平行四边形的判定定理培优讲解及练习

合集下载

(完整版)平行四边形经典题型(培优提高)

(完整版)平行四边形经典题型(培优提高)

1.平行四边形的性质:①平行四边形两组对边相等。

②平行四边形两组对角相等。

③平行四边形对角线互分均分。

2.平行四边形判断:定理 1、一组对边平行且相等的四边形是平行四边形定理 2、两组对边分别相等的四边形是平行四边形。

定理 3、对角线相互均分的四边形是平行四边形。

定理 4、两组对角分别相等的四边形是平行四边形。

3.三角形的中位线定理:三角形的中位线平行于第三边,而且等于第三边的一半。

4.逆定理 1:在三角形内,与三角形的两边订交,平行且等于三角形第三边一半的线段是三角形的中位线。

逆定理 2:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

第四节:中心对称图形讲堂练习1. 以下图形中,既是中心对称图形,又是轴对称图形的是()A .正三角形B .平行四边形C.等腰直角三角形D.正六边形2. 以下图形中,不是中心对称图形的是()3.以下图形中,既是轴对称图形又是中心对称图形的是().4.下三图是由三个相同的小正方形拼成的图形,请你再增添一个相同大小的小正方形,使所得的新图形分别为以下 A , B, C 题要求的图形,请画出表示图.(1)是中心对称图形,但不是轴对称图形;(2)是轴对称图形,但不是中心对称图形;(3)既是中心对称图形,又是轴对称图形.第五节:平行四边形的判断例题解说例 1:判断以下说法的正误,假如错误请画出反例图①一组对边平行,另一组对边相等的四边形是平行四边形。

( )②一组对边相等,另一组对边平行的四边形是平行四边形. ( )③一组对边平行,一组对角相等的四边形是平行四边形.( )④一组对边平行且相等的四边形是平行四边形.( )⑤两组邻角互补的四边形是平行四边形。

( )⑥相邻两个角都互补的四边形是平行四边形。

( )⑦对角互补的四边形是平行四边形( )⑧一条对角线分四边形为两个全等三角形,这个四边形是平行四边形( )⑨两条对角线相等的四边形是平行四边形( ) 例 2:以下图,平行四边形ABCD 中, M、N 分别为 AD、BC 的中点,连结 AN、DN、BM 、CM ,且 AN、 BM 交于点 P, CM 、 DN 交于点 Q.四边形 MGNP 是平行四边形吗?为何?变式 1:□ABCD 中, E 在 AB 上, F 在 CD 上,且 AE=CF, 求证: FM=NE ME=NFFDCNMA E B讲堂练习:1.点 A ,B,C,D 在同一平面内,从四个条件中( 1)AB=CD ,( 2)AB ∥ CD,( 3)BC=AD ,( 4) BC ∥ AD 中任选两个,使四边形ABCD 是平行四边形,这样的选法有()A . 3 种B. 4 种C. 5 种D. 6 种2.以下图,□ ABCD的对角线 AC、 BD 交于 O,EF 过点 O 交 AD 于 E,交 BC 于 F ,G是 OA的中点, H 是 OC 的中点,四边形 EGFH 是平行四边形,说明原因.3.如图:在四边形 ABCD 中, AD ∥BC ,且 AD >BC,BC=6cm ,AD=9cm ,P、Q 分别 A 、C 同时出发, P 以 1cm/s 的速度由 A 向D 运动,Q 以 2cm/s 的速度由 C 向 B 运动,__秒时直线 QP 将四边形截出一个平行四边形.4.如图,在 Rt△ ABC 中,∠ BAC=90°,AB=3 ,AC=4 ,将△ ABC 沿直线 BC 向右平移个单位获得△ DEF ,AC 与 DE 订交于 G 点,连结 AD , AE ,则以下结论中建立的是____.①四边形ABED 是平行四边形;②△AGD ≌△ CGE ;③△ ADE 为等腰三角形;④AC 均分∠ EAD .5.在平面直角坐标系 XOY 中,有 A( 3, 2), B (﹣ 1,﹣ 4 ), P 是 X 轴上的一点, Q是 Y 轴上的一点,若以点 A , B, P,Q 四个点为极点的四边形是平行四边形,则Q 点的坐标是_________.6. 如图 1,图 2,△ ABC 是等边三角形,D、E 分别是 AB 、BC 边上的两个动点(与点 A 、B、 C 不重合),一直保持BD=CE .(1)当点 D 、 E 运动到如图 1 所示的地点时,求证: CD=AE .(2)把图 1 中的△ACE 绕着 A 点顺时针旋转 60°到△ ABF的地点(如图2),分别连结DF、 EF.①找出图中全部的等边三角形(△ ABC 除外),并对此中一个赐予证明;②试判断四边形CDFE 的形状,并说明原因.7. 如图,以△ ABC 的三条边为边向BC 的同一侧作等边△ ABP、等边△ ACQ,等边△BCR,求证:四边形PAQR 为平行四边形。

