10.对数的概念与运算
高中数学对数的运算

对数函数专题对数及对数运算【要点梳理】要点一、对数概念 1.对数的概念如果()01b a N a a =>≠,且,那么数b 叫做以a 为底N 的对数,记作:log a N=b .其中a 叫做对数的底数,N 叫做真数.要点诠释:对数式log a N=b 中各字母的取值范围是:a>0 且a ≠1, N>0, b ∈R . 2.对数()log 0a N a >≠,且a 1具有下列性质:(1)0和负数没有对数,即0N >; (2)1的对数为0,即log 10a =; (3)底的对数等于1,即log 1a a =.3.两种特殊的对数通常将以10为底的对数叫做常用对数,N N lg log 10简记作.以e (e 是一个无理数, 2.7182e =⋅⋅⋅)为底的对数叫做自然对数, log ln e N N 简记作. 4.对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a ,b ,N 三个字母在不同的式子中名称可能发生变化. 要点二、对数的运算法则 已知()log log 010a a M N a a M N >≠>,且,、 (1)正因数的积的对数等于同一底数各个因数的对数的和; ()log log log a a a MN M N =+ 推广:()()121212log log log log 0a k a a a k k N N N N N N N N N =+++>、、、(2)两个正数的商的对数等于被除数的对数减去除数的对数;log log log a a a M M N N=-(3)正数的幂的对数等于幂的底数的对数乘以幂指数; log log a a M M αα=要点诠释:(1)利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log 2(-3)(-5)=log 2(-3)+log 2(-5)是不成立的,因为虽然log 2(-3)(-5)是存在的,但log 2(-3)与log 2(-5)是不存在的.(2)不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:log a (M ±N )=log a M ±log a N , log a (M ·N )=log a M ·log a N ,log a N M N M a a log log =. 要点三、对数公式 1.对数恒等式:log log a b Na a N a N Nb ⎫=⇒=⎬=⎭2.换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0, a ≠1, M>0的前提下有:(1))(log log R n M M n a a n ∈=令 log a M=b , 则有a b =M , (a b )n =M n ,即n b n M a =)(, 即n a M b n log =,即:n a a M M n log log =.(2))1,0(log log log ≠>=c c aMM c c a ,令log a M=b , 则有a b =M , 则有)1,0(log log ≠>=c c M a c b c即M a b c c log log =⋅, 即a M b c c log log =,即)1,0(log log log ≠>=c c aMM c c a 当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:)1,0,1,0(log 1log ≠>≠>=b b a a ab b a .【典型例题】类型一、对数的概念例1.求下列各式中x 的取值范围: (1)2log (5)x -;(2)(1)log (2)x x -+;(3)2(1)log (1)x x +-. 【答案】(1)5x >;(2)1,2x x >≠且;(3)1x >-且0,1x x ≠≠ 【解析】(1)由题意50x ->,5x ∴>,即为所求.(2)由题意20,10,11,x x x +>⎧⎨->-≠⎩且即2,1,2,x x x >-⎧⎨>≠⎩且1,2x x ∴>≠且. (3)由题意2(1)0,10,11,x x x ⎧->⎨+>+≠⎩且解得1x >-且0,1x x ≠≠.【总结升华】在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.举一反三:【变式1】函数21log (2)x y x -=+的定义域为 .【答案】1|12x x x ⎧⎫>≠⎨⎬⎩⎭且类型二、指数式与对数式互化及其应用 例2.将下列指数式与对数式互化: (1)2log 164=;(2)13log 273=-;(3)3x =;(4)35125=;(5)1122-=;(6)2193-⎛⎫= ⎪⎝⎭.【解析】运用对数的定义进行互化.(1)4216=;(2)31273-⎛⎫= ⎪⎝⎭;(33x =;(4)5log 1253=;(5)21log 12=-;(6)13log 92=-.【总结升华】对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x 的值:(1)161log 2x =- (2)log 86x = (3)lg1000=x (4)2-2ln e x =【答案】(1)14;(2;(3)3;(4)-4.【解析】将对数式化为指数式,再利用指数幂的运算性质求出x .(1)1112()212221(16)(4)444x --⋅--=====;(2)111166366628()(8)(2)2x x x ======,所以 (3)10x =1000=103,于是x=3;(4)由22222ln ln 42x x e x e e e x --=-===-,得,即所以.例3.