第二章 线性离散系统的Z变换分析法

线性系统的时域分析法(第七讲)

第三章 线性系统的时域分析法 3.1 引言 分析控制系统的第一步是建立模型,数学模型一旦建立,第二步 分析控制性能,分析有多种方法,主要有时域分析法,频域分析法,根轨迹法等。每种方法,各有千秋。均有他们的适用范围和对象。本章先讨论时域法。 实际上,控制系统的输入信号常常是不知的,而是随机的。很难用解析的方法表示。只有在一些特殊的情况下是预先知道的,可以用解析的方法或者曲线表示。例如,切削机床的自动控制的例子。 在分析和设计控制系统时,对各种控制系统性能得有评判、比较的依据。这个依据也许可以通过对这些系统加上各种输入信号比较它们对特定的输入信号的响应来建立。 许多设计准则就建立在这些信号的基础上,或者建立在系统对初始条件变化(无任何试验信号)的基础上,因为系统对典型试验信号的响应特性,与系统对实际输入信号的响应特性之间,存在着一定的关系;所以采用试验信号来评价系统性能是合理的。 3.1.1 典型试验信号 经常采用的试验输入信号: ① 实际系统的输入信号不可知性; ② 典型试验信号的响应与系统的实际响应,存在某种关系; ③ 电压试验信号是时间的简单函数,便于分析。 突然受到恒定输入作用或突然的扰动。如果控制系统的输入量是随时间逐步变化的函数,则斜坡时间函数是比较合适的。 (单位)阶跃函数(Step function ) 0,)(1≥t t 室温调节系统和水位调节系统 (单位)斜坡函数(Ramp function ) 速度 0,≥t t ∝ (单位)加速度函数(Acceleration function )抛物线 0,2 12 ≥t t (单位)脉冲函数(Impulse function ) 0,)(=t t δ 正弦函数(Simusoidal function )Asinut ,当输入作用具有周期性变化时。 通常运用阶跃函数作为典型输入作用信号,这样可在一个统一的基础上对各种控制系统的特性进行比较和研究。本章讨论系统非周期信号(Step 、Ramp 、对正弦试验信号相应,将在第五章频域分析法,第六章校正方法中讨论)作用下系统的响应。 3.1.2 动态过程和稳态过程

第5章频域分析法习题解答

第5章频域分析法 学习要点 1 频率特性的概念,常用数学描述与图形表示方法; 2 典型环节的幅相频率特性与对数频率特性表示及特点; 3 系统开环幅相频率特性与对数频率特性的图示要点; 4 应用乃奎斯特判据判断控制系统的稳定性方法; 5 对数频率特性三频段与系统性能的关系; 6 计算频域参数与性能指标; 思考与习题祥解 题判断下列概念的正确性 ω的正弦信号加入线性系统,这个系统的稳态输出也将是同 (1) 将频率为 一频率的。 M仅与阻尼比ξ有关。 (2) 对于典型二阶系统,谐振峰值 p (3) 在开环传递函数中增加零点总是增加闭环系统的带宽。 (4) 在开环传递函数中增加极点通常将减少闭环系统的带宽并同时降低稳定性。 (5) 对于最小相位系统,如果相位裕量是负值,闭环系统总是不稳定的。 (6) 对于最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (7) 对于最小相位系统,如果幅值裕量是负分贝值,闭环系统总是不稳定的。 (8) 对于非最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (9) 对于非最小相位系统,须幅值裕量大于1且相位裕量大于0,闭环系统才是稳定的。 (10) 相位穿越频率是在这一频率处的相位为0。 (11) 幅值穿越频率是在这一频率处的幅值为0dB。 (12) 幅值裕量在相位穿越频率处测量。 (13) 相位裕量在幅值穿越频率处测量。 (14) 某系统稳定的开环放大系数25 K<,这是一个条件稳定系统。 (15) 对于(-2/ -1/ -2)特性的对称最佳系统,具有最大相位裕量。 (16) 对于(-2/ -1/ -3)特性的系统,存在一个对应最大相位裕量的开环放大系数值。 (17) 开环中具有纯时滞的闭环系统通常比没有时滞的系统稳定性低些。 (18) 开环对数幅频特性过0分贝线的渐近线斜率通常表明了闭环系统的相对稳定性。 M和频带宽BW (19) Nichols图可以用于找到一个闭环系统的谐振峰值 p 的信息。