平行四边形的判定习题课讲解学习

平行四边形的判定习题课讲解学习
③对角线相等的四边形是平行四边形。
④一条对角线平分另一条对角线的四边形是平行四边形。
2、如图, 四边形ABCD中,已知 AB∥DC
那么再加上一个什么条件,才能使得四
边形ABCD是一个平行四边形?
A
D 解:
B
C
例题1、 已知:ABCD中,E、F分别是边AD、 BC的中点,求证:EB=DF
AE
D
B
F
求证:GF∥EH
D
F CH
GA E
B
4、在四边形ABCD中,AB∥DC,对角 线AC、BD交于O,EF过O交AB于E,交 DC于F,且OE=OF, 求证:四边形ABCD是平行四边形.
5、已知AD是△ABC 的角
平分线,DE∥AB:EF=BD
A
F
E
B
D
C
6、在平行四边形ABCD中,直
线MN∥AC,分别交DA的延长
线于M,DC延长线于N,AB于
P,BC于Q。 M A
D
求证:PM=QN P
B QC N
7、如下图,在四边形ABCD中, AB=DC,AE⊥BD,CF⊥BD,垂足 分别是E、F,AE=CF, 求证:四边形ABCD是平行四边形.
8、如图所示,平行四边形ABCD中,G、 H是对角线BD上两点,且AG=CH,
C
2、已知:如图, AD⊥AC,BC⊥AC,且
AB=CD.
求证:AB∥CD.
A
D
B
C
例2:如图,平行四边形ABCD中, AF=CH,DE=BG。
求证:EG和HF互相平分。
D
H
C
E
G
A
F
B
图20.1.3-1
3、如图所示,平行四边形ABCD中,E是 AB的中点,F是CD中点,分别延长BA和 DC到G、H,使AG=CH,连结GF、EH,

