4.4平行四边形的判定定理

合集下载

平行四边形判定方法

平行四边形判定方法

平行四边形判定方法
平行四边形是一种特殊的四边形,具有一些独特的性质。

在几何学中,我们经常需要判定一个四边形是否为平行四边形,本文将介绍几种判定平行四边形的方法。

首先,我们可以通过四边形的对边是否平行来判定它是否为平行四边形。

如果一个四边形的对边是平行的,那么它就是一个平行四边形。

这是平行四边形的最基本的判定方法,也是最直观的方法之一。

其次,我们可以通过四边形的对角线是否相等来判定它是否为平行四边形。

如果一个四边形的对角线相等,那么它就是一个平行四边形。

这个方法常用于菱形和正方形的判定,因为菱形和正方形都是特殊的平行四边形。

另外,我们还可以通过四边形的内角是否相等来判定它是否为平行四边形。

如果一个四边形的内角相等,那么它就是一个平行四边形。

这个方法常用于矩形和正方形的判定,因为矩形和正方形都是特殊的平行四边形。

最后,我们可以通过四边形的对边是否相等和对角线是否平分对角来判定它是否为平行四边形。

如果一个四边形的对边相等且对角线平分对角,那么它就是一个平行四边形。

这个方法常用于菱形的判定,因为菱形具有这样的特点。

在实际问题中,我们可以根据需要选择合适的方法来判定一个四边形是否为平行四边形。

有时候,我们需要结合多种方法来进行判定,以确保结果的准确性。

总之,判定一个四边形是否为平行四边形,需要我们熟练掌握几种方法,并在实际问题中灵活运用。

希望本文介绍的方法能够对大家有所帮助。

平行四边形的判定定理总结

平行四边形的判定定理总结

1、在下列条件中,不能判定四边形是 平行四边形的是( D ) (A)AB∥CD,AD∥BC
(B) AB=CD,AD=BC (C)(C)AB∥CD,AB=CD (D)(D) AB∥CD,AD=BC (E)(E) AB∥CD, ∠A=∠C
例1 :已知:如图,在□ABCD中,E、F分别
A
D
是AB,CD的中点。
A
E
D
B
F
C
已知:平行四边形ABCD中,E, F分别是边AD,BC的中点(如图)
求证:EB=DF
A
E
DБайду номын сангаас
B
F
C
已知:平行四边形ABCD中,E,F分
别是边AD,BC的中点(如图)
求证:EB=DF
A
E
D
证明:∵四边形ABCD 是平行
四边形
∴AD BC
B
F
C
∵ED=1/2AD BF=1/2BC
∴ED BF ∴四边形EBFD是平行四边形 (一组对边平行且相等的四边形是平行四边形)
∴EB=DF
作业题:2、已知:E、F是平行四边形ABCD
对角线AC上的两点,并且AE=CF。
大 显 身
求证:四边形BFDE是平行四边形
证明:
Q
四边形ABCD是平行四边形
AD ∥ BC且AD =BC
手A
EAD= FCB
D 在 AED和 CFB中
E
B
AE=CF
F
EAD=
FCB
C
AD=BC AED ≌ CFB(SAS)
∴四边形ABCD是平行四边形 (根平据行什四么边?形)的定义) ∴该命题是真命题
定理1:

浙教版数学八年级下册《4.4 平行四边形的判定定理》教案2

浙教版数学八年级下册《4.4 平行四边形的判定定理》教案2

浙教版数学八年级下册《4.4 平行四边形的判定定理》教案2一. 教材分析《4.4 平行四边形的判定定理》是浙教版数学八年级下册的一个重要内容。

本节课主要让学生掌握平行四边形的判定方法,并通过相应的例题和练习题来巩固所学知识。

教材从学生的实际出发,通过直观的图形和生动的例题,引导学生探索和发现平行四边形的判定定理,培养学生的几何思维和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了平行线的性质、四边形的分类等基础知识,具备了一定的几何思维能力。

然而,对于一些具体判定定理的理解和应用,学生可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的认知水平,针对不同学生的学习情况,采取合适的教学策略。

三. 教学目标1.知识与技能:让学生掌握平行四边形的判定方法,能够运用判定定理解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的几何思维和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:平行四边形的判定方法。

