理解对数的概念
对数的概念

对 数对数的概念学习目标 1.了解对数的概念.2.会进行对数式与指数式的互化.3.会求简单的对数值.知识点一 对数的有关概念对数的概念:一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.常用对数与自然对数:通常将以10为底的对数叫做常用对数,以e(e =2.718 28…)为底的对数称为自然对数,log 10N 可简记为lg N ,log e N 简记为ln N .知识点二 对数与指数的关系一般地,有对数与指数的关系:若a >0,且a ≠1,则a x =N ⇔log a N =x .对数恒等式:log a N a =N ;log a a x =x (a >0,且a ≠1).知识点三 对数的性质1.1的对数为零.2.底的对数为1.3.零和负数没有对数.1.若3x =2,则x =log 32.( √ )2.因为a 1=a (a >0且a ≠1),所以log a a =1.( √ )3.log a N >0(a >0且a ≠1,N >0).( × )4.若ln N =12,则N =⎝⎛⎭⎫12e .( × )一、指数式与对数式的互化例1 将下列指数式与对数式互化:(1)2-2=14;(2)102=100; (3)e a =16;(4)1364-=14; (5)log 39=2;(6)log x y =z (x >0且x ≠1,y >0).解 (1)log 214=-2. (2)log 10100=2,即lg 100=2.(3)log e 16=a ,即ln 16=a .(4)log 6414=-13. (5)32=9.(6)x z =y .反思感悟 指数式与对数式互化的思路(1)指数式化为对数式:将指数式的幂作为真数,指数作为对数,底数不变,写出对数式.(2)对数式化为指数式:将对数式的真数作为幂,对数作为指数,底数不变,写出指数式. 跟踪训练1 将下列指数式与对数式互化:(1)log 216=4;(2)13log 27=-3;(3)43=64;(4)⎝⎛⎭⎫14-2=16.解 (1)由log 216=4,可得24=16.(2)由13log 27=-3,可得⎝⎛⎭⎫13-3=27.(3)由43=64,可得log 464=3.(4)由⎝⎛⎭⎫14-2=16,可得14log 16=-2.二、利用对数式与指数式的关系求值例2 求下列各式中x 的值:(1)log 64x =-23;(2)log x 8=6;(3)lg 100=x . 解 (1)2233364(4)x --===4-2=116.(2)因为x 6=8,所以1111636662()8(2)2x x =====(3)10x =100=102,于是x =2. 反思感悟 要求对数的值,设对数为某一未知数,将对数式化为指数式,再利用指数幂的运算性质求解.跟踪训练2 (1)计算log 927;的值;(2)求下列各式中x 的值:①log 27x =-23;②log x 16=-4. 解 (1)设x =log 927,则9x =27,32x =33,∴2x =3,x =32.设81x =,则x =81,43x =34,∴x 4=4,x =16. (2)①∵log 27x =-23, ∴2233327(3)x --===3-2=19. ②∵log x 16=-4,∴x -4=16,即x 4=116=⎝⎛⎭⎫124, ∴x =12. 三、利用对数性质及对数恒等式求值例3 求下列各式中x 的值:(1)log 2(log 5x )=0;(2)log 3(lg x )=1;(3)71log 57.x -=解 (1)∵log 2(log 5x )=0,∴log 5x =20=1,∴x =51=5.(2)∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1 000. (3)771log 5log 5777775.5x ÷÷-==== 反思感悟 (1)此类题型应利用对数的基本性质从整体入手,由外到内逐层深入来解决问题.log a N =0⇒N =1;log a N =1⇒N =a 使用频繁,应在理解的基础上牢记.