平行四边形的性质与判定,附练习题含答案

平行四边形的性质与判定,附练习题含答案

平行四边形的性质与判定(讲义)一、知识梳理1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质边:平行四边形的对边相等;角:平行四边形的对角相等;对角线:平行四边形的对角线互相平分.3.平行四边形的判定两组对边分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形对角线:两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形4.夹在平行线之间的平行线段相等.例:已知:如图,在□ABCD中,E,F分别为AD,BC的中点.求证:四边形BFDE是平行四边形.【思路分析】①读题标注:②梳理思路:要证四边形BFDE是平行四边形,根据题目中已有的条件选择判定定理:一组对边平行且相等的四边形是平行四边形.在□ABCD中:AD∥BC,且AD=BC,根据条件E,F分别为AD,BC的中点,得ED=12AD,BF=12BC,从而可以得到ED=BF.又因为AD∥BC,即ED∥BF,所以四边形BFDE是平行四边形.【过程书写】证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵E,F分别为AD,BC的中点,∴ED=12AD,BF=12BC,∴ED=BF,∴四边形BFDE是平行四边形.FE DCBAFE DCBA二、练习题1. 已知□ABCD 的周长是100,且AB :BC =4:1,则AB 的长为______________.2. 如图,在□ABCD 中,∠DAB 的平分线AE 交CD 于点E ,若AB =5,BC =3,则EC 的长为( ) A .1B .1.5C .2D .33. 在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A .1:2:3:4B .1:2:2:1C .1:1:2:2D .2:1:2:14. 在□ABCD 中,对角线AC ,BD 相交于点O ,若△ABO 的周长为15,AB =6,则AC +BD =____________.5. 在周长为20cm 的□ABCD 中,AB <AD ,AC ,BD 相交于点O ,OE ⊥BD ,交线段AD 于点E ,连接BE ,则△ABE 的周长为_______.6. 如图,四边形ABCD 是平行四边形,已知AD =12,AB =13,BD ⊥AD ,求BC ,CD ,OB 的长以及□ABCD 的面积.7. 如图,已知四边形ABDE 是平行四边形,延长BD 至点C ,使AC=AB ,连接AD ,CE .(1)求证:△BAD ≌△ACE ;(2)若∠B =30°,∠ADC =45°,BD =10,求□ABDE 的面积.8. 下列说法:①如果一个四边形任意相邻的两个内角都互补,那么这个四边形是平行四边形; ②一组对边平行,另一组对边相等的四边形是平行四边形;③如果AC ,BD 是四边形ABCD 的对角线,且AC 平分BD ,那么四边形ABCD 是平行四边形;BCED AABCD O A BCD E④一组对边平行,一组对角相等的四边形是平行四边形. 其中正确的有( ) A .1个B .2个C .3个D .4个9. 已知四边形ABCD 是平行四边形,下列选项中,按照所给条件得到的四边形EFGH 不一定是平行四边形的是( )A .EF ⊥BC ,GH ⊥ADB .E ,F ,G ,H 分别是□ABCD 各边的中点C .AF ,BH ,CH ,DF 分别是D .EG ,FH 是过□ABCD□ABCD 各内角的角平分线 对角线交点的两条线段10. 如图,AB ∥CD ,AB =CD ,点E ,F 在BC 上,且BE =CF .试证明:以A ,F ,D ,E 为顶点的四边形是平行四边形.11. 上的两点,12. 如图,在□ABCD 中,点E ,F 分别在CD ,AB 的延长线上,且AE =AD ,CF =CB .求证:四边形AFCE 是平行四边形.13. 在□ABCD 中,若∠A :∠B =5:4,则∠C 的度数为( )A .80°B .120°C .100°D .110°H A CD E FGBHA CDE FG BFH A CDEG BHE FGA CDBABCDEF OABC DEF14. 在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A .1:2:3:4B .1:2:2:1C .1:1:2:2D .2:1:2:1 15. 若□ABCD 的周长为40,△ABC 的周长为25,则对角线AC 的长为( )A .5B .15C .6D .1616. 已知平行四边形的一边长为10,则其两条对角线的长可能是( )A .3,8B .20,30C .6,8D .8,1217. 已知四边形ABCD 的对角线相交于点O ,以下条件能判定四边形ABCD 为平行四边形的是( )A .AB ∥CD ,BC =ADB .AB ∥CD ,AO =COC .AB ∥CD ,∠DAC =∠CAB D .AB =CD ,∠B =∠C18. 如图,在平行四边形ABCD 中,EF ∥AD ,HN ∥AB ,则图中的平行四边形共有( )A .12个B .9个C .7个D .5个19. 已知平行四边形的周长为56,两邻边长之比为3:1,则这个平行四边形较长的边长为____________.20. 在□ABCD 中,已知AB ,BC ,CD 三条边的长度分别为3x +,4x -,16,则这个平行四边形的周长为___________.21. 如图,在□ABCD 中,CE ⊥AB 于点E ,CF ⊥AD 于点F .若∠B =60°,则∠ECF =___________.22. 若□ABCD 的周长为22,AC ,BD 相交于点O ,△AOD 的周长比△AOB 的周长小3,则AD =_________,AB =_________.F ED C B A N HFEDC B A参考答案1.402.C3.D4.185.10cm6.BC=12,CD=13,OB52=,□ABCD的面积为607.(1)证明(2)50+8.B9.A10.提示:证明△ABE≌△DCF11.提示:方法①,证明△AED≌△CFB,得到DE=BF,∠AED=∠CFB,则∠DEC=∠BF A,所以DE∥BF,进而可证明四边形EBFD是平行四边形方法②,连接BD,利用对角线互相平分可以证得四边形EBFD是平行四边形12.提示:证明△EAD≌△FCB13.C14.D15.A16.B17.B18.B19.2120.5021.60°22.4,7。

