时,如果有外力
34
需要我们注意的是: 伺服电机实际使用当中,必须了解电
机的型号规格,确认好电机编码器的分 辨率,才能选择合适的伺服控制器。
35
松下伺服电机常见故障分析
问题1:对伺服电机进行机械安装时,应该 注意什么问题?
由于每台伺服电机都带有编码器,它是一个十分容易碎 的精密光学器件,过大的冲击力会使其破坏。因而在安 装的过程中要避免对编码器使用过大的冲击力。
开环伺服系统结构简图
数控装置发出脉冲指令,经过脉冲分配和功 率放大后,驱动步进电机和传动件的累积误 差。因此,开环伺服系统的精度低,一般可 达到0.01mm左右,且速度也有一定的限制。

伺服的结构和原理

伺服的结构和原理

伺服的结构和原理伺服的结构是怎样的?一个最简易的伺服控制单元,就是一个伺服电机加伺服控制器,今天就来解析下伺服电机与伺服控制器。

右手螺旋法则(安培定则)——通电生磁安培定则,也叫右手螺旋定则,是表示电流和电流激发磁场的磁感线方向间关系的定则。

通电直导线中的安培定则:用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向;通电螺线管中的安培定则:用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端是通电螺线管的N极。

弗来明左手法则——磁生力确定载流导线在外磁场中受力方向的定则。

又称电动机定则。

左手平展,大拇指与其余4指垂直,手心冲着N级,4指为电流方向,大拇指为载流导线在外磁场中受力方向。

DC伺服马达结构伺服控制单元SERVO语源自拉丁语,原意为“奴隶”的意思,指经由闭环控制方式达到一个机械系统的位置,扭矩,速度或加速度的控制,是自动控制系统中的执行单元,是把上位控制器的电信号转换成电动机轴上的角位移或角速度输出。

1.控制器:动作指令信号的输出装置。

2.驱动器:接收控制指令,并驱动马达的装置。

3.伺服马达:驱动控制对象、并检出状态的装置。

伺服马达的种类伺服马达的种类,大致可分成以下三种:1.同步型:采用永磁式同步马达,停电时发电效应,因此刹车容易,但因制程材料上的问题,马达容量受限制。

(回转子:永久磁铁;固定子:线圈)2.感应型:感应形马达与泛用马达构造相似,构造坚固、高速时转矩表现良好,但马达较易发热,容量(7.5KW 以上)大多为此形式。

(回转子、固定子皆为线圈)3.直流型:直流伺服马达,有碳刷运转磨耗所产生粉尘的问题,于无尘要求的场所就不宜使用,以小容量为主。

(回转子:线圈;固定子:永久磁铁;整流子:磁刷)SM同步形伺服马达■特长优点:1.免维护。

2.耐环境性佳。

3.转矩特性佳,定转矩。

4.停电时可发电剎车。

5.尺寸小、重量轻。

6.高效率。

■缺点:1.AMP较DC形构造复杂。

伺服控制器原理

伺服控制器原理

伺服控制器原理
伺服控制器是一种电子设备,用于控制伺服系统的运动。

它通过接收来自传感器的反馈信号,并根据预定的运动要求,调整驱动器驱动伺服电机,以实现精确定位和控制运动的目标。

伺服控制器的原理可以概括为以下几个步骤:
1. 反馈信号接收:伺服系统中的传感器会不断地测量关于位置、速度或力的信息,并将这些信息转化为电信号反馈给伺服控制器。

2. 参考信号生成:伺服控制器会根据预定的运动要求,生成一个参考信号,描述所需的位置、速度或力等参数。

3. 误差计算:伺服控制器会将参考信号和反馈信号进行比较,计算出二者之间的误差。

误差通常表示为一个具体的数值,可以是位置误差、速度误差或力误差等。

4. 控制算法运算:根据误差值,伺服控制器会根据事先设计的控制算法进行计算,以确定如何调整驱动器输出的控制信号。

5. 输出控制信号:根据控制算法计算的结果,伺服控制器将输出控制信号给驱动器,从而控制驱动器驱动伺服电机进行运动。

6. 循环反馈控制:上述过程是一个闭环控制系统,伺服控制器会不断地接收反馈信号,计算误差,并调整控制信号,以使得伺服系统能够快速、准确地响应外部的指令,并实现所需的运
动控制。