(2)符合对数恒等式的,可以直接应用对数恒等式:log log .a N N a a N a N =,=跟踪训练3 (1)设3(log 21)327x +=,则x = .答案 13 (2)若log 2(log 3x )=log 3(log 4y )=log 4(log 2z )=0,则x +y +z 的值为( )A .9B .8C .7D .6答案 A解析 ∵log 2(log 3x )=0,∴log 3x =1.∴x =3.同理y =4,z =2.∴x +y +z =9.1.将⎝⎛⎭⎫13-2=9写成对数式,正确的是( )A .log 913=-2 B .13log 9=-2 C .13log (2)-=9D .log 9(-2)=13答案 B解析 根据对数的定义,得13log 9=-2,故选B.2.若log a x =1,则( )A .x =1B .a =1C .x =aD .x =10答案 C3.方程3log 2x =14的解是( ) A .x =19 B .x =33C .x = 3D .x =9 答案 A解析 ∵3log 2x =2-2,∴log 3x =-2,∴x =3-2=19. 4.下列指数式与对数式互化不正确的一组是( )A .e 0=1与ln 1=0B .138-=12与log 812=-13C .log 39=2与129=3D .log 77=1与71=7 答案 C5.已知log x16=2,则x=.答案 4解析log x16=2化成指数式为x2=16,所以x=±4,又因为x>0且x≠1,所以x=4.1.知识清单:(1)对数的概念.(2)自然对数、常用对数.(3)指数式与对数式的互化.(4)对数的性质.2.方法归纳:(1)根据对数的概念进行指数式与对数式的互化.(2)利用对数的性质及对数恒等式进行对数的化简与求值.3.常见误区:易忽视对数式中底数与真数的范围.1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④以e为底的对数叫做自然对数.其中正确说法的个数为()A.1 B.2 C.3 D.4答案 C解析①③④正确,②不正确,只有a>0,且a≠1时,a x=N才能化为对数式.2.已知-ln e2=x,则x等于()A.-1 B.-2 C.1 D.2答案 B解析因为-ln e2=x,所以ln e2=-x,e2=e-x,x=-2.3.若log a 5b=c,则下列等式正确的是()A.b5=a c B.b=a5c C.b=5a c D.b=c5a 答案 B解析由log a 5b=c,得a c=5b,所以b=a5c.4.下列四个等式:①lg(lg 10)=0;②lg(ln e)=0;③若lg x=10,则x=10;④若ln x=e,则x=e2. 其中正确的是()A.①③B.②④C.①②D.③④答案 C解析①lg(lg 10)=lg 1=0;②lg(ln e)=lg 1=0;③若lg x=10,则x=1010;④若ln x=e,则x=e e.故只有①②正确.5.若log a3=m,log a5=n,则a2m+n的值是()A.15 B.75 C.45 D.225答案 C解析由log a3=m,得a m=3,由log a5=n,得a n=5,∴a2m+n=(a m)2·a n=32×5=45.6.=.答案8解析设81=t,则(3)t=81,23t=34,t2=4,t=8.7.已知log7[log3(log2x)]=0,那么12x =.答案2 4解析∵log7[log3(log2x)]=0,∴log3(log2x)=1,∴log2x=3,∴23=x,∴12x -=()1322-=18=122=24. 8.若对数log (x -1)(2x -3)有意义,则x 的取值范围是 .答案 ⎝⎛⎭⎫32,2∪(2,+∞)解析 由⎩⎪⎨⎪⎧ x -1>0,x -1≠1,2x -3>0,得⎩⎪⎨⎪⎧ x >1,x ≠2,x >32,得x >32且x ≠2. 9.将下列指数式化为对数式,对数式化为指数式.(1)53=125; (2)4-2=116; (3)12log 8=-3;(4)log 3127=-3. 解 (1)∵53=125,∴log 5125=3.