(完整版)平行四边形经典题型(培优提高)

(完整版)平行四边形经典题型(培优提高)

1. 平行四边形的性质:①平行四边形两组对边相等。

②平行四边形两组对角相等。

③平行四边形对角线互分平分。

2. 平行四边形判定:定理1、一组对边平行且相等的四边形是平行四边形定理2、两组对边分别相等的四边形是平行四边形。

定理3、对角线互相平分的四边形是平行四边形。

定理4、两组对角分别相等的四边形是平行四边形。

3. 三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半4. 逆定理1:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。

逆定理2:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

第四节:中心对称图形课堂练习1. 下列图形中,既是中心对称图形,又是轴对称图形的是( )A •正三角形B •平行四边形C.等腰直角三角形 D •正六边形2. 下列图形中,不是中心对称图形的是( )B. C D”3. 下列图形中,既是轴对称图形又是中心对称图形的是( )•0^9 @ $(A> (B) (C)(D)4. 下三图是由三个相同的小正方形拼成的图形,请你再添加一个同样大小的小正方形, 使所得的新图形分别为下列A, B, C题要求的图形,请画出示意图.(1)是中心对称图形,但不是轴对称图形;(2)是轴对称图形,但不是中心对称图形;(3)既是中心对称图形,又是轴对称图形.第五节:平行四边形的判定例题讲解例1:判断下列说法的正误,如果错误请画出反例图①一组对边平行,另一组对边相等的四边形是平行四边形。

()②一组对边相等,另一组对边平行的四边形是平行四边形( )③一组对边平行,一组对角相等的四边形是平行四边形. ()④一组对边平行且相等的四边形是平行四边形. ()⑤两组邻角互补的四边形是平行四边形。

()⑥相邻两个角都互补的四边形是平行四边形。

()⑦对角互补的四边形是平行四边形()⑧一条对角线分四边形为两个全等三角形,这个四边形是平行四边形()⑨两条对角线相等的四边形是平行四边形()例2:如图所示,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P, CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?变式1:EABCD 中,E 在AB 上, F 在CD 上,且AE=CF,求证:FM=NE ME=NF课堂练习:1. 点A , B, C, D 在同一平面内,从四个条件中(1)AB=CD , (2)AB // CD, (3)BC=AD ,(4)BC // AD中任选两个,使四边形ABCD是平行四边形,这样的选法有()A . 3种B. 4种C . 5种D . 6种2. 如图所示,口ABCD的对角线AC、BD交于O, EF过点0交AD于E,交BC于F , G是0A的中点,H是0C的中点,四边形EGFH是平行四边形,说明理由.3. 如图:在四边形ABCD 中,AD // BC ,且AD >BC, BC=6cm , AD=9cm , P、Q 分别A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,__________ 秒时直线QP将四边形截出一个平行四边形.4. 如图,在Rt△ ABC 中,/ BAC=90°, AB=3 , AC=4,将△ ABC 沿直线BC 向右平移2.5个单位得到△ DEF , AC与DE相交于G点,连接AD , AE,则下列结论中成立的是①四边形ABED是平行四边形:②厶AGD ◎△ CGE ;③厶ADE为等腰三角形;④ AC平分/ EAD .5. 在平面直角坐标系XOY中,有A ( 3, 2), B (- 1 , - 4 ), P是X轴上的一点,Q是Y轴上的一点,若以点 A , B, P, Q四个点为顶点的四边形是平行四边形,贝U Q点的坐标是______________ .6. 如图1,图2, △ ABC是等边三角形,D、E分别是AB、BC边上的两个动点(与点A、B、C不重合),始终保持BD=CE .(1)当点D、E运动到如图1所示的位置时,求证:CD=AE .(2)把图1中的△ ACE绕着A点顺时针旋转60°到厶ABF的位置(如图2),分别连接DF、EF .①找出图中所有的等边三角形( △ABC除外),并对其中一个给予证明;7. 如图,以△ ABC的三条边为边向BC的同一侧作等边△ ABP、等边△ ACQ,等边△ BCR ,求证:四边形PAQR为平行四边形。