(2014 广东湛江期中)不用计算器计算:7log 203log lg25lg47(9.8)+++- 【答案】132【解析】原式323log 3lg(254)21=+⨯++23lg1032=++3132322=++=【总结升华】对数恒等式log a N a N =中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求log log log a b c b c N a ⋅⋅的值(a ,b ,c ∈R +,且不等于1,N>0) 【答案】N【解析】将幂指数中的乘积关系转化为幂的幂,再进行运算.log log log log log log log log log ()()c a b c a b b c c Nb c N b cc N N a a b c N ⋅⋅⎡⎤====⎣⎦类型四、积、商、幂的对数例4. z y x a a a log ,log ,log 用表示下列各式35(1)log ;(2)log ();(3)log a a a a xy x y z 【解析】(1)log log log log aa a a xyx y z z=+-; (2)3535log ()log log 3log 5log a a a a a x y x y x y =+=+;(3)1log log log ()log log log 2a a a a a a yz x y z yz ==--;(4)log a211log ()log 2log log log 23a a a a a x y x y z -=+-.(有错误) 【总结升华】利用对数恒等式、对数性质及其运算性质进行化简是化简对数式的重要途径,因此我们必须准确地把握它们.在运用对数的运算性质时,一要注意真数必须大于零;二要注意积、商、幂的对数运算对应着对数的和、差、积得运算.举一反三: 【变式1】求值(1)1log 864log 325log 21025-+ (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2【答案】(1)22;(2)1;(3)2. 【解析】(1)1log 864log 325log 21025-+.220184082log 35log 26225=-+=⨯-+⋅=(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 类型五、换底公式的运用例5.已知18log 9,185b a ==,求36log 45.【答案】2a ba+- 【解析】解法一:18log 9,185b a ==,18log 5b ∴=,于是181818183618181818log 45log (95)log 9log 5log 4518log 36log (182)1log 221log 9a b a ba ⨯+++=====⨯+-+. 【总结升华】(1)利用换底公式可以把题目中不同底的对数化成同底的对数,进一步应用对数运算的性质.(2)题目中有指数式和对数式时,要注意指数式与对数式的互化,将它们统一成一种形式.(3)解决这类问题要注意隐含条件“log 1a a =”的灵活运用. 【变式1】求值:(1))2log 2)(log 3log 3(log 9384++;【解析】(1))2log 2)(log 3log 3(log 9384++452log 233log 65)22log 2)(log 33log 23log ()9log 2log 2)(log 8log 3log 4log 3log (3233223332222=⋅⋅=++=++=类型六、对数运算法则的应用例6.求值(1)91log 81log 251log 32log 53264⋅⋅⋅(2)7lg142lg lg 7lg183-+-【解析】(1)原式=103log 2log 5log 2log 253322526-=---(2)原式=2lg(27)2(lg 7lg 3)lg 7lg(32)⨯--+-⨯ =lg 2lg72lg72lg3lg72lg3lg 20+-++--=举一反三:【变式1】计算下列各式的值 (1)()222lg5lg8lg5lg 20lg 23+++【解析】(1)原式=()22lg52lg 2lg5(2lg 2lg5)lg 2++++=22lg10(lg 5lg 2)++=2+1=3;【巩固练习】一、选择题1. 有以下四个结论:①lg (lg10)=0;②ln (lne )=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2,其中正确的是( )A .①③B .②④C .①②D .③④ 【答案】C【解析】由log 1,log 10a a a ==知①②正确.2. 下列等式成立的有( )①1lg 2100=-;②33log 2=;③2log 525=;④ln 1e e =;⑤lg 333=;A .①②B .①②③C .②③④D .①②③④⑤ 【答案】B【解析】21lg lg102100-==-;3. 对数式2log (5)a a b --=中,实数a 的取值范围是( )A .(),5-∞B . ()2,5C .()()2,33,5D .()2,+∞【答案】C【解析】由对数的定义可知50,20,21,a a a ->⎧⎪->⎨⎪-≠⎩所以25a <<且3a ≠,故选C .4. 若0,1a a >≠,则下列说法正确的是( )①若M N =,则log log a a M N =;②log log a a M N =,则M N =; ③22log log a a M N =,则M N =;④若M N =,则22log log a a M N =. A .①③ B .②④ C .② D .①②③④ 【答案】C【解析】注意使log log a a M N =成立的条件是M 、N 必须为正数,所以①③④不正确,而②是正确的,故选C .5. 