(2)∵4-2=116,∴log 4116=-2. (3)∵12log 8=-3,∴⎝⎛⎭⎫12-3=8. (4)∵log 3127=-3,∴3-3=127. 10.(1)先将下列式子改写成指数式,再求各式中x 的值.①log 2x =-25;②log x 3=-13. (2)已知6a =8,试用a 表示下列各式.①log 68;②log 62;③log 26.解 (1)①因为log 2x =-25,所以x =252-=582. ②因为log x 3=-13,所以13x -=3,所以x =3-3=127. (2)①log 68=a .②由6a =8得6a =23,即36a =2,所以log 62=a 3. ③由36a =2得32a =6,所以log 26=3a.11.方程lg(x 2-1)=lg(2x +2)的根为( )A .-3B .3C .-1或3D .1或-3 答案 B解析 由lg(x 2-1)=lg(2x +2),得x 2-1=2x +2,即x 2-2x -3=0, 解得x =-1或x =3.经检验x =-1是增根,所以原方程的根为x =3. 12.0.51log 412-+⎛⎫ ⎪⎝⎭的值为( )A .6 B.72 C .8 D.37答案 C解析 0.51log 412-+⎛⎫ ⎪⎝⎭=⎝⎛⎭⎫12-1·12log 412⎛⎫ ⎪⎝⎭=2×4=8.13.若log (1-x )(1+x )2=1,则x = . 答案 -3解析 由log (1-x )(1+x )2=1,得(1+x )2=1-x , ∴x 2+3x =0,∴x =0或x =-3.注意到⎩⎪⎨⎪⎧1-x >0,1-x ≠1,∴x =-3. 14.若x 满足(log 2x )2-2log 2x -3=0,则x = .答案 8或12解析 设t =log 2x ,则原方程可化为t 2-2t -3=0,解得t =3或t =-1, 所以log 2x =3或log 2x =-1,所以x =23=8或x =2-1=12.15.若a >0,23a =49,则23log a 等于( ) A .2 B .3 C .4 D .5 答案 B解析 因为23a =49,a >0, 所以a =3249⎛⎫ ⎪⎝⎭=⎝⎛⎭⎫233, 设23log a =x ,所以⎝⎛⎭⎫23x =a .所以x =3.16.若12log x =m ,14log y =m +2,求x 2y 的值. 解 因为12log x =m ,所以⎝⎛⎭⎫12m =x ,x 2=⎝⎛⎭⎫122m . 因为14log y =m +2,所以⎝⎛⎭⎫14m +2=y ,y =⎝⎛⎭⎫122m +4. 所以x 2y =⎝⎛⎭⎫122m ⎝⎛⎭⎫122m +4=⎝⎛⎭⎫122m -(2m +4)=⎝⎛⎭⎫12-4=16.。
对数的概念(高中数学)

(2)由log3(lg x)=0得lg x=1,∴x=10.]
22
1.若本例(2)的条件改为“ln(log3x)=1”,则x的值为________. 3e [由ln(log3x)=1得log3x=e,∴x=3e.] 2.在本例(2)条件不变的前提下,计算x-12的值. [解] ∵x=10,∴x-12=10-12= 1100.
31
(2)由log2x=-23,可得x=2-23,
∴x=1223= 3 14=322. (3)由x=log2719,可得27x=19, ∴33x=3-2,∴x=-23. (4)由x=log1216,可得12x=16, ∴2-x=24,∴x=-4.
a>0, a≠1, 解得0<a<5且a≠1,故选B.]
4.ln 1=________,lg 10= ________.
10
0 1 [∵loga1=0,∴ln 1= 0,又logaa=1,∴lg 10=1.]
11
合作探究 提素养
12
指数式与对数式的互化 【例 1】 将下列对数形式化为指数形式或将指数形式化为对数形式: (1)2-7=1128;(2)log1232=-5; (3)lg 1 000=3;(4)ln x=2.
5
10 e
6
思考:为什么零和负数没有对数? 提示:由对数的定义:ax=N(a>0 且 a≠1),则总有 N>0,所以转化为 对数式 x=logaN 时,不存在 N≤0 的情况.