线性系统的时域分析方法

第三章线性系统的时域分析方法 教学目的:通过本章学习,熟悉控制系统动态性能指标定义,掌握线性系统稳定的充要条件和劳斯判椐的应用,以及稳态误差计算方法,掌握一阶、 二阶系统的时域分析方法。 教学重点:掌握系统的动态性能指标,能熟练地应用劳斯判椐判断系统稳定性,二阶系统的动态响应特性分析。 教学难点:高阶系统的的动态响应特性分析。 本章知识结构图: 系统结构图闭环传递函数 一阶标准式 二阶标准式 特征方程稳定性、稳定域 代数判据 误差传递函数误差象函数终值定理稳态误差开环传递函数系统型别、开环增益 公式 静态误差系数 第九讲

3.1 系统时间响应的性能指标 一、基本概念 1、时域分析方法:根据系统的数学模型求出系统的时间响应来直接分析和评价系统的方法。 (1)响应函数分析方法:建立数学模型→确定输入信号→求出输出响应→ 根据输出响应→系统分析。 (2)系统测试分析方法:系统加入扰动信号→测试输出变化曲线→系统分析。 系统举例分析:举例:原料气加热炉闭环控制系统 2、分析系统的三大要点 (1)动态性能(快、稳) (2)稳态性能(准) (3)稳定性(稳) 二、动态性能及稳态性能 1、动态过程(过渡过程):在 典型信号作用下,系统输出从初始状态到最终状态的响应过程。(衰减、发散、等幅振荡) 2、稳态过程:在典型信号作 用下,当t → ∞ 系统输出量表现的方式。表征输出量最终复现输入量的程度。(稳态误差描述) 3、动态稳态性能指标 图3-1温度控制系统原理图 (1)上升时间tr :从稳态值的10%上升到稳态值的90%所需要的时间。 (2)峰值时间tp :从零时刻到达第一个峰值h(tp)所用的时间。 (3)超调量δ%:最大峰值与稳态值的差与稳态值之比的百分数。(稳) (3-1) %100)(()(%?∞∞-= h h t h p ) δ

自动控制原理_线性系统时域响应分析

武汉工程大学 实验报告 专业 班号 组别 指导教师 姓名 学号 实验名称 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、实验内容 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2 342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标ss s p r p e t t t ,,,,σ。 2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。 4.单位负反馈系统的开环模型为 ) 256)(4)(2()(2++++= s s s s K s G

试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。 三、实验结果及分析 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 14647 3)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。 方法一:用step( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 1 3 7]; den=[1 4 6 4 1]; t=0::10; step(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-step Response of G(s)=s^2+3s+7/(s^4+4s^3+6s^2+4s+1)') Unit-step Response of G(s)=s 2+3s+7/(s 4+4s 3+6s 2+4s+1) t/s (sec) c (t ) 方法二:用impulse( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 0 1 3 7 ]; den=[1 4 6 4 1 0]; t=0::10; impulse(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-impulse Response of G(s)/s=s^2+3s+7/(s^5+4s^4+6s^3+4s^2+s)')