若56789log 6log 7log 8log 9log 10y =⋅⋅⋅⋅,则( )A .(0,1)y ∈B .(1,2)y ∈C .(2,3)y ∈D .(3,4)y ∈ 【答案】B 【解析】55lg 6lg 7lg8lg9lg10log 101log 2lg5lg 6lg 7lg8lg9y =⨯⨯⨯⨯==+,因为50log 21<<,所以12y <<,故选B .6. (2014江西三县月考)计算662log 3log 4+的结果是()A .6log 2B . 2C . 6log 3D . 3【答案】B【解析】666662log 3log 4log 9log 4log 362+=+==.故选:B . 二、填空题1. 若312log 19x-=,则x = .【答案】-13【解析】 由指数式与对数式互化,可得1239x-=,解得13x =-. 2. 若2log 2,log 3,m n a a m n a +=== ;【答案】12【解析】 2log 2log 3log 4log 34312a a a a a a a +=⋅=⨯=.3. 若2510a b ==,则11a b+= .【答案】1【解析】因为210,a =所以21log 10lg 2a ==,又因为510,b =所以51log 10lg 5b ==,所以原式=lg 2lg51+=.。
对数概念与运算

例1将下列对数式写成指数式:(1)4216=; (2)31327-=; (3)520a =; (4)10.452b⎛⎫= ⎪⎝⎭.例2:.将下列对数式写成指数式: (1)5log 1253=; (2)13log 32=-; (3)lg 0.012=-; (4)ln10 2.303=.例3:.求下列各式的值:课题: 对数概念和运算自学评价1对数定义:一般地,如果a (10≠>a a 且)的b 次幂等于N , 即N a b =,那么就称b 是以a 为底N 的对数(logarithm ),记作 b N a =log ,其中,a 叫做对数的底数(base of logarithm),N 叫做真数(proper number)。
2. 对数的性质:(1) ,(2)这三条性质是后面学习对数函数的基础和准备,必须熟练掌握和真正理解。
3. 两种特殊的对数是①常用对数:以10作底 10log N 简记为lg N②自然对数:以e 作底(为无理数),e = 2.718 28…… , log e N 简记为ln N .4.对数恒等式(1)log b a a b =(2)log a NaN =5. 对数的运算性质如果 a > 0 , a ≠ 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+;(2)log log -log a a a MM N N= (3)log log ()n a a M n M n R =∈ 6.对数换底公式log log log m a m NN a=7.① log log 1a b b a ⋅=;② log log m na a nb b m=;③ log log log b a b a x x = 精典范例⑴2log 64; ⑵21log 16; (3)lg10000;(4)31log 273; (5)(23)log (23)+-针对练习1.将53243=化为对数式 2.将lg 1a =化为指数式3.求值:(1)3log 81 (2)0.45log 1例4:计算(1)83log 9log 32⨯(2)427125log 9log 25log 16⋅⋅(3)4483912(log 3log 3)(log 2log 2)log 32++-例5:1)已知3log 12a =,试用a 表示3log 24 (2)已知3log 2a =,35b=,用a 、b 表示 30log 3课堂练习1.利用换底公式计算:(1)25log 5log 4⋅(2)235111log log log 2589⨯⨯2.求证:341log 4log 3=3.2lg 4lg5lg 20(lg5)++4:求值 ①9log 27,② 345log 625.课题:对数函数图像和性质自学评价1. 对数函数的定义 定义域是 2. 对数函数的性质为图 象1a >01a <<性 质(1)定义域: (2)值域:(3)过点 ( , )(4)在(0,+∞)上是 函数 (4)在(0,)+∞上是 函数精典范例例1:求下列函数定义域(1))4(log )(2x x f a -= )1,0(≠>a a (2))4(log )(2x x f x -=(3)xxx f lg 3)(-=例2:利用对数函数的性质,比较下列各组数中两个数的大小: (1)2log 3.4,2log 3.8; (2)0.5log 1.8,0.5log 2.1; (3)7log 5,6log 7;(1,0) 1x = 1x =log a y x =log a y x=1x =例3若4log 15a <(0a >且1)a ≠,求a 的取值范围 (2)已知(23)log (14)2a a +->,求a 的取值范围;例4:已知函数x x f a log )(= (0>a 且1≠a ) (1)若21=a ,求)(x f 在]2,1[上值域 (2)若)(x f 在]2,1[上的最大值比最小值大21,求实数a 的值。
知识讲解_对数及对数运算_基础

(2)
log a
M
logc M logc a
(c 0, c 1) ,
令
logaM=b,
则 有 ab=M,
则有
logc ab logc M (c 0, c 1)
即 b logc
a
log c
M
,
即b
logc M logc a
,即 log a
M
logc M logc a
(c
(1)0 和负数没有对数,即 N 0 ; (2)1 的对数为 0,即 loga 1 0 ; (3)底的对数等于 1,即 loga a 1.