2.难点:对平行四边形判定定理的理解和应用。

五. 教学方法1.情境教学法:通过直观的图形和生动的例题,引发学生的兴趣,激发学生的思考。

2.引导发现法:引导学生观察、操作、交流,发现平行四边形的判定定理。

3.实践操作法:让学生通过动手操作,加深对平行四边形判定定理的理解。

4.巩固练习法:通过有针对性的练习题,巩固所学知识。

六. 教学准备1.教学课件:制作课件,展示相关图形和例题。

2.练习题:准备一些有关平行四边形判定定理的练习题,用于课堂巩固和课后作业。

3.教学道具:准备一些四边形模型,用于实践操作。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的平行四边形图形,如电梯、窗户等,引导学生关注平行四边形的特点。

提问:你们知道什么是平行四边形吗?平行四边形有哪些性质?2.呈现(10分钟)呈现教材中的例题,引导学生观察图形,思考问题。

专题4-4平行四边形的判定定理专项提升训练(重难点培优)--2023-2024(0002)

专题4-4平行四边形的判定定理专项提升训练(重难点培优)--2023-2024(0002)

【拔尖特训】2023-2024学年八年级数学下册尖子生培优必刷题【浙教版】专题4.4平行四边形的判定定理专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•滕州市期末)下列不能判断一个四边形是平行四边形的是()A.一组对边平行且相等的四边形B.两组对边分别相等的四边形C.对角线互相平分的四边形D.一组对边相等,且另一组对边平行的四边形2.(2022春•庄河市期末)如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB=DC,AD=BC B.∠DAB=∠DCB,∠ABC=∠ADCC.AO=CO,BO=DO D.AB∥CD,AD=BC3.(2021秋•让胡路区校级期末)下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是()A.1:2:3:4B.1:4:2:3C.1:2:2:1D.3:2:3:24.(2022春•平原县期末)下列条件中,不能判定四边形是平行四边形的是()A.两组对边分别平行B.一组对边平行,另一组对边相等C.两组对边分别相等D.一组对边平行且相等5.(2022春•北京期中)在四边形ABCD中,AB∥CD,要判定四边形ABCD为平行四边形,可添加条件()A.AD=BC B.∠CDB=∠ABD C.AC平分∠DAB D.AO=CO6.(2022春•滦南县期末)如图,已知在▱ABCD中,E,F是对角线BD上的两点,则以下条件不能判断四边形AECF为平行四边形的是()A.BE=DF B.AF⊥BD,CE⊥BDC.AF=CE D.∠BAE=∠DCF7.(2022春•藁城区校级月考)四边形ABCD中,对角线AC,BD交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB∥CD,∠BAD=∠BCD;③AO=CO,BO=DO;④AB∥CD,AD=BC.一定能判定四边形ABCD是平行四边形的条件有()A.1组B.2组C.3组D.4组8.(2022春•南海区校级月考)如图,点E、F是平行四边形ABCD对角线上两点,在条件:①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AFB=∠CED中,添加一个条件,使四边形DEBF是平行四边形,可添加的条件是()A.①②③B.①②④C.①③④D.②③④9.(2022春•杭州期中)如图,在▱ABCD中,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,CF=,EF=3,则AB的长是()A.B.1C.D.10.(2022春•海曙区校级期中)如图,O是▱ABCD对角线AC上一点,过O作EF∥AD交AB于点E,交CD于点F,GH∥AB交AD于点G,交BC于点H,连结GE,GF,HE,HF,若已知下列图形的面积,不能求出▱ABCD面积的是()A.四边形EHFGB.△AEG和△CHFC.四边形EBHO和四边形GOFDD.△AEO和四边形GOFD二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022春•河北区校级月考)如图,在平行四边形ABCD中,EF∥AD,GH∥AB,EF与GH交于点O,则图中平行四边形的个数是.12.(2022春•南海区校级期中)已知平面直角坐标系中的三个点:A(1,1)、B(3,1)、C(2,3),以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.13.(2022秋•靖江市校级月考)如图所示,AB∥DC,CA平分∠BAD,BD平分∠ADC,AC和BD交于点E,若S△ABE=4,则S△ACD=.14.(2022春•集贤县期末)若O是四边形ABCD的对角线AC和BD的交点,且OB=OD,AC=24cm,则当OA=cm时,四边形ABCD是平行四边形.15.(2022春•海陵区校级期末)定义:作▱ABCD的一组邻角的角平分线,设交点为P,P与这组邻角的公共边组成的三角形为▱ABCD的“伴侣三角形”,△PBC为平行四边形的伴侣三角形.AB=m,BC=4,连接AP并延长交直线CD于点Q,若Q点落在线段CD上(包括端点C、D),则m的取值范围.16.(2022春•社旗县期末)在四边形ABCD中,AD=6cm,AD∥BC,BC⊥CD,BC=10cm,M是BC上一点,且BM=4cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C 运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为时,以A、M、E、F为顶点的四边形是平行四边形.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022秋•荣县期中)已知:如图,四边形ABCD中,AB∥CD,AB=CD.求证:(1)AD=BC;(2)AD与BC的位置关系为:.18.(2022春•南海区月考)如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:四边形ABFC是平行四边形;(2)若AF平分∠BAD,∠D=60°,AD=8,求▱ABCD的面积.19.(2022•云冈区二模)如图,四边形ABCD是平行四边形AE⊥BD于点E,CF⊥BD于点F,连接AF和CE.(1)证明:四边形AECF是平行四边形;(2)已知BD=6,DF=2,BC=5,求CE的长.20.(2022秋•碑林区校级期中)如图,已知在四边形BCDE中,CD∥BE,点F是DE的中点,连接CF交BE于点A,且点E是AB的中点,求证:四边形BCDE是平行四边形.21.(2022秋•南岗区校级月考)如图,已知点A,C在线段EF上,且AE=CF.作AD∥BC,DE∥BF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).22.(2022春•南阳期末)在①AE=CF;②OE=OF;③BE∥DF这三个条件中任选一个补充在下面的横线上,并完成下面的证明.如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,点E,F在AC上,连接BE,DF,BF,DE,且(填写序号).(1)选择的条件的序号是;(2)求证:BE=DF;(3)求证:四边形DEBF是平行四边形.23.(2022春•城固县期末)如图,在▱ABCD中,对角线AC,BD相交于点O,OA=5cm,E,F为直线BD 上的两个动点(点E、F始终在▱ABCD的外面),连接AE、CE、CF、AF.(1)若DE=OD,BF=OB,①求证:四边形AFCE为平行四边形;②若CA平分∠BCD,∠AEC=60°,求AE的长.(2)若DE=OD,BF=OB,四边形AFCE还是平行四边形吗?请写出结论并说明理由.(3)若DE=OD,BF=OB,四边形AFCE还是平行四边形吗?请写出结论并证明.。