第五章 线性系统的频域分析法习题

501 第五章 线性系统的频域分析法 5-1 设闭环系统稳定,闭环传递函数为)(s Φ,试根据频率特性的定义证明:系统输入信号为余弦函数)cos()(φω+=t A t r 时,系统的稳态输出为 )](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。 证明:根据三角定理,输入信号可表示为 )90sin()( ++=φωt A t r , 根据频率特性的定义,有 ]90)(sin[|)(|)( +Φ∠++Φ=ωφωωj t j A t c ss , 根据三角定理,得证: )](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。 5-2 若系统的单位阶跃响应 t t e e t c 948.08.11)(--+-=, 试确定系统的频率特性。 解:s s s s C 1 361336)(2++= ,36 1336)(2++=s s s G ,)9)(4(36)(ωωωj j j G ++=; 2 /122/12) 81()16(36 |)(|ωωω++=j G ,9arctan 4arctan )(ωωω--=∠j G 。 或:)(2.7)()(94t t e e t c t g ---== ;36 1336 )]([)(2 ++==s s t g L s G ; 5-3 设系统如下图所示,试确定输入信号 )452cos()30sin()( --+=t t t r 作用下,系统的稳态误差)(t e ss 。 解:2 1)(++=Φs s s e ; )452sin()30sin()( +-+=t t t r 6325.0|)(|=Φj e , 4.186.2645)(=-=Φ∠j ; 7906.0|)2(|=Φj e , 4.18454.63)2(=-=Φ∠j ; 答案:)4.632sin(7906.0)4.48sin(6325.0)( +-+=t t t e ss 。 5-4 典型二阶系统的开环传递函数 ) 2()(2 n n s s s G ωζω+= , 当取t t r sin 2)(=时,系统的稳态输出为 )45sin(2)( -=t t c ss , 试确定系统参数n ω和ζ。 解:2 222)(n n n s s s ωζωω++=Φ; 1] 4)1[(2 2222=+-n n n ωζωω, 451 2arctan 2 -=--n n ωζω; 122 -=n n ωζω, 答案:414.12==n ω,3536.04/2==ζ。

自动控制原理实验六 线性系统的频域分析

实验六 线性系统的频域分析 一. 实验目的 (1)熟练掌握使用MA TLAB 命令绘制控制系统Nyquist 图的方法; (2)能够分析控制系统Nyquist 图的基本规律; (3)加深理解控制系统乃奎斯特稳定性判据的实际应用; (4)学会利用奈氏图设计控制系统; (5)熟练掌握运用MA TLAB 命令绘制控制系统伯德图的方法; (6)了解系统伯德图的一般规律及其频域指标的获取方法; (7)熟练掌握运用伯德图分析控制系统稳定性的方法; (8)设计超前校正环节并绘制Bode 图; (9)设计滞后校正环节并绘制Bode 图。 二. 实验原理及内容 1、频率特性函数)(ωj G 。 频率特性函数为: n n n n m m m m a j a j a j a b j b j b j b jw G ++???++++???++= ---)()()()()()()(1101110ωωωωωω 由下面的MATLAB 语句可直接求出G(jw)。 i=sqrt(-1) % 求取-1的平方根 GW=polyval(num ,i*w)./polyval(den ,i*w) 2、用MATLAB 作奈魁斯特图。 控制系统工具箱中提供了一个MATLAB 函数nyquist( ),该函数可以用来直接求解Nyquist 阵列或绘制奈氏图。当命令中不包含左端返回变量时,nyquist ()函数仅在屏幕上产生奈氏图,命令调用格式为: nyquist(num,den) ; 作Nyquist 图, nyquist(num,den,w); 作开环系统的奈氏曲线, 3、奈奎斯特稳定性判据(又称奈氏判据) 反馈控制系统稳定的充分必要条件是当ω从-∞变到∞时,开环系统的奈氏曲线不穿过点(-1,j0)且逆时针包围临界点(-1,j0)点的圈数R 等于开环传递函数的正实部极点数。 4、用MATLAB 作伯德图 控制系统工具箱里提供的bode()函数可以直接求取、绘制给定线性系统的伯德图。 命令的调用格式为: [mag,phase,w]=bode(num,den) [mag,phase,w]=bode(num,den,w) 由于伯德图是半对数坐标图且幅频图和相频图要同时在一个绘图窗口中绘制,因此,要用到半对数坐标绘图函数和子图命令。 (1) 对数坐标绘图函数 利用工作空间中的向量x ,y 绘图,要调用plot 函数,若要绘制对数或半对数坐标图,只需要用相应函数名取代plot 即可,其余参数应用与plot 完全一致。 (2) 子图命令