3.两种特殊的对数
通常将以 10 为底的对数叫做常用对数, log10 N作作作 为底的对数叫做自然对数, loge N简记作 ln N .
4.对数式与指数式的关系
质.
(2)题目中有指数式和对数式时,要注意指数式与对数式的互化,将它们统一成一种形式.
(3)解决这类问题要注意隐含条件“ loga a 1”的灵活运用.
举一反三:
【变式
1】求值:(1)
(log 4
3
log8
3)(log3
2
log 9
27
32
;(3)
91 2
log3
2
log 3 2
2 )
5 6
log 2
3
3 2
log 3
2
5 4
;
(2) log8
loga
M N
loga M
loga
N
(3) 正数的幂的对数等于幂的底数的对数乘以幂指数;
对数运算的十个公式

对数运算的十个公式对数运算是数学中的重要概念,通过将复杂的乘法、除法运算转化为简单的加法、减法运算,极大地方便了计算。
下面将介绍十个常用的对数运算公式。
1.基本定义:2.对数的基本性质:loga(1) = 0,即任何数以其本身为底的对数等于0。
loga(a) = 1,即任何数以其本身为底的对数等于1loga(b) = loga(c) 表示以a为底的b与c相等。
3.对数的运算性质:loga(b * c) = loga(b) + loga(c) ,即对数的乘法法则。
loga(b / c) = loga(b) - loga(c) ,即对数的除法法则。
loga(b ^ n) = n * loga(b) ,即对数的指数法则。
4.对数的换底公式:loga(b) = logc(b) / logc(a) ,其中c为任意正数。
5.对数的积和商:loga(b * c) = loga(b) + loga(c) ,即对数的乘法属性。
loga(b / c) = loga(b) - loga(c) ,即对数的除法属性。
6.对数的幂和根:loga(b ^ n) = n * loga(b) ,即对数的指数属性。
loga√b = 1/2 * loga(b) ,即对数的根属性。
7.对数的阶:loga(b) = 1 / logb(a),即一个数以其本身为底的对数,等于以该数为底的对数的倒数。
8.对数的换元公式:logab = 1 / logba,即两个不同底数的对数可以相互转换。
9.对数的对数:loga(loga(b)) = logb(b) = 1,即一个数以以其本身为底的对数的对数等于110.对数的特殊值:log10(10) = 1,常用于计算数的数量级。
ln(e) = 1,其中ln为以自然常数e为底的对数。
通过掌握这些对数运算的公式,我们可以在计算中更加便捷地进行复杂的乘除运算,为数学问题的解决提供了有效的工具。
对数及其运算基础知识及例题

对数及其运算基础知识及例题1、定义:对数是指用一个数b(b>0且不等于1)作为底数,将一个正数a表示成幂b的指数的形式,即a=b^x(x为实数),则x称为以b为底a的对数,记作logb a。
2、性质:①logb 1=0(b>0且不等于1)②logb b=1(b>0且不等于1)③logb (mn)=logb m+logb n(m>0,n>0,b>0且不等于1)④logb (m/n)=logb m-logb n(m>0,n>0,b>0且不等于1)⑤logb m^k=klogb m(m>0,b>0且不等于1,k为任意实数)3、对数的运算性质:①logb (mn)=logb m+logb n②logb (m/n)=logb m-logb n③logb m^k=klogb m④logb (a^k)=klogb a⑤logb a=logc a/logc b(b>0,且不等于1,c>0,且不等于1)4、换底公式:XXX b(b>0,且不等于1,c>0,且不等于1)5、对数的其他运算性质:①logb a=logb c,则a=c②logb a=logc a/logc b=logd a/logd b6、常用对数和自然对数:常用对数:以10为底数的对数,记作XXX。
自然对数:以自然常数e(e≈2.)为底数的对数,记作ln。