浙教版八年级下册第四章平行四边形 第2讲(平行四边形的判定及三角形中位线)培优讲义(含解析)

浙教版八年级下册第四章平行四边形 第2讲(平行四边形的判定及三角形中位线)培优讲义(含解析)

平行四边形第2讲(平行四边形的判定及三角形中位线)命题点一:平行四边形判定定理的应用【思路点拨】延长AC后,证明AD∥BC,然后转化为证明三角形全等,得到四边形对角线互相平分,从而证得四边形ABCD是平行四边形.在解决几何证明时,全等三角形是解题的有效手段.例1如图,四边形ABCD的对角线AC,BD交于点P,过点P作直线,交AD于点E,交BC于点F,若PE=PF,且AP+AE=CP+CF.证明:四边形ABCD为平行四边形.解:延长AC,在点C上方取点N,点A下方取点M,使AM=AE,CN=CF,则由已知可得PM=PN,易证△PME≌△PNF,且△AME,△CNF都是等腰三角形.∴∠M=∠N,∠MEP=∠NFP.∴∠AEP=∠PF C.∴AD∥B C.可证得△PAE≌△PCF,得PA=PC,再证△PED≌△PFB,得PB=P D.∴四边形ABCD为平行四边形.例2已知四边形ABCD是平行四边形,且满足AB=BC,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.如图所示,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.解:如图,连结EF,过点A作AH⊥EC于点H,过点F作FG⊥EC于点G.∵四边形ABCD是平行四边形,且AB=BC,∠ABC=60°,∴△ABC为等边三角形.∴AB=A C.∵∠EAF=∠BAC=60°,∴∠EAB=∠FA C.∵∠AEB=∠ABH-∠EAB=60°-15°=45°,且AB∥CD,∴∠AFC=∠BAF=60°-15°=45°.∴△ABE≌△ACF.∴BE=CF.∵BH=CH=2,AH=23,∴EH=AH=2 3.∴EB=CF=EH-BH=23-2.∵∠FCG=∠ABC=60°,∴FG=32(23-2)=3- 3.【思路点拨】对于平行四边形的证明,首先通过证明△ADP≌△BEP,可得DP=EP,从而通过对角线互相平分证得结论.而对于等腰三角形的证明,通过直角三角形的重要性质:斜边上的中线等于斜边的一半.例3如图,P是△ABC的边AB上一点,连结CP,BE⊥CP于点E,AD⊥CP,交CP的延长线于点D.(1)如图①,当P为AB的中点时,连结AE,BD,证明:四边形ADBE是平行四边形.(2)如图②,当P不是AB的中点时,取AB中点Q,连结QD,QE,证明:△QDE是等腰三角形.答图解:(1)∵P为AB的中点,∴AP=BP.∵BE⊥CP,AD⊥CP,∴∠ADP=∠BEP=90°,且AD∥BE.又∵∠APD=∠BPE,∴△ADP≌△BEP.∴DP=EP.又∵AP=BP,∴四边形ADBE是平行四边形.(2)如图,延长DQ交BE于点F.∵AD⊥CP,BE⊥CP,∴AD∥BE.∴∠DAQ=∠FBQ.又∵∠AQD=∠BQF,AQ=BQ,∴△ADQ≌△BFQ.∴DQ=FQ.又∵BE⊥DC,∴QE是Rt△DEF斜边上的中线.∴QE=QF=Q D.∴△QDE是等腰三角形.例4如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF.(2)在题(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答).(3)若ED=EF,ED与EF垂直吗?若垂直,请给出证明.解:(1)如图①,连结CE.在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥B C.∵E是AB的中点,∴AE=EC,CE⊥A B.∴∠ACE=∠BCE=45°.∴∠ECF=∠EAD=135°.∵ED ⊥EF ,∴∠CEF =∠AED =90°-∠CE D .在△CEF 和△AED 中,∵⎩⎨⎧∠CEF =∠AED ,EC =AE ,∠ECF =∠EAD ,∴△CEF ≌△AE D .∴ED =EF .(2)连结CE .由题(1)知△CEF ≌△AED ,CF =A D .∵AD =AC ,∴AC =CF .∵DP ∥AB ,∴FP =P B .∴CP =12A B .∴四边形ACPE 为平行四边形.(3)垂直.理由如下:过点E 作EM ⊥DA ,交DA 延长线于点M ,过点E 作EN ⊥AC 于点N . 