(完整版)平行四边形性质定理

(完整版)平行四边形性质定理

四边性质定理总结平行四边形定义:有两组对边分别平行的四边形叫做平行四边形;性质:(1)平行四边形的邻角互补,对角相等;(2)平行四边形的对边平行且相等;(3)平行四边形的对角线互相平分。

判定:(1)定义法:两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)两组对角分别相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形;(5)一组对边平行且相等的四边形是平行四边形。

三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线;定理:三角形中位线平行于三角形的第三边且等于第三边的一半。

矩形定义:有一个角是直角的平行四边形是矩形性质:(1)具有平行四边形的所有性质;(2)矩形的四个角都是直角;(3)矩形的对角线相等;判定:(1)定义法:有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形;直角三角形斜边中线定理:直角三角形斜边中线等于斜边的一半。

菱形定义:有一组邻边相等的平行四边形是菱形性质:(1)具有平行四边形的所有性质;(2)菱形的四条边相等;(3)菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角;(4)菱形的另一个面积计算公式:对角线乘积的一半。

判定:(1)定义法:一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四条边相等四边形是菱形。

正方形定义:既是矩形又是菱形的四边形是正方形性质:正方形具有矩形的性质又具有菱形的性质;(1)边:四条边相等,邻边相等,对边平行;(2)角:四个角都是直角;对角线:相等且互相垂直平分;每一条对角线平分一组对角;正方形一条对角线上的一点到另一条对角线的两端相等;判定:判定是一个四边形是正方形的顺序:(1)先证明是平行四边形;(2)再证明是矩形(菱形);(3)最后证明是菱形(或矩形);梯形定义:一组对边平行,另一组对边不平行的四边形叫做梯形梯形的底:梯形中平行的两边叫做梯形的底;梯形的腰:梯形中不平行的两边叫做梯形的腰;梯形的高:梯形两底的距离;梯形的分类:一般梯形;特殊的梯形(1)等腰梯形(两腰相等的梯形);(2)直角梯形(有一个角是直角的梯形);等腰梯形性质:(1)等腰梯形的两腰相等,两底平行;(2)等腰梯形同底上的两个角相等;(3)等腰梯形的两条对角线相等;等腰梯形判定:(1)两腰相等的梯形是等腰梯形;(2)在同底上的两个角相等的梯形是等腰梯形;(3)两条对角线相等梯形是等腰梯形;。