总的来说,伺服控制器的原理是基于反馈控制的基本原理,通过不断地比较预定的目标与实际测量值之间的差异,并根据控制算法进行调整,实现对伺服系统的精确控制。

伺服电机控制板原理图(最全)word资料

1 2 3 4 P0R11302 P0R14502 P0D2701 1 P0R10902 P0U2102 A P0C9501 P0C9502 P0T201 P0U2101 2 1 T2 R113 R145 R87 R91 P0R13701 P0R11301 P0C9002 P0C9001 P0C9101 P0C9102 P0R14501 P0D3002 P0D2702 4P0U2104 AC 3P0U2103 V- R137P0C10202 P0C10201 P0R13702 P0R13002 3 P0D3001 P0R12001 P0C10302 P0C10301 P0R12002 P0D3202 P0C10702 P0C10701 C102 C103 u1620 C107 P0C10602P0C10601 P0R9502 P0D3201 P0T203 9 D30 R120 D32 2 P0T202 C90 220uFP0R10901 U21 GBU1010 AC V+ D27 R109 C95 P0R8701 P0R8702 C85 P0C8501P0C8502 P0R9102 A C91 P0R9101 D39 L3 P0L302 P0L301 P0D3901 P0D3902P0T209 D28 P0D2801 P0D2802 P0TP33 TP33 P0R13001 R95 D38 P0D3802 P0D3801 P0C9602 P0C9601 P0C9802 P0C9801 P0R10702 P0R9501 R130 P0R13402 4 P0T204 10 P0T2021 4 P0S203 3 P0S204 C106 C96 C98 R107 P0C8702 P0C8701 OUT 15VP0TP39 TP39 C87 P0R13401 P0TP41 TP41 5 S2 P0R10701 R134 1N4148 U32P0C10002 P0C10001 P0U3202 P0T205 P0R15102 P0TP38 TP38 1 2 P0S202 P0S201P0R13102 6 P0T206 P0R13502 P0R13101 R135 5 N0U3403 U34.3 P0R14002P0R13501 R139 P0R13901 P0R13902 P0Q1502 P0U3105 3 P0Q1503 P0R15002UC3842AD1 R140 P0C10402 P0C10401 D33 P0D3302 P0D3301 P0R14001 P0R15001 P0R13601 P0R13602 P0R14601 P0R17902 P0R17802 P0R17702 P0R17602 P0R14102 P0R14101 C104 P0R17901 P0R17801 P0R17701 P0R17601 P0R14602 R179 R178R177 R176 R175 R133 P0R13301 P0R13302 C U34 P0U3404 P0U3401 P0R17502R146 P0R17501 R141 P0R15201 R136 R150 P0R15202 GND Q15 1 P0Q1501 20N60 2 4 2 3 RT/CT P0U3102 VFB P0U3103 I SEN P0U3104 VCC P0U3107 7 C94 P0C9401 P0C9402 C108 P0C10801 P0C10802 P0R15101 R131 C99 U31 D29 P0D2902 P0D2901 3 R151 P0U3203 B P0C9901 P0C9902 OUT GND P0C10102 P0C10101 1P0U3201 IN 2 R106 P0R10602 P0R10601 C100 C101 B P0TP40 TP40 1 COMP P0U3108 8 V REFP0U3106 6 OUT P0U3101 R152 C P0U3403 P0U3402 P0Q903 Optoisolator1P0C10501P0C10502 3 C105 K Q9 VREF P0Q901 A D Title P0R14901 2 P0Q902P0R14902 1 R149 T21 of Power source.SchDoc Size A4 Date: File: 1 2 3 2021-5-24 Sheet of D:\Program Files\..\T21 of Power source.SchDoc By: Drawn 4 Number Revision D任务六伺服电机多点定位控制系统教学设计课程名称电力系统电气控制与PLC应用学习主题伺服电机多点定位控制授课专业电力系统自动化技术主讲教师赵慧娴学情分析伺服电机的多点定位控制是在单点定位的基础上增加上位机控制,上位机的可视化编程方法与触摸屏类似,所以这一任务的难度不大。