典型例题】类型一、对数的概念例1.求下列各式中x的取值范围:1)log2(x-5)≥0;(2)log(x-1)-log(x+2)0.改写为:1)x≥5;2)x>1且x<2;3)x>1且x1且x>1.类型二、指数式与对数式互化及其应用例2.将下列指数式与对数式互化:1)log2 16=4;(2)log1/27=-3;(3)log3 1/2= -1/log2 3;(4)53=125;(5)2^-1=1/2;(6)(1/3)^x=9.改写为:1)2^4=16;2)1/27=3^-3;3)3^-1/2=2/log2 3;4)5^3=125;5)2^-1=1/2;6)x=log(1/3)9/log(1/3)2.类型三、利用对数恒等式化简求值1+log5 77=log5 500.类型四、积、商、幂的对数例4.用loga x,loga y,loga z表示下列各式:1)loga (xy/z)=loga x+loga y-loga z;2)loga (xy)=loga x+loga y;3)loga (x^2/y^3z)=2loga x-3loga y-loga z;4)loga (x^2y^3/z)=2loga x+3loga y-loga z。
对数的运算与对数函数

1.对数的概念如果 ,那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。
即指数式与对数式的互化:log ba aN b N =⇔=2.常用对数:通常将以10为底的对数10log N 叫做常用对数,记作lg N 。
自然对数:通常将以无理数 2.71828e =⋅⋅⋅为底的对数叫做自然对数,记作ln N 。
3.对数的运算性质:如果0a >,且1,0,0a M N ≠>>,那么:⑴log ()log log a a a M N M N ⋅=+;(积的对数等于对数的和) 推广1212log (...)log log ...log a k a a a k N N N N N N ⋅=+++ ⑵log log log aa a MM N N=-;(商的对数等于对数的差) ⑶log log (R)a a M M ααα=∈,则log a = 。
⑷log a N a N =2.换底公式:log log log a b a NN b=(,0,,1,0a b a b N >≠>) 换底公式的意义:把以一个数为底的对数换成以另一个大于0且不等于1的数为底的对数,以达到计算、化简或证明的目的. 推广:⑴1log log a b b a=⑵log log log log a b c a b c d d =, ⑶1log log n a a M M n =,则log na m M = 。
特别地:log log 1a b b a =知识要点对数运算与对数函数【例1】 求下列各式中x 的取值范围。
(1)2log (5)x +(2)1log (10)x x --【例2】 将下列指数式化为对数式,对数式化为指数式。
(1) 1642= (2) 9132=- (3) 481log 3=(4) 6125log -=a (5)lg0.0013=-; (6)ln100=4.606【例3】 计算(1)lg 4lg 25+ (2)22log 24log 6-(3)531log ()3(4) 001.0lg (5)e1ln (6)1lg【巩固1】3log =2log =(2log (2= 21log 52+=【巩固2】). A. 1 B. -1 C. 2 D. -2【巩固3】计算2(lg5)lg 2lg50+⋅= .知识要点【例4】 (1)(2 。
对数的含义与运算

对数含义与运算一、 知识综述1.对数定义:一般地,如果a (10≠>a a 且)的b 次幂等于N , 就是N a b =,那么数 b 叫做a 为底 N 的对数,记作 b N a =log ,a 叫做对数的 ,N 叫做 。
即ba N =, log a Nb =aNb指数式N a b = 底数 幂 指数 对数式b N a =log对数的底数真数对数例如:对数式与指数式的互换2416= 210100= 1242= 2100.01-=2.基本性质:若0a >且1a ≠,0N >,则(1)log 10a =,log 1a a =;(2)log a Na N =.3.介绍两种特殊的对数: ①常用对数:以10作底 10log N 写成lg N ②自然对数:以e 作底为无理数,e = 2.71828…… , log e N 写成ln N .4.对数的运算性质:如果 a > 0 , a ≠ 1, M > 0 ,N > 0, 那么(1)log ()log log a a a MN M N =+;(2)log log -log aa a M M N N=;(3)log log ()na a M n M n R =∈. 