在△AME 与△CNE 中∵⎩⎨⎧∠M =∠CNE =90°,∠EAM =∠NCE =45°,AE =CE ,∴△AME ≌△CNE .∴ME =NE .又∵∠DME =∠ENF =90°,DE =EF , ∴△DME ≌△FNE .∴∠ADE =∠CFE .在△ADE 与△CFE 中,∵⎩⎨⎧∠ADE =∠CFE ,∠DAE =∠FCE ,DE =EF ,∴△ADE ≌△CFE (AAS ).∴∠DEA =∠FE C .∵∠DEA +∠DEC =90°,∴∠FEC +∠DEC =90°.∴∠DEF =90°.∴ED ⊥EF .例5如图,E,F为△ABC中AB,BC的中点,在AC上取G,H两点,使得AG=GH=HC,EG与FH的延长线相交于点D,求证:四边形ABCD为平行四边形.证明:如图,连结BG,BH,连结BD交AC于点O.∵AG=GH,∴G是AH的中点.∵在△ABH中,E是AB的中点,∴EG∥BH.∴GD∥BH.∵GH=HC,∴H是CG的中点.∵在△CBG中,F是BC的中点,∴FH∥BG.∴DH∥BG.∴四边形BHDG是平行四边形.∴OG=OH,OB=O D.又∵AG=HC,∴OA=O C.∴四边形ABCD是平行四边形.命题点二:三角形中位线的性质和应用例6如图,AD为△ABC的角平分线,AB<AC,在AC上截取CE=AB,M,N分别为BC,AE的中点.求证:MN∥A D.证明:如图,连结BE,取BE中点F,连结FN,FM. ∵FN为△EAB的中位线,∴FN=12AB,FN∥A B.∵FM为△BCE的中位线,∴FM=12CE,FM∥CE.∵CE=AB,∴FN=FM.∴∠3=∠4.∵∠4=∠5,∴∠3=∠5.∵∠1+∠2=∠3+∠5,∠1=∠2,∴∠2=∠5.∴NM∥A D.例7如图①,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不需证明).(1)如图②,在四边形ADBC中,AB与CD相交于点O,AB=CD,E,F分别是BC,AD的中点,连结EF,分别交DC,AB于点M,N,判断△OMN的形状,请直接写出结论.(2)如图③,在△ABC中,AC >AB,D点在AC上,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,与BA的延长线交于点G.若∠EFC=60°,连结GD,判断△AGD的形状并证明.解:(1)△OMN为等腰三角形.(2)△AGD为直角三角形,证明如下:如图②,连结BD,取BD的中点H,连结HF,HE.∵F是AD的中点,∴HF∥AB,HF=AB 2.同理,HE∥CD,HE=CD 2.∵AB=CD,∴HF=HE.∵∠EFC=60°,∴∠HEF=60°. ∴∠HEF=∠HFE=60°.∴△EHF是等边三角形.∴∠3=∠HFE=∠EFC=∠AFG=60°.∴△AGF是等边三角形.∵AF=FD,∴GF=F D.∴∠FGD=∠FDG=30°.∴∠AGD=90°,即△AGD是直角三角形.例8如图,E,F分别是四边形ABCD的对角线AC,BD的中点,求证:EF<12(AB+CD).证明:如图,取BC的中点为G,连结EG,FG.∵点E,F分别为四边形ABCD的对角线AC,BD的中点,∴FG=12DC,EG=12A B.答图∵在△EFG中,EF<EG+FG,∴EF<12(AB+CD).课后练习1.A,B,C是平面内不在同一条直线上的三点,D是该平面内任意一点,若A,B,C,D四个点恰能构成一个平行四边形,则在该平面内符合这样条件的点D有( C ) A.1个 B.2个 C.3个 D.4个2.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8, 点D在BC上,在以AC为对角线的所有▱ADCE中,DE能取的最小值是( B )A.4 B.6 C.8 D.103.如果三角形的两边长分别是方程x2-8x+15的两个根,那么连结这个三角形三边的中点,得到的新三角形的周长可能是( A )A.5.5 B.5 C.4.5 D.44.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN =3,则△ABC的周长是( D )A.38 B.39 C.40 D.415.如图,P是▱ABCD内一点,且S△PAB=5,S△PAD=2,则涂色部分的面积为( B )A.4 B.3 C.5 D.66.如图所示,在四边形ABCD中,AD=BC,P是对角线的中点,E,F分别是AB与CD的中点.