伺服三环结构框图及其控制模式

1、伺服三环框‎图2、C为控制器‎,A+B是驱动器‎,伺服电机为‎执行原件,编码器为检‎测反馈元件‎;3、A框到B框‎的蓝色信号‎线里,就是调节控‎制频率、电压的信号‎,速度环、电流环的调‎解器都是频‎率f电压U‎调节器;4、C框为控制‎器,相当PLC‎的作用,通过计数器‎知道伺服当‎前位置,并根据当期‎位置输出:启动、减速、匀速、减速、停车等指令‎;5、A+B就是驱动‎器,相当变频器‎,通过调节频‎率f电压U‎,控制伺服的‎速度、电流和启动‎停止!6、伺服电源线‎上的电流互‎感器表示电‎流检测原件‎,将检测结果‎回馈给电流‎环的输入端‎与给定电流‎比较,构成电流闭‎环;7、编码器检测‎的脉冲频率‎数的微分,就是检测脉‎冲的频率,这个频率就‎是电机的转‎速的大小,反馈到速度‎环的输入端‎与给定速度‎比较,构成速度环‎;8、编码器检测‎的脉冲数,表示电机的‎位移量,与给定指令‎脉冲数比较‎,确定判断伺‎服当前位置‎,相当于PL‎C 里一个由‎计数器构成‎的逻辑判断‎功能,他不是一个‎自动控制P‎I D闭环;1、运动控制的‎三环;2、变频器,即驱动器,有电流环和‎速度环;3、控制器,即PLC,由计数器构‎成的位置环‎,该环不是P‎I D闭环!4、所谓速度环‎、电流环就是‎伺服电机调‎速电路的速‎度环、电流环,速度环控制‎期间,电机为硬特‎性;电流环控制‎期间电机呈‎软铁性!5、所有伺服,伺服电机的‎控制就是一‎个“电机调速电‎路”,可以是交流‎电机的变频‎调速电路,也可以是直‎流电机的调‎速电路;6、那么电机的‎启动、加速、匀速、减速、停车指令,由位置环产‎生,或者说由P‎L C构成的‎控制器产生‎;1、这个图中,是说伺服指‎令脉冲数(位置)、指令脉冲频‎率(速度)给定的方式‎;2、举例说电子‎凸轮给定方‎式、位置给定方‎式等;3、所有伺服,不管他是什‎么型号,什么厂家、国家,伺服的速度‎环、电流环都在‎伺服电机的‎调速电路上‎!4、如果是交流‎电机,肯定是在变‎频调速电路‎上!如果是直流‎电机肯定在‎直流调压调速电路上‎!1、上边这个三‎环框图中,A+B就是变频‎调速度驱动‎器,有速度环、电流环构成‎;2、对比上边的‎三环图,可以看出变‎频器就是伺‎服电机的速‎度环、电流环,他们的结构‎框图实质是‎一样的!3、或者说A+B就是变频‎器的闭环框‎图:引用 my393‎66 的回复内容‎:……根据指令位‎置(速度?),结合位置环‎增益,给出速度,再根据速度‎环增益,给出需要的‎电流,最终位置、速度都反应‎在电流的大‎小上。

伺服控制器原理及应用PPT课件


如显示窗口的对比度不合适,用户可将显示器面板摘 下,调节数字板上的电位器“RW”直到满意为止。
理解
.
23
ZETA系列伺服控制器
ZETA系列伺服控制器是专为陕鼓3H-TRT系统配备的 高精度智能型伺服控制器。该控制器不仅具备高精度 位置控制、零点与量程调整、正反作用切换和信号丢 失记忆功能,保证静叶和旁通阀在信号丢失的情况下 不发生误动作。ZETA伺服控制器控制精度高、分辨率 高、漂移小、抗干扰能力强,现场调试十分方便。其 设计充分考虑了行业用户的特点,具有很强的专业针 对性。
理解
.
19
位置的调节
1.正作用控制方式调节:
A.将指令信号设为4mA,调节控制板(CONTROL)面板 上标着“变送器”字样的框中的电位器“零点”,油缸会随之运 动,不断调节电位器使实际位置到达零位。
B.将指令信号设为20mA,调节控制板(CONTROL)面板 上标着“变送器”字样的框中的电位器“行程”,油缸会随之运 动,不断调节电位器使实际位置到达满行程位。
.
24
.
25
工作原理
如下图所示,控制器一方面接收来自主控室位置指令 信号,另一方面接收来自位移传感器测量的实际位置 反馈信号。伺服控制器在内部对这两个信号进行转换、 比较,并经过一定的高级运算,产生一个可以驱动电 液伺服阀SV的电流信号。在伺服阀的控制下,动力油 作用于伺服油缸SM,带动静叶角度或阀门达到预期位 置,从而实现静叶或阀门位置调节的目的。同时,伺 服控制器还送出一路电流信号到控制室指示静叶角度 或阀门的位置。
B.将指令信号设为4mA,调节控制板(CONTROL)面板 上标着“变送器”字样的框中的电位器“行程”,油缸会随之运 动,不断调节电位器使实际位置到达满行程位。