5.换底公式:log log log m a m NN a=( a > 0 , a ≠ 1 ;0,1m m >≠)说明:两个较为常用的推论:(1)log log 1a b b a ⨯= ; (2)log log m na a nb b m= (a 、0b >且均不为1). 二、例题讲解例一:(1)计算: 9log 27, 345log 625.(2)求 x 的值:①33log 4x =-; ②()2221log 3211x x x ⎛⎫ ⎪⎝⎭-+-=.(3)求底数:①3log 35x =-, ②7log 28x =.例二: 例5.求下列各式的值:(1)()752log 42⨯; (2)5lg 100 .例三: 计算: (1)lg14-21g 18lg 7lg 37-+; (2)9lg 243lg ; (3)2.1lg 10lg 38lg 27lg -+.三、课堂练习 一、填空题1.计算:log2.56.25+lg1001+ln e +3log 122+= . 2.若10x=3,10y=4,则102x-y=__________;为表示、用7512log y x .3.(log 43+log 83)(log 32+log 92)-log 421329log 255+=__________ .4.若log (21)1x +=-, 则x = . 5.已知()xf e x =,则f(5)等于 . 6.如果732log [log (log )]0x =,那么12x -等于________________.7.25)a (log 5-(a ≠0)化简得结果是_____________________.8.已知 ab=M (a>0, b>0, M ≠1), 且logM b=x ,则logM a=________________.9.设(){}1,,lg A y xy =, {}0,,B x y =,且A =B ,则x = ;y =10. 计算:()()5log 22323-+二、选择题11.3log 9log 28的值是 ( )A .32 B .1 C .23 D .212.若log 2)](log [log log )](log [log log )](log [log 55153313221z y x ===0,则x 、y 、z 的大小关系是( )A .z <x <yB .x <y <zC .y <z <xD .z <y <x 13.已知x =2+1,则lo g 4(x 3-x -6)等于( )A.23 B.45 C.0D.21 14.已知lg2=a ,lg3=b ,则15lg 12lg 等于( )A .ba ba +++12B .ba ba +++12C .ba ba +-+12D .ba ba +-+1215.已知2 lg(x -2y )=lg x +lg y ,则yx 的值为( )A .1B .4C .1或4D .4 或-116.若log a b ·log 3a=5,则b 等于( )A .a 3B .a 5C .35D .5317. 已知ab>0,下面四个等式中,正确命题的个数为 ( ) ①lg (ab )=lga+lgb ②lgb a =lga -lgb ③bab a lg )lg(212= ④lg (ab )=10log 1abA .0B .1C .2D .318.若f (ln x )=3x +4,则f (x )的表达式为 ( )A 3ln xB 3ln x +4C 3e x +4D 3e x三、解答题19. (1)已知32a=,用a 表示33log 4log 6-;(2)已知3log 2a =,35b=,用a 、b 表示 30log 3.20.已知:lg (x -1)+lg (x -2)=lg2,求x 的值21. 已知18log 9,185,ba ==用a,b 表示 36log 4522. 15.(14分)已知函数2()(lg 2)lg f x x a x b =+++满足(1)2f -=-,且对一切实数x ,都有f (x)≥2x 成立,求实数a 、b 的值.课后练习1.下列指数式与对数式互化中错误的一组是 A . 01e =与ln10= B .13182-=与811log 23=- C . 3log 92=与1293= D .7log 71=与177=2.若b ≠1,则 loga b 等于( )。