实验三线性系统的频域分析

自动控制理论 上 机 实 验 报 告 学院:机电工程学院 班级:13级电信一班

: 学号: 实验三 线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、基础知识及MATLAB 函数 频域分析法是应用频域特性研究控制系统的一种经典方法。它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。 1.频率曲线主要包括三种:Nyquist 图、Bode 图和Nichols 图。 1)Nyquist 图的绘制与分析 MATLAB 中绘制系统Nyquist 图的函数调用格式为: nyquist(num,den) 频率响应w 的围由软件自动设定 nyquist(num,den,w) 频率响应w 的围由人工设定 [Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量, 不作图 例4-1:已知系统的开环传递函数为2 526 2)(2 3++++=s s s s s G ,试绘制Nyquist 图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2]; [z,p,k]=tf2zp(num,den); p nyquist(num,den) 极点的显示结果及绘制的Nyquist 图如图4-1所示。由于系统的开环右根数P=0,系统的Nyquist 曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。 p = -0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668 若上例要求绘制)10,10(32-∈ω间的Nyquist 图,则对应的MATLAB 语句为: num=[2 6]; den=[1 2 5 2]; w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距 离的点 nyquist(num,den,w) 2)Bode 图的绘制与分析 系统的Bode 图又称为系统频率特性的对数坐标图。Bode 图有两图,分别绘制开环频率特性的幅值和相位与角频率ω的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。 MATLAB 中绘制系统Bode 图的函数调用格式为: bode(num,den) 频率响应w 的围由软件自动设定 bode(num,den,w) 频率响应w 的围由人工设定 图4-1 开环极点的显示结果及Nyquist 图

线性离散系统的分析

§10-4 线性离散系统的分析 前面讨论了线性离散系统的数学模型:一种是输入输出模型,一种是状态空间模型。本节将要根据这些数学模型来分析线性离散系统的特性,例如稳定性、能控性和能观测性。 一、稳定性 稳定性是动力学系统的一个十分重要的性质。本节只讨论线性定常系统的稳定性,而时变系统的稳定性问题是比较复杂的。有两大类的稳定性分析方法。一类是分析离散系统极点在z 平面内的位置。一个闭环系统是稳定的充分必要条件是其特征方程的全部根都必须分布在z 平面内以原点为圆心的单位圆内。当然,我们可以用直接的方法求出特征方程,然后再求出其根(例如用贝尔斯特-牛顿叠代法)。但是在工程上希望不经过解特征方程而找到一些间接的方法,例如代数判据法,基于频率特性分析的奈奎斯特法,或通过双线性变换把z 平面问题变成s 平面的问题,再用连续系统的稳定判据。另一类研究稳定性的方法是李雅普诺夫第二方法,它规定了关于稳定性的严格定义和方法。本节只介绍代数判据法。 Routh 、Schur 、Cohn 和Jury 都研究过相类似的稳定判据。如果已知一个系统的特征多项式 ()n n n a z a z a z A +++=- 1 10 (10.87) Jury 把它的系数排列成如下的算表: 1 1 110a a a a a a a a a a n n n n n n = --α ――――――――――――――――――― 1 0111 1012 11 11 1110 --- ----------=n n n n n n n n n n n n n a a a a a a a a α ――――――――――――――――――― ――――――――――――――――――― 10 11 1110a a a a 10 11 1a a =α ――――――――――――――――――― 0a 其中

自动控制原理》实验2(线性系统时域响应分析

实验二 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 二、基础知识及MATLAB 函数 (一)基础知识 时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。 用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。 1.用MATLAB 求控制系统的瞬态响应 1)阶跃响应 求系统阶跃响应的指令有: step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线 随即绘出 step(num,den,t) 时间向量t 的范围可以由人工给定(例如 t=0:0.1:10) [y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量 在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。 考虑下列系统: 25 425 )()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s