7
B [∵a2=M,∴logaM=2,故 1.若 a2=M(a>0 且 a≠1),则有 选B.] () A.log2M=a B.logaM=2 C.log22=M D.log2a=M
2.若 log3x=3,则 x=( ) A.1 B.3 C.9 D.27
对数的概念

对数的概念对数是一种数学概念,用来描述一个数在某个底数下所表示的幂次。
它在很多领域都有应用,特别是在科学、工程和经济等领域。
对数被广泛使用是因为它可以以很方便的方式处理大数和小数的乘除运算。
一、基本概念1.1 对数的定义对数是指一个数在某个正实数底数下的幂次。
如果 $a>0$,$b>0$ 且 $a \ eq 1$ ,则满足下列等式中 $x$ 的值称为以 $a$ 为底的 $b$ 的对数,记做$\\log_a b=x$。
$a^x=b$在上式中,$a$ 是底,$b$ 是真数,$x$ 是指数,$\\log_a b$ 表示底为$a$ ,真数为 $b$ 的对数。
在这里,我们也可以将对数的定义改写为以下两种形式:$\\log_{a}b=x \\Leftrightarrow a^x=b$$a^{\\log_a b}=b$1.2 对数的性质对数有以下基本性质:(1)$\\log_a a=1$ (底的幂次为 1)(2)$\\log_a (a^x)=x$ (底和真数的幂次相等 )(3)$a^{\\log_a b}=b$ (对数及其底的幂次被破坏)(4)$\\log_a b = \\frac{\\log_c b}{\\log_c a}$ (任何底数都可以转化成要求的底数)(5)$\\log_a (bc)=\\log_a b+\\log_a c$(底数为a、因数分解)(6)$\\log_a \\frac{b}{c}=\\log_a b-\\log_a c$ (底数为a、因数分解)1.3 常用对数人们在计算中常用的底数是10的对数,它称为常用对数,记作 $\\log$ 或$\\lg$,它和以e为底的自然对数 $\\ln$ ($\\ln x$ 是以 e (Euler 数 / Napier 常数)为底的对数函数)一样,都是有很多重要性质和计算公式的。
常用对数的底数是10,因此常用对数表现为 $f(x)=\\log_{10} x$ ,常写作 $\\log x$ 或 $\\lg x$ 。
对数的概念及运算法则

对数的概念及运算法则对数是数学中的一个概念,它表示一个数相对于一些给定的底数的幂。
在日常生活中,对数经常被用来解释指数增长或减少的情况。
首先,对数的定义是:对于给定的正数a(a ≠ 1),将正数x表达为底数a的幂的等式,即x = a^m (m为任意实数),称m为x的以a为底的对数,记作m =log[底数a](x),即m = loga(x)。
对数有以下几个重要特点:1.底数必须是一个正数,并且不能等于12.对数函数中x的取值范围为正实数,因为负数和0的对数不存在。
3.对数的结果m可以是任意实数,包括正数、负数和零。
对数具有一些重要的性质和运算法则,下面介绍其中的一些:1.换底公式:对于任意给定的x和任意的正数a、b(a、b≠1),有以下等式成立:loga(x) = logb(x) / logb(a)换底公式可以将一个对数用另一个底数的对数表示,这样在计算和比较对数时更加方便。
2.加减法法则:对于任意给定的正数a、b和任意的正数x、y,有以下等式成立:loga(x * y) = loga(x) + loga(y)loga(x / y) = loga(x) - loga(y)加减法法则可以将对数的乘法和除法分解为对数的加法和减法,简化对数运算。
3.乘方法则:对于任意给定的正数a和任意的正数x和正整数n,有以下等式成立:loga(x^n) = n * loga(x)乘方法则可以将对数中的指数化简为对数本身的乘法。
4.对数的乘法和除法法则:对于任意给定的正数a、b和任意的正数x,有以下等式成立:loga(x^b) = b * loga(x)loga(b^x) = x * loga(b)乘法和除法法则可以将指数中的对数化简为对数本身的乘法或除法。
5.对数的幂次法则:对于任意给定的正数a、b和任意的正数x,有以下等式成立:a^(loga(x)) = x如果a ≠ 1,则loga(a^x) = x幂次法则可以将对数中的幂次化简为原指数。
4.3.1 对数的概念

4.3.1 对数的概念(一)教材梳理填空 (1)对数的概念一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.(2)对数的基本性质①当a >0,且a ≠1时,a x =N ⇔x =log a N . ②负数和0没有对数.③特殊值:1的对数是0,即log a 1=0(a >0,且a ≠1);底数的对数是1,即log a a =1(a >0,且a ≠1).(3)常用对数与自然对数名称 定义记法 常用对数 以10为底的对数叫做常用对数lg_N 自然对数 以无理数e =2.718 28…为底的对数称为自然对数ln_N(二)基本知能小试 1.判断正误(1)因为(-2)2=4,所以2=log (-2)4.( ) (2)log a N 是log a 与N 的乘积( )(3)使对数log 2(-2a +1)有意义的a 的取值范围是⎝⎛⎭⎫-∞,12.( ) 2.若a 2=M (a >0且a ≠1),则有( ) A .log 2M =a B .log a M =2 C .log a 2=MD .log 2a =M3.log 21+log 22=( ) A .3 B .2 C .1D .0 4.已知log 32x -15=0,则x =________.题型一指数式与对数式的互化[学透用活](1)对数的概念的实质是指数式化为对数式,关键是弄清指数式各部分的“去向”:(2)定义中规定a>0,且a≠1.