伺服控制及其应用ppt课件


LOS系统
系统组成
有效载荷
可见光、红外、激光
框架平台
2框架、4框架、5框架
伺服系统
电机伺服
图像系统
目标识别、目标跟踪
LOS系统
视轴控制目的
视轴稳定
相对于惯性系 隔离运动 抵抗扰动 多框架
视轴跟踪
目标跟踪 捕获与跟踪 火控铰链
LOS系统
视轴控制原理
视轴稳定
速度稳定回路 单位反馈控制 精度40urad
交流电机
异步电机 同步电机 步进电机 无刷电机
特殊电机
直线电机、旋转变压器
系统组成
直流电机
力矩电机
力矩控制 低速平稳 应用-雷达天线
伺服电机
齿轮减速 输出力矩大 应用-舵机
系统组成
PWM电机控制
双极性控制
50%占空比 低速平稳 分辨率低
单极性控制
换向信号 分辨率高
空间矢量PWM
反馈控制
反馈通道
前馈控制
前馈补偿、改善动态性
内模控制
模型抵消、提高鲁棒性
系统组成
控制系统组成
被控对象
执行机构、负载
传感器
反馈信号
控制器
模拟控制器、数字控制器
系统组成
被控对象
电机
电能机械能
电磁阀
液压系统
其他
电磁线圈、加热、压电陶瓷
军工

系统组成
电机分类
直流电机
力矩电机-直接驱动 伺服电机-齿轮减速
LOS系统
旋转变压器
极对数
单级、多级
工作原理
V=A*SIN(Wt) 励磁电源:1KHz、28V
角位置解调
滤波法、鉴相法 旋变解调模块
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9HL7 9SB5
9-5
溜槽下限位
9K
溜槽伺服复位 炉顶现场接近开关
9SD
9-7
溜槽手动
9HL10 9LK3
溜槽上限位
9SA1
3 4 9-7 1 2 9-9
9SA2
溜槽手动开
9KJ
9WJ3
9-37
操作箱
ቤተ መጻሕፍቲ ባይዱ9GJ
3 4 9-15
1 2
9-13
溜槽手动关 9SA1闭合表
9SA2闭合表 手动-料流阀-自动 溜槽自动 LW6-1/B048 1 1-2 45° 0° 45°
9-1 9-2
XT1
9-7
三位自保持转换开关 三位自复位转换开关
溜槽手动
公共端+
9W02 16*1.5
至伺服控 制柜
SA1
3 4 9-9 9-7 1 2
SA2
溜槽手动开
手动
开阀
自动
1 2 9-15 9-13 3 4
关阀
溜槽手动关
运行
手动 溜槽自动
自动


故障
9-13
公共端-
HL1
9-21
溜槽运行
急停
用户名称 项目名称 标 图 号 题
北京金自天正智能控制有限公司 高炉自动化控制系统 溜槽伺服电机控制原理图 HSD10J2JT3
sofTech
北京金自天正智能控制有限公司 高炉自动化控制布料系统
0
1
2
序号 高层代号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 HSD08J2G22-1 = JT HSD08J2JT2-3 = G2 HSD08J2G21-24 = M0 HSD08J2M01 图纸目录
HL2
9-25
急停
溜槽故障
9-3
9-4
SA1闭合表 本地-倾动电机-远程 LW6-1/B048 1 2 3 1-2 3-4 5-6 45° 0° 45°
SA2闭合表 手动关-倾动电机-手动开 LW6-1/B048 1 2 3 1-2 3-4 5-6 45° 0° 45° 6 5 4 3 2 1 序号 名称
复位
上超
下超
手开 手关
24VDC电源 就绪
9-0VDC 9-0VDC 9+24VDC 9+24VDC
报警
准备
速度给定
PLC给定+/-10VDC
9VC+ 9VC-
电流输出
PA92
+
A A
9WJ3 9WJ0 92K1 92K2 92K3 9KJ 9GJ 9 9ZD 9ZD
-
9SN
9237
9236
9K
9 9232
3~ M
8M 溜槽伺服电机 P60B18550 5.5KW
1 2
1-2 3-4
北京金自天正智能控制有限公司
HSD08J2G21
溜槽伺服电机控制原理图
G2
高炉自动化控制布料系统
3
4
9+24VDC 9-0VDC
9-1
9-2
控制电源24VDC
9QF3
控制电源24VDC
9LK0
9-35
9WJ0
9-1
9-2
99-2
91QF
92QF
外部急停
91U
91V
91W
92U
92V
92W
91KM1
91U1 91V1 91W1 92U1 92V1 92W1
92KM1
99-5
9SB2
99-6
9SB3
99-7
9SA
1 2 99-9
91K3 91KM1
91KM1
99-10
1#伺服器投入工作
R RB1 RB1
S
T
r
t
R
S
T
r
9233
9234
9235
9239
9240
9241
9VC-
9231
9221
37
36
32
33
34
35
24 25
49 50
39
40
41
21
20
31
92U-CN1
9230
9130
30
30
北京金自天正智能控制有限公司
HSD08J2G23
溜槽伺服电机控制原理图
G2
高炉自动化控制布料系统
5
6
去PLC系统
9XT1:22 9-40
91K1 溜槽1#伺服就绪
9XT1:23 9-41
92K1 溜槽2#伺服就绪 91K2 溜槽1#伺服故障 92K2 溜槽2#伺服故障 9WJ0 溜槽下限位 9WJ3 溜槽上限位
9XT1:24 9-42
9XT1:25 9-43
9XT1:26 9-44
9XT1:27 9-45
9XT1:28 9-46
9ZD 溜槽自动 9SN 溜槽伺服使能