若∠PEF=20°,则∠EPF的度数是 140°.7.如图,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,F为CE的中点,G为CD上的一点,连结DF,EG,AG,∠1=∠2.若CF=2,AE=3,则BE的长是7 .8.如图,AD∥BC,∠EAD=∠EAB,∠EBA=∠EBC,直线DC过点E交AD于点D,交BC于点C.若AD=3,BC=4,则AB= 7 .9.如图,在△ABC中,∠C=90°,CA=CB,E,F分别为CA,CB上一点,CE=CF,M,N分别为AF,BE的中点.若MN=2,则AE=2 2 .10.如图,四边形ABCD的对角线AC,BD相交于点F,M,N分别为AB,CD的中点,MN分别交BD,AC于点P,Q,且满足∠FPQ=∠FQP,若BD=10,则AC为 10 .11.如图,四边形ABCD为平行四边形,E为BC的中点,DF⊥AE于点F,H为DF的中点,求证:CH⊥DF.证明:如图,分别延长AE和DC,交于点P.∵AB∥CP,∴∠ABE=∠PCE.又∵CE=BE,∠AEB=∠PEC,∴△ABE≌△PCE.∴PC=A B.又∵AB=CD,∴PC=CD,即C为PD的中点.∵H为DF的中点,∴CH为△DFP的中位线.又∵DF⊥AE,∴CH⊥DF.12.已知两个共一个顶点的等腰直角三角形ABC,等腰直角三角形CEF,∠ABC=∠CEF=90°,连结AF,M是AF的中点,连结MB,ME.(1)如图①,当CB与CE在同一直线上时,求证:MB∥CF.(2)如图①,若CB=a,CE=2a,求BM,ME的长.(3)如图②,当∠BCE=45°时,求证:BM=ME.解:(1)延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=B D.∴B为线段AD的中点.又∵M为线段AF的中点,∴BM为△ADF的中位线.∴BM∥CF.(2)由题(1)知AB=BC=BD=a,AC=CD=2a,BM=12 DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形.∴CE=EF=GE=2a,CG=CF=22A.∴E为FG中点.又∵M为AF中点,∴ME=12AG.∵CG=CF=22a,CA=CD=2a,∴AG=DF=2A.∴BM=ME=12×2a=22A.(3)延长AB交CE于点D,连结DF,则易知△ABC与△BCD均为等腰直角三角形.∴AB=BC=BD,AC=C D.∴B为AD的中点.又∵M 为AF 中点,∴BM =12DF .延长FE 与CB 交于点G ,连结AG ,则易知△CEF 与△CEG 均为等腰直角三角形. ∴CE =EF =EG ,CF =CG .∴E 为FG 中点. 又∵M 为AF 的中点,∴ME =12AG .在△ACG 与△DCF 中,∵⎩⎨⎧AC =CD ,∠ACG =∠DCF ,CG =CF ,∴△ACG ≌△DCF (SAS ). ∴DF =AG .∴BM =ME .13.(2018·武汉市自主招生模拟题)如图,在四边形ABCD 中,M 为AB 的中点,且MC =MD ,分别过C ,D 两点作边BC ,AD 的垂线,设两条垂线的交点为P ,若∠PAD =35°,则∠PBC 的度数的是( B )A .45°B .35°C .55°D .65°14.如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF .设正方形的中心为O ,连结AO ,若AB =4,AO =62,则AC 的长为 16 .15.已知在△ABC 中,D 为AB 的中点,分别延长CA ,CB 到点E ,F ,使得DE =DF ,过点E ,F 分别作CA ,CB 的垂线,相交于点P .求证:∠PAE =∠PBF .证明:如图,分别取AP ,BP 的中点M ,N ,并连结EM ,DM ,FN ,DN .根据三角形中位线定理,可得DM∥BP,DM=12BP=BN,DN∥AP,DN=12AP=AM.∴∠AMD=∠APB=∠BN D.∵M,N分别为Rt△AEP,Rt△BFP斜边的中点,∴EM=AM=DN,FN=BN=DM.∵DE=DF,∴△DEM≌△DFN(SSS).∴∠EMD=∠FN D.∴∠EMD-∠AMD=∠FND-∠BN D.∴∠AME=∠BNF.∴△AME,△BNF为顶角相等的等腰三角形.∴∠PAE=∠PBF.。