理由:①当a<0且N为某些数值时,x不存在,如式子(-2)x=3没有实数解,所以log(-2)3不存在,因此,规定a不能小于0.由指数函数的定义也可知a不能小于0.②当a=0,且N≠0时,log a N不存在;当a=0,且N=0时,x可取无数个值,因此规定a≠0.③当a=1,且N不为1时,x不存在;而a=1且N=1时,x可以为任何实数,因此规定a≠1.[典例1]将下列对数形式化成指数形式或将指数形式转化为对数形式:(1)33=27;(2)log128=-3;(3)⎝⎛⎭⎫14-2=16;(4)lg 1 000=3.[对点练清]1.3b=5化为对数式是()A.log b3=5B.log35=b C.log5b=3 D.log53=b 2.下列指数式与对数式互化不正确的一组是() A.100=1与lg 1=0B.27-13=13与log2713=-13C.log39=2与912=3D.log55=1与51=5题型二对数的计算[学透用活][典例2]求下列各式的值.(1)log1381;(2)lg 0.000 1;(3)log(5-2)(5+2).求对数式log a N的值的步骤[对点练清]1.求下列对数的值:(1)log 28;(2)log 919;(3)ln e ;(4)lg 1.2.求下列各式中x 的值:(1)⎝⎛⎭⎫13x =5;(2)log 64x =-23;(3)log x 8=6;(4)lg 100=x .题型三 对数的性质及对数恒等式[学透用活][典例3] 求下列各式中x 的值: (1)log 2(log 5x )=0; (2)log 3(lg x )=1; (3)log 3(log 4(log 5x ))=0.[对点练清]1.[变条件]本例(3)中若将“log 3(log 4(log 5x ))=0”改为“log 3(log 4(log 5x ))=1”,又如何求解x 呢?2.[变设问]在本例(3)条件下,计算625log x 3的值.3.[变条件]本例(3)中若将“log 3(log 4(log 5x ))=0”改为“3log 3(log 4(log 5x ))=1”,又如何求解x 呢?[课堂一刻钟巩固训练]一、基础经典题1.已知log x 16=2,则x 等于( ) A .4B .±4C .256D .22.2-3=18化为对数式为( )A .log 182=-3B .log 18(-3)=2C .log 218=-3D .log 2(-3)=183.求值:lg 1 000=________;lg 0.001=________. 4.已知log 2x =3,则x -12=________.二、创新应用题5.先将下列式子改写成指数式,再求各式中x 的值.[课下双层级演练过关] A 级——学考水平达标练1.若a >0,且a ≠1,c >0,则将a b =c 化为对数式为( ) A .log a b =c B .log a c =b C .log b c =aD .log c a =b2.若对数log (2a -1)(6-2a )有意义,则实数a 的取值范围为( ) A .(-∞,3) B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,1∪(1,+∞)D.⎝⎛⎭⎫12,1∪(1,3)3.若log x 7y =z ,则x ,y ,z 之间满足( ) A .y 7=x z B .y =x 7z C .y =7x zD .y =z 7x4.对于a >0,且a ≠1,下列说法中,正确的是( ) ①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2. A .①③ B .②④ C .②D .①②③④5.(2018·河北辛集中学高一期中)若x log 23=1,则3x +9x 的值为( ) A .6 B .3 C .52D .126.若a =log 43,则2a +2-a =________. 7.若a =lg 2,b =lg 3,则1002b a 的值为________.8.给出下列各式:①lg(lg 10)=0;②lg(ln e)=0;③若10=lg x ,则x =10;④由log 25x =12,得x =±5. 其中,正确的是________(把正确的序号都填上). 9.将下列指数式化为对数式,对数式化为指数式. (1)53=125; (2)4-2=116; (3)log 3127=-3. 10.若log 12x =m ,log 14y =m +2,求x 2y的值.B 级——高考水平高分练1.已知log 7[log 3(log 2x )]=0,那么x -12等于( ) A.13 B.36 C.24D.332.已知函数f (x )=⎩⎪⎨⎪⎧-log 2(x +1),x ≥0,2x -1,x <0,则f (f (3))=________.3.已知log 2(log 3(log 4x ))=0,且log 4(log 2y )=1.求x ·y 34的值.4.分贝是计量声音强度相对大小的单位.物理学家引入了声压级(spl)来描述声音的大小:把一很小的声压P 0=2×10-5 帕作为参考声压,把所要测量的声压P 与参考声压P 0的比值取常用对数后乘以20得到的数值称为声压级.声压级是听力学中最重要的参数之一,单位是分贝(dB).分贝值在60以下为无害区,60~110为过渡区,110以上为有害区.(1)根据上述材料,列出分贝y 与声压P 的函数关系式;(2)某地声压P =0.002帕,试问该地为以上所说的什么区,声音环境是否优良?。
4.3.1 对数的概念

(2)由 logx27=,得 =27,即 =33,
x=(33) =34=81.