第3章--线性系统的时域分析--练习与解答

第三章 线性系统的时域分析与校正 习题及答案 3-1 已知系统脉冲响应 t e t k 25.10125.0)(-= 试求系统闭环传递函数)(s Φ。 解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程 T c t c t r t r t ?? +=+()()()()τ 近似描述,其中,1)(0<-<τT 。试证系统的动态性能指标为 T T T t d ?? ? ?????? ??-+=τln 693.0 t T r =22. T T T t s ?? ??? ? -+=)ln( 3τ 解 设单位阶跃输入s s R 1)(= 当初始条件为0时有: 1 1 )()(++=Ts s s R s C τ 1 11 11)(+--= ? ++= ∴ Ts T s s Ts s s C ττ C t h t T T e t T ()()/==---1τ 1) 当 t t d = 时 h t T T e t t d ()./==---051τ 12=--T T e t T d τ/ ; T t T T d -??? ??-=-τln 2ln ????? ???? ??-+=∴ T T T t d τln 2ln

2) 求t r (即)(t c 从1.0到9.0所需时间) 当 T t e T T t h /219.0)(--- ==τ; t T T T 201=--[ln()ln .]τ 当 T t e T T t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21 09 01 22ln ... 3) 求 t s T t s s e T T t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln T T T T T T T T T t s τ ττ-+=+-=--=∴ 3-3 一阶系统结构图如图3-45所示。要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。 解 由结构图写出闭环系统传递函数 111)(212211211 +=+=+ =ΦK K s K K K s K s K K s K s 令闭环增益21 2 == ΦK K , 得:5.02=K 令调节时间4.03 32 1≤= =K K T t s ,得:151≥K 。 3-4 在许多化学过程中,反应槽内的温度要保持恒定, 图3-46(a )和(b )分别为开环和闭环温度控制系统结构图,两种系统正常的K 值为1。 (1) 若)(1)(t t r =,0)(=t n 两种系统从响应开始达到稳态温度值的63.2%各需多长时间? (2) 当有阶跃扰动1.0)(=t n 时,求扰动对两种系统的温度的影响。

线性系统的频域分析报告

1 γ = 50 20- =s K0

原系统的伯德图: num/den = 1.2347 s + 1 ------------- 0.20154 s + 1 校正之后的系统开环传递函数为: num/den = 6.1734 s + 5 ------------------------------------------- 0.20154 s^4 + 1.6046 s^3 + 3.4031 s^2 + 2 s alpha =6.1261; P h a s e (d e g ) Bode Diagram Gm = Inf dB (at Inf rad/sec) , P m = 9.04 deg (at 3.14 rad/sec) -200204060 80M a g n i t u d e (d B )

[il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1]; [num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('D£?y??oóμ??μí3?a?·′?μYoˉêy?a:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('·ù?μ(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('?à??(0)'); xlabel('?μ?ê(rad/sec)'); title(['D£?y?°£o·ù?μ?£á?=',num2str(20*log10(gm1)),'db','?à???£á?=',num2str(pm1),'0'; 'D£?yoó£o·ù?μ?£á?=',num2str(20*log10(gm)),'db','?à???£á?=',num2s tr(pm),'0']); 10-110 10 1 10 2 -60 -40-20020 40幅值(d b ) --Go,-Gc,GoGc 10 -110 10 1 10 2 -300 -200-1000 100相位(0) 频率(rad/sec) 矫正后系统的伯德图

第八章 脉冲传递函数及性能分析

第八章 脉冲传递函数及性能分析 分析线性定常线性离散系统时,脉冲传递函数也是一个很重要的概念,线性定常线性离散系统的动态特性可以由脉冲传递函数来描述。通过脉冲传递函数,可以对线性定常线性离散系统的性能进行分析。 第一节 脉冲传递函数 一、定义 图8-1 开环离散系统 设开环离散系统如图8-1 所示。 线性离散系统的脉冲传递函数定义为:零初始条件下,系统的输出采样信号的Z 变换与输入采样信号的Z 变换之比,记作: ()()G ()() ()n n n n c nT z C z z R z r nT z ∞ -=∞ -== = ∑∑ (8-1) 零初始条件是指:在t<0时,输入脉冲序列各采样值r(-T)、r(-2T)、……以及输出脉冲序列各采样值 c(-T)、c(-2T)、……均为0 。 图8-2 实际的开环离散系统 然而,对大多数实际系统来说,其输出往往是连续信号 c(t) ,而不是采样