文 件 名
图 纸 名

页数
备 注
1
溜槽伺服电机控制原理图 端子接线原理图 操作箱接线原理图
4
2
1
北京金自天正智能控制有限公司
HSD08J2M01
图纸目录 高炉自动化控制布料系统
M0
2
3
来自电气柜电源
A B
9QF
9U 9V
C
9BY 9QF1
99-1 9U1 9V1 9W1
9W
N
控制电源220VAC
代号
型号
数量
备注
北京金自天正智能控制有限公司
HSD10J2JT2
操作台接线原理图
JT
高炉自动化控制布料系统
9
操作台
9-25
HL2
9+24VDC
DY91 9HL4
溜槽故障
9-0VDC
北京金自天正智能控制有限公司
HSD08J2G22
溜槽伺服电机控制原理图
G2
高炉自动化控制布料系统
4
5
使能 报警 准备
9-0VDC 9-0VDC 9+24VDC 9+24VDC
复位
上超
下超
手开 手关
24VDC电源 就绪
速度给定
PLC给定+/-10VDC
9-3 9-4
急停 急停
KVVP 16×1.5
9-1 9-7 9-9 9-13 9-15 9-21 9-25 9-2 9-3 9-4
手动 开阀
9-1 9-7 9-9 9-13 9-15 9-21 9-25 9-2
公共端+ 手动 开 自动 关 运行 故障 公共端9W03 公共端 上限位 下限位 公共端 9W05 公共端 1#就绪 2#就绪 1#故障 2#故障 下限位 上限位 自动 使能 KVVP 16×1.5 KVVP 4×1.5 9W04 KVVP 4×1.5
自动 关阀 运行
故障
公共端-
急停 急停
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
溜槽倾 动伺服 控制台
北京金自天正智能控制有限公司
T
高炉自动化控制布料系统
8 9
至上限位接近开关 至下限位接近开关
至PLC控制箱
公共端 使能 给定+ 给定-
9W06 至PLC控制箱 KVVP 2*2*1.5
t
92KM1
99-11 3 4
91R
91U
(制动电阻 ) RB2 U 91U2 91V2 91W2 91E V W E U 92U2 RB2 V W 92V2 92W2 92E
92R
92U
E
92K3
92KM1
99-12
2#伺服器投入工作
(制动电阻)
91CZ1
92CZ1
9U2
9V2
9W2 9E
9SA闭合表 1#伺服-节流阀-2#伺服 LW39A16D101A/1 0° 45°
9VC+ 9VC-
电流输出
PA91
+
A
91K3 9ZD 9ZD
-
9WJ3
9WJ0
91K1
9137
9136
9132
9133
9134
9135
9139
91K2
9140
9SN
9KJ
9GJ
9K
9141
9VC-
9131
9121
37
36
32
33
34
35
24 25
49 50
39
40
41
21
20
31
91U-CN1
使能
9XT1:29 9-47
9XT:30 9-48
北京金自天正智能控制有限公司
HSD08J2G24
溜槽伺服电机控制原理图
G2
高炉自动化控制布料系统
6
7
柜外
[92V2] [92U2] [92W2] [92E]
柜内
(孔型)
柜外 柜内
北京金自天正智能控制有限公司
HSD08J2JT3
端子接线原理图
JT
高炉自动化控制布料系统
7
8
XT1
9W02 99-1 99-5
操作台
公共端+
9-1 9-7 9-9 9-13 9-15 9-21 9-23 9-25 9-2 9-1 9-35 9-37 9-1 9-40 9-41 9-42 9-43 9-44 9-45 9-46 9-47 9-48
相关文档
最新文档