故
(3)由 log3(lg x)=1,得 lg x=3,故 x=103=1 000.
?
【思考辨析】
判断下列说法是否正确,正确的在后面的括号内打“ ”,错误
的打“×”.
(1)(-2)4=16可化为log-216=4.( × )
(2)对数运算的实质是求幂指数.( √ )
(3)对数的真数必须是非负数.( × )
(4)若log63=m,则6=3m.( × )
(5)lg(ln e)=0.( √ )
lg =x,所以 10x=10-1,即 x=-1.
(4)因为 log93 =x,所以 9x=3 ,即
因此
2x= ,所以
x= .
32x= ,
.
?
反思感悟
求对数式中未知数的方法
(1)将对数式转化为指数式.
(2)根据指数和幂的运算性质解有关方程,求得结果.
?
【变式训练 2】 计算:(1)log927; (2)lo 81;
-
(2)
=
÷
=7÷2=.
?
将本例(1)改为:“已知 log4(log3(log2x))=0,求 的值”.
解:由 log4(log3(log2x))=0,得 log3(log2x)=1,所以 log2x=3,
因此 x=23=8,故 = =5.
提示:底数分别是10和e.
?
4.(1)常用对数:以10为底的对数叫做常用对数,并把log10N记
对数的概念与性质

对数的概念与性质对数是数学中的一个重要概念,它在各个领域都有广泛的应用。
本文将介绍对数的概念及其性质,帮助读者更好地理解并应用对数。
一、对数的概念对数是指数运算的逆运算。
在数学中,对于任意正实数a和正实数b,如果a^x = b,则称x为以a为底b的对数,记作x=logₐ b。
这里的a 称为对数的底数,b称为真数。
对数运算可以理解为将指数运算的结果转化为一个数值。
二、对数的性质1. 对数的底数不能为0或1:因为0的任何正数次幂都等于0,而1的任何实数次幂都等于1,这样就无法满足对数的逆运算的要求。
2. 对数的底数不能为负数:因为负数的幂在实数范围内没有定义,无法满足对数的逆运算的要求。
3. 对数的底数必须大于0且不等于1:只有在底数大于0且不等于1的情况下,才能保证对数的逆运算存在,这样才有意义。
4. 对数的特殊形式:a) logₐ a = 1:任何数以自身为底的对数都等于1。
b) logₐ 1 = 0:任何底数的对数等于1的幂都等于1,因此对数的真数为1时,对数等于0。
c) logₐ (a×b) = logₐ a + logₐ b:对数运算的运算律之一,在求两个数的乘积的对数时,可以拆分为两个对数的和。
d) logₐ (a/b) = logₐ a - logₐ b:对数运算的运算律之二,在求两个数的商的对数时,可以拆分为两个对数的差。
e) logₐ (a^k) = k × logₐ a:对数运算的运算律之三,在求一个数的幂的对数时,可以将指数提到对数的前面。
三、对数的应用对数在数学和其它领域中有广泛的应用,下面列举几个常见的应用:1. 指数运算转化:对数的一个重要应用是将指数运算转化为简单的加减运算,方便计算和处理复杂的指数关系。
2. 代数方程求解:对数可以用于求解各种类型的代数方程,特别是指数方程和对数方程。
3. 数据缩放:在数据处理和统计学中,对数可以用于将大范围的数值转化为比较小的范围,方便分析和比较。
对数知识点总结集合

对数知识点总结集合一、对数的概念1.1 对数的定义对数是数学中常见的概念,它是指数的逆运算。
对数以一个常数为底数,另一个数为真数,找到一个指数,使得底数的这个指数等于真数。
对数的定义形式如下:如果 a>0 且a≠1,且a ≠ 1,那么称指数x是以a为底的数b的对数。
记作x=log_ab,读作“以a为底b的对数等于x”,其中a为底数,b为真数,x为对数。