信号*() c t,如图8-2所示。此时,可以在系统输出端虚设一个理想采样开关,如图8-2中虚线所示。它与输入采样开关同步工作,并具有相同的采样周期。如果系统的实际输出c(t)比较平滑,且采样频率较高,则可由*() c t近似描述c(t)。必须指出,虚设的采样开关是不存在的,它只是表明了脉冲传递函数所能描述的,只是输出连续函数在采样时刻上的离散值*() c t。 二、脉冲传递函数的求法 1、由差分方程求 (1)令初始条件为零,对差分方程两边作为z变换(查z变换表及用z变换定理); (2)据脉冲传递函数的定义G(z)=C(z)/R(z),求出脉冲传递函数G(z)。 2、由系统方块图求 脉冲传递函数同样可以用方块图表示。求取脉冲传递函数时,可以利用方块图变换来实现。但是,在离散系统的方块图中,除了信号线、函数方块、引出点和比较点,还增加了采样开关。连续系统的方块图分析法,不能照搬到离散系统。 第二节开环系统脉冲传递函数 一、串联环节 1、离散环节串联——串联环节之间有采样开关 等效的脉冲传递函数等于各环节脉 冲传递函数之乘积,即 G(z)=Z[G1(s)]*Z[G2(s)]=G1(z)G2(z) 图8-3 离散环节串联 2、连续环节串联——串联环节之间无采样开关 等效的脉冲传递函数等于各环节传 递函数乘积之z变换,即 G(z)=Z[G1(s)G2(s)]= G1G2(z)。 图8-4 连续环节串联

线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈:。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s 解:(a )稳定; (b )稳定; (c )不稳定。 题 系统结构如题图所示。控制器)1 1()(s T K s G i p c + =,为使该系统稳定,控制器参数p K 、i T 应满足什么关系

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 【 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 @ 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 & (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s ! 解:(a )稳定; (b )稳定; (c )不稳定。

自动控制原理线性系统的频域分析实验报告

实验四 专业 自动化 班号 03班 指导教师 陈艳飞 姓名 胡波 实验名称 线性系统的频域分析 实验日期 第 次实验 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 2 22)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 解: 程序如下: num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold bode(num,den2,w) bode(num,den3,w) bode(num,den4,w) bode(num,den5,w)

-100-80-60-40-200 20M a g n i t u d e (d B )10 -2 10 -1 10 10 1 10 2 10 3 P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 分析:随着.0=ζ的增大 ,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为 ) 5)(15(10 )(2+-= s s s s G ) 106)(15() 1(8)(22++++= s s s s s s G ) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解: 程序如下 奈氏曲线: (1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100); nyquist(num1,den1,w)

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 3.1 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 3.2 思考与习题祥解 题3.1 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响? (5)系统误差与哪些因素有关?试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关? 答:(1)二阶系统特征根在复平面上分布情况如图3.1所示。 图3.1 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξσe 。在工程设计中,对于恒值控制系 统,一般取 ξ=0.2~0.4;对于随动控制系统ξ=0.6~0.8。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈ 。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题3.2系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s 解:(a )稳定; (b )稳定; (c )不稳定。 题3.3 系统结构如题3.3图所示。控制器)1 1()(s T K s G i p c + =,为使该系统稳定,控制器参数p K 、i T 应满足什么关系?

MATLAB线性系统时域响应分析报告实验

实验报告 实验名称 线性系统时域响应分析 一、 实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、 实验内容 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2 342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标 ss s p r p e t t t ,,,,σ。 2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。 4.单位负反馈系统的开环模型为 ) 256)(4)(2()(2 ++++= s s s s K s G 试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。

三、 实验结果及分析 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 方法一: num=[1 3 7]; den=[1 4 6 4 1]; step(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-step Respinse of G(s)=(s^2+3s+7)/(s^4+4s^3+6s^2+4s+1)') 方法二: num=[1 3 7]; den=[1 4 6 4 1 0]; impulse(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-impulse Respinse of G(s)/s=(s^2+3s+7)/(s^5+4s^4+6s^3+4s^2+s)')

相关文档
最新文档