平行四边形判定方法

平行四边形判定方法

平行四边形判定方法平行四边形是一个具有特殊性质的四边形,它有着独特的判定方法。

在几何学中,我们经常会遇到需要判断一个四边形是否为平行四边形的情况,因此了解平行四边形的判定方法对于我们的学习和工作都是非常重要的。

接下来,我将为大家详细介绍平行四边形的判定方法。

首先,我们需要了解平行四边形的定义。

平行四边形是指具有两对对边分别平行的四边形。

也就是说,如果一个四边形的对边都是平行的,那么它就是一个平行四边形。

根据这个定义,我们可以得出平行四边形的判定方法。

其次,判定一个四边形是否为平行四边形,我们可以利用其性质来进行判断。

首先,我们可以通过观察四边形的对边是否平行来初步判断。

如果四边形的对边都是平行的,那么它就是一个平行四边形。

其次,我们可以观察四边形的对角线是否相等。

如果一个四边形的对角线相等,同时对角线所夹的角也相等,那么这个四边形就是一个平行四边形。

另外,我们还可以利用平行四边形的性质来判定。

平行四边形的对边相等,对角线相等,对角线所夹的角相等,相邻角互补。

如果我们能够观察到一个四边形具有这些性质,那么它就是一个平行四边形。

除了以上方法之外,我们还可以利用平行四边形的判定定理来进行判断。

平行四边形的判定定理有多种,如对边对角相等定理、对角线分割定理等。

通过运用这些定理,我们可以更加准确地判断一个四边形是否为平行四边形。

总的来说,判定一个四边形是否为平行四边形,我们可以通过观察其对边是否平行、对角线是否相等、对角线所夹的角是否相等,以及利用平行四边形的判定定理来进行判断。

在实际问题中,我们可以根据具体情况选择合适的判定方法,以便准确判断四边形的性质。

在几何学中,平行四边形是一个重要的概念,它具有许多独特的性质和判定方法。

通过学习和掌握平行四边形的判定方法,我们可以更好地理解和应用平行四边形的性质,为解决实际问题提供帮助。

希望以上内容能够帮助大家更好地理解平行四边形的判定方法,同时也希望大家能够在实际问题中灵活运用这些方法,提高自己的几何学解题能力。

浙教版数学八年级下册《4.4平行四边形的判定定理》说课稿3

浙教版数学八年级下册《4.4平行四边形的判定定理》说课稿3

浙教版数学八年级下册《4.4 平行四边形的判定定理》说课稿3一. 教材分析《4.4 平行四边形的判定定理》是浙教版数学八年级下册的一个重要内容。

本节课的主要内容是让学生掌握平行四边形的判定定理,并能灵活运用这些定理解决实际问题。

在教材中,通过引入平行四边形的概念和性质,引导学生探究平行四边形的判定方法,从而让学生深入理解平行四边形的性质和判定定理。

二. 学情分析学生在学习本节课之前,已经掌握了四边形的分类、平行线的性质等基础知识,同时也具备了一定的观察、操作和推理能力。

但是,对于平行四边形的判定定理,学生可能还存在一定的困难,因此需要在教学中给予学生充分的引导和帮助。

三. 说教学目标1.知识与技能目标:让学生掌握平行四边形的判定定理,并能灵活运用这些定理解决实际问题。

2.过程与方法目标:通过观察、操作、推理等方法,培养学生的几何思维和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探究的精神。

四. 说教学重难点1.教学重点:平行四边形的判定定理及其实际应用。

2.教学难点:如何引导学生理解和运用平行四边形的判定定理。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。

2.教学手段:利用多媒体课件、几何画板等辅助教学,直观展示平行四边形的判定过程,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入新课:通过复习四边形的分类和平行线的性质,引导学生自然过渡到平行四边形的判定定理。