1.2 对数的性质对数具有一些基本性质,这些性质在处理对数运算时非常重要。
(1)对数的底数必须是大于0且不等于1的实数。
(2)对数的真数必须是大于0的实数。
(3)对数的值与指数的值之间具有一一对应的关系,即以a为底的b的对数等于x,等价于a的x次幂等于b。
(4)对数运算遵循对数法则,包括对数的乘法法则、对数的除法法则、对数的幂法则等。
二、对数的运算2.1 对数的运算法则对数的运算规则与指数运算法则非常类似,具体包括以下几个方面的法则:(1)对数的乘法法则:log_ab + log_ac = log_a(bc)(2)对数的除法法则:log_ab - log_ac = log_a(b/c)(3)对数的幂法则:log_ab^m = m*log_ab(4)对数的换底公式:log_ab = log_cb / log_ca2.2 对数的应用对数的运算在实际问题中具有广泛的应用,特别是在科学、工程、经济等领域。
例如在计算机科学中,对数常常用于分析算法的时间复杂度;在经济学中,对数常常用于分析利润的增长率和复合增长;在生物学中,对数常常用于分析细胞的增长增殖率等。
三、常用对数与自然对数3.1 常用对数与自然对数常用对数以10为底数,通常用lg表示,而自然对数以常数e为底数,通常用ln表示。
常用对数和自然对数之间的换底公式为:lg_ab = ln_b / ln_103.2 常用对数与自然对数的特性常用对数与自然对数具有一些特性和性质,如:(1)lg_ac = ln_c / ln_a(2)ln_a = lg_a / lg_e3.3 常用对数与自然对数的应用常用对数和自然对数在实际问题中具有广泛的应用,如在计算机科学和工程学中,常用对数和自然对数常常用于描述和分析一些复杂系统的性能和特性;在金融学和经济学中,常用对数和自然对数常常用于描述和分析一些金融商品、利率和风险等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新知探究
题型探究
感悟提升
互动探究
探究点1 幂运算和对数运算有什么关系?
提示 在关系式 ax = N 中,已知 a 和 x 求 N 的运算称为求幂运
算,而如果已知a和N,求 x,就是对数运算,两个式子实质 相同而形式不同,互为逆运算.
新知探究
题型探究
感悟提升
探究点2 是不是任何指数式都可以化为对数式?
④以e为底的对数叫做自然对数.
其中正确命题的个数为 A.1 B.2 C.3 D.4 ( ).
解析
答案
对于②,(-2)3=-8不能化为对数式,∴②不正
C
新知探究 题型探究 感悟提升
确,其余正确.
2.下列指数式与对数式互化不正确的一组是 A.e0=1 与 ln 1=0 B. 1 1 1 = 与 log8 =- 2 2 3
同底的;(2)指数中含有对数形式;(3)其值为对数的真数.
2.对于指数中含有对数值的式子进行化简,应充分考虑对
数恒等式的应用.
新知探究 题型探究 感悟提升
新知探究
题型探究
感悟提升
易错辨析
忽视对数中底数的取值范围致错
【示例】 已知log2(logx4)=1,求x的值. [错解] 由log2(logx4)=1,得logx4=2. ∴x2=4,从而x=±2. [错因分析] 在对数logaN中,底数a>0且a≠1.本题的求解中 忽略对数中底数的限制条件,导致增解. [正解] 由log2(logx4)=1,得logx4=2, ∴x2=4.又x>0,且x≠1,∴x=2.
新知探究
题型探究
感悟提升
类型一
指数式与对数式的互化
【例 1】 将下列指数式化为对数式,对数式化为指数式: 1 - (1)2 = ;(2)3a=27;(3)10 1=0.1; 128
-7
(4)
32=-5;(5)lg 0.001=-3.