对数的运算

对数的运算对数运算是高等数学中的一个重要概念,在数学和科学领域起到了广泛的应用。
它是指一个数以另一个数为底的幂,可以用来解决各种实际问题,帮助我们处理和分析复杂的数学关系。
本文将详细介绍对数运算的基本概念、性质以及在实际问题中的应用。
一、对数基本概念1.1 对数的定义对数的定义如下:如果aⁿ⁽˟⁾=b,那么称n为以a为底b的对数,记作n=logₐb,其中a称为底数,b称为真数,n称为对数。
1.2 对数的特性与性质对数有以下几个重要的性质:(1)logₐa=1,即以a为底a的对数为1;(2)logₐ1=0,即以a为底1的对数为0;(3)logₐ(mn)=logₐm+logₐn,即对数的乘法公式;(4)logₐ(m/n)=logₐm-logₐn,即对数的除法公式;(5)logₐ(mᵏ)=klogₐm,即对数的幂运算公式。
二、对数的应用2.1 对数在数学领域的应用对数在数学领域的应用非常广泛,它可以被应用于各个数学分支中。
其中,对数在代数学、微积分学、概率论、数论以及数值计算等方面起到了重要的作用。
在代数学中,对数可以简化复杂的指数运算,使得问题更易于处理和分析。
在微积分学中,对数可以被应用于解决各种复杂的微分方程问题,提供更为便捷的求解方法。
在概率论中,对数可以计算概率的对数,从而简化计算并降低计算量。
在数论中,对数可以帮助研究数与数之间的关系,解决各种数论问题。
2.2 对数在科学领域的应用对数在科学研究中也有重要应用。
例如,在天文学领域,对数可以帮助测定恒星的亮度和距离;在物理学领域,对数可以处理物体的变化趋势和相关性;在化学领域,对数可以计算溶液的浓度和酸碱度。
此外,对数还被广泛应用于数据处理、信号处理、图像处理等领域。
在这些领域中,对数运算可以提高数据的处理效率,并简化复杂性的计算。
2.3 对数在经济领域的应用在经济领域,对数运算也有着重要的应用。
例如,在经济增长模型中,对数可以被应用于计算经济增长速率和预测经济发展趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十、对数的概念与运算
一、选择题
1. 对于且,下列说法中正确的是
A. 若,则
B. 若,则
C. 若,则
D. 若,则
2.
A. B. C. D.
3. 计算:的值是
A. B. C. D.
4.
B. C.
5. 实数的值为
A. B. C. D.
6. 对数与互为相反数,则有
A. B. C. D.
7. 如果,那么
A. B. C. D.
8. 已知函数,那么的值为
A. B. D.
9. 下列算式中正确的是
A. B. C. D.
10. 已知,那么等于
11. 设,则用表示的形式是
A. B. C. D.
12.
A. B. C. D.
13. 式子的值为
A. C. D.
14.
C. D.
15. 计算:的值为
A. B. C.
16. 计算
A. B.
17. 若,则等于
B. C. D.
18. 设,且,则
A. B. C. D.
19. 若,则等于
A. C. D.
20. 已知,,则的值为
A. B. C. D.
二、填空题
21. 计算:.
22. 化简:.
23. .
24. 计算:.
25. .
26. .
27. 计算:
();
().
28. .
29. 的值是.
30. .
31. 已知,,则.
32. 若,则.
对数的概念与运算答案
第一部分
1. B 【解析】当,A项错误;若,则,即C
项错误;若,则D项错误.
2. C
3. C 【解析】.
4. A
5. A
6. C 【解析】.
7. C 8. D 9. C 10. C
【解析】由对数性质及,
得,,,
所以
11. A【解析】因为,所以.
12. B 【解析】由对数恒等式,得 .
13. A 14. D 【解析】利用对数运算法则求解.
方法一:.
方法二:.
15. C
【解析】
16. B 【解析】.
17. D 18. A 【解析】,,又,
.
19. D 【解析】由换底公式,得,,.
20. A
【解析】,
第二部分
21.
【解析】.22.
【解析】
23.
24.
【解析】
25.
【解析】
26.
【解析】
27. (),()
【解析】()
()
29.
30.
【解析】
31.
【解析】,,可得,.
【解析】提示:先化简,再代入中求解即可.。