2.探究活动:让学生分组讨论,观察平行四边形的性质,引导学生发现并总结平行四边形的判定定理。

3.讲解与演示:教师对平行四边形的判定定理进行详细讲解,并利用几何画板进行演示,让学生直观地理解判定过程。

4.练习与拓展:布置一些具有代表性的练习题,让学生巩固所学知识,并尝试解决实际问题。

5.总结与反思:让学生回顾本节课所学内容,总结平行四边形的判定定理,并反思自己在学习过程中的收获和不足。

平行四边形的判定方法

平行四边形的判定方法

平行四边形的判定方法
平行四边形是指具有两组对边分别平行的四边形,它是几何学中的基本图形之一。

在日常生活和工程实践中,我们经常需要判定一个四边形是否为平行四边形。

下面将介绍几种判定平行四边形的方法。

1. 对角线互相平分。

判定一个四边形是否为平行四边形的一个简单方法是检查其对角线。

如果一个四边形的对角线互相平分,即相交于中点,那么这个四边形就是平行四边形。

这是因为平行四边形的对角线互相平分是其特征之一。

2. 对边互相平行。

平行四边形的定义就是具有两组对边分别平行的四边形。

因此,判定一个四边形是否为平行四边形的方法之一就是检查其对边是否互相平行。

如果一个四边形的对边分别平行,则它就是平行四边形。

3. 对角线长度相等。

另一个判定平行四边形的方法是检查其对角线的长度。

如果一个四边形的对角线长度相等,那么它就是平行四边形。

这是因为平行四边形的对角线长度相等是其特征之一。

4. 内角相等。

最后一个判定平行四边形的方法是检查其内角是否相等。

如果一个四边形的内角相等,那么它就是平行四边形。

这是因为平行四边形的内角相等是其特征之一。

综上所述,判定一个四边形是否为平行四边形有多种方法,可以根据具体情况选择合适的方法进行判定。

在实际应用中,可以结合多种方法进行判定,以确保结果的准确性。

希望以上介绍能够帮助您更好地理解和判定平行四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明:连结AC
∵AB∥CD,AD∥BC(平行四边形的对边平行)
∴∠1=∠2,∠3=∠4
在 ABC和 CDA中
∠1=∠2,AC=CA,∠3=∠4
A
41
D
∴ ABC≌ CDA(ASA)
∴AB=CD,BC=DA,∠B=∠D
又∵∠1=∠2,∠3=∠4
B
3 2
C
∴∠1+∠4=∠2+∠3 即∠BAD=∠DCB
归纳平行四边形的性质
形组成,因此在解决平行四边形的问题时, 通常可以连结对角线转化为两个全等的三角 形进行解题。
自主学习、初步感知
A
D 1、定义:
有两组对边分别平行的四边形
叫做平行四边形。
2、记作: ABCD
B

3、读作:平行四边形ABCD
5、几何语言:
AB∥CD AD∥BC
4、两要素:
四边形 两组对边分别平行
四边形ABCD是平行四边形
D
C
求证:AF=CE
A
B
E
有一块形状如图 所示的玻璃,不小心把EDF 部分打碎了,现在只测得AE=60cm、BC=80cm, ∠B=60°且AE∥BC、AB∥CF,你能根据测得的 数据计算出DE的长度和∠D的度数吗?
感悟与收获
①通过本节课的学习,你学会了哪些知识? ②通过本节课的学习,你掌握了哪些学习数学 的方法? ③通过本节课的学习,你最大的体验是什么?
2.在 ABCD 中,∠ADC=120°, ∠CAD=20°,则∠ABC= 120°, ∠CAB= 40°
D C
1.如图,四边形ABCD是平行四
A
30
D 边形,填空
50° B
20 (1) ∠ADC=__,∠BCD=__
C
(2) ABCD的周长=____
2.已知 ABCD,延长AB 到E, 延长CD到F ,使BE=DF F
A
D
O
B
C
平行四边形的对边相等; 平行四边形的对角相等;
A
D
O
B
C
上图的平行四边形ABCD中有几对全等三角形?
小试பைடு நூலகம்刀:
1、如图:在 ABCD中,根据已知 你能得到哪些结论?为什么?
A 32cm D
124°
56°
30cm
30cm
56°
124°
B 32cm C
例题教学:
例2 如图,小明用一根36m长的绳子围成了 一个平行四边形的场地,其中一条边AB长 为8m,其他三条边各长多少? 解:
6.平行四边形的对角线、平行四边形的中心
实验探究
1.平行四边形的边具有哪些性质?说说你 的理由。 2.平行四边形的角具有哪些性质?说说你 的理由。
猜想:
平行四边形的性质:
1.平行四边形的对边平行且相等
2.平行四边形的对角相等.
已知: ABCD(如图)
求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB
∵四边形ABCD是平行四边
形AB CD; AD BC
∵ AB=8
CD 8(m) 又 AB BC CD AD 36
AD BC 10(m)
随堂练习:
1.在 ABCD 中,AD=40,CD=30, A ∠B=60°,则BC= 40 ;AB= 30 ; ∠A= 120,°∠C= 12,0∠°D= 60° B
22.1平行四边形的性质
茨榆坨中学 商二英
图片欣赏-----生活中的平行四边形





工厂大门设计

自动升降美的妙天的花护图建板案栏筑设设设计计计
这些图片中,有你熟悉的图形吗?
用两个全等的三角形纸片可以 拼出几种形状不同的平行四边形? 从拼图可以得到什么启示?
小结:平行四边形可以是由两个全等的三角
相关文档
最新文档