[思路探索] 利用 ax=N⇔x=logaN(a>0,a≠1,N>0)互化. 解 (3)lg 1 (1)log2 =-7.(2)log327=a. 128
感悟提升
新知导学 1.对数的概念
一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为
底N的 对数 ,记作x= logaN .a叫做对数的底数,N叫 做 真数 . 温馨提示:对数符号logaN只有在a>0,a≠1且N>0时才 有意义.
新知探究
题型探究
感悟提升
2.特殊对数
常用对数:以10为底数的对数,记作 lg N .
[ 防范措施 ]
1. 对数的表达式 x = logaN 中底数 a 须满足 a>0 且
a≠1,只有满足这一条件式子才能够成立,在解题时要时时 记住这一点.
2.理解对数的定义,灵活进行指数与对数的相互转化.
新知探究 题型探究 感悟提升
课堂达标 1.有下列说法: ①零和负数没有对数; ②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数;
自然对数:以e为底数的对数,记作 ln N ,其中e=2.718 28… 3.对数与指数之间的关系 x=N⇔x=log N a a 当a>0,a≠1时, .
新知探究
题型探究
感悟提升
4.对数的基本性质 性质1 负数和0 没有对数
性质2
性质3
1的对数是 0 ,即loga1= 0 (a>0且a≠1)
底数的对数是 1 ,即logaa= 1 (a>0且a ∴( 2-1) = = 2-1,∴x=1. 2+ 1
x
新知探究
题型探究
感悟提升
[规律方法]
1.对数运算时的常用性质:logaa=1,loga1=0.
2.使用对数的性质时,有时需要将底数或真数进行变形后
才能运用;对于多重对数符号的,可以先把内层视为整体,
逐层使用对数的性质. 【活学活用2】 将例2中“(1)”换成“log8(lg(log2x))=0”,把 “(2)”换成 “lg(ln x)=1”,分别求x的值. 解 (1)log8(lg(log2x))=0,∴lg(log2x)=1,
2-1)
1 =x. 2+1
新知探究
题型探究
感悟提升
[思路探索] 合理运用题中提供的信息,结合对数的性质及对 数、指数的关系求解. 解 (1)∵log2(log4x)=0,∴log4x=20=1,
∴x=41=4. (2)∵log3(lg x)=1,∴lg x=31=3,∴x=103=1 000. (3)∵log(
提示
不是.指数式与对数式互化公式 ax = N⇔x = logaN 的
成立条件是 a>0 , a≠1 且 N>0 ,不满足条件不能互化.如 ( - 3)2=9就不能写成log(-3)9=2. 探究点3 alogaN=N(a>0,a≠1,N>0)成立吗?为什么? 提示 成立.设ab=N,则b=logaN,∴ab=alogaN=N.
∴log2x=10,∴x=210.
(2)lg(ln x)=1,∴ln x=10,∴x=e10.
新知探究 题型探究 感悟提升
类型三
对数恒等式的简单应用
[思路探索] 利用指数幂的运算性质和对数恒等式化简求 值.
新知探究
题型探究
感悟提升
[ 规律方法 ]
1. 对数恒等式 alogaN= N 要注意格式: (1) 它们是
1- - 0.1=-1.(4)2 5=32.(5)10 3=0.001.
新知探究
题型探究
感悟提升
[规律方法]
1.解答此类问题的关键是要搞清a,x,N在指数
式和对数式中的位置.
2.若是指数式化为对数式,关键是看清指数是几,再写成 对数式;若是对数式化为指数式,则要看清真数是几,再写 成指数式.
新知探究
题型探究
感悟提升
【活学活用 1】 将下列指数式化为对数式, 对数式化为指数式: (1) 解 x=6;(2)ln e=1;(3)43=64. (1)( 3)6=x.(2)e1=e.(3)log464=3. 对数基本性质的应用
类型二
【例 2】 求下列各式中 x 的值: (1)log2(log4x)=0; * (2)log3(lg x)=1; (3)log(
2.2
对数函数
2.2.1 对数与对数运算
第1课时 对 数
新知探究
题型探究
感悟提升
【课标要求】 1.理解对数的概念,掌握对数的基本性质.
2.掌握指数式与对数式的互化.
【核心扫描】 1.指数式与对数式的互化.(重点) 2.对数的底数与真数的范围.(易错点) 3.对数性质及对数恒等式.(难点)
新知探究
题型探究