24【提高】《平行四边形》全章复习与巩固(培优课程讲义例题练习含答案)

24【提高】《平行四边形》全章复习与巩固(培优课程讲义例题练习含答案)

平行四边形全章复习与巩固(提高)【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算.3. 掌握三角形中位线定理.【知识网络】【要点梳理】要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形.2.性质:(1)对边平行且相等;(2)对角相等;邻角互补;(3)对角线互相平分;(4)中心对称图形.3.面积:高底平行四边形⨯=S4.判定:边:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.角:(4)两组对角分别相等的四边形是平行四边形;(5)任意两组邻角分别互补的四边形是平行四边形.边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形;对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形⨯S4.判定:(1) 有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半.要点三、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S 4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形1、(•海淀区二模)如图1,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD 为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.【思路点拨】(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°﹣2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;(2)①由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质,即可证得结论;②由在△ABC中,AB=AC,∠ABC=α,可得∠B=∠C=α,四边形ABFE是平行四边形,可得AE∥BF,AE=BF.即可证得:∠EAC=∠C=α,又由(1)可证得AD=CD,又由AD=AE=BF,证得结论.【答案与解析】解:(1)∵在△ABC中,AB=AC,∠ABC=α,∴∠BAC=180°﹣2α,∵∠DAE+∠BAC=180°,∴∠DAE=2α,∵AE=AD,∴∠ADE=90°﹣α;(2)①证明:∵四边形ABFE是平行四边形,∴AB∥EF.∴∠EDC=∠ABC=α,由(1)知,∠ADE=90°﹣α,∴∠ADC=∠ADE+∠EDC=90°,∴AD⊥BC.∵AB=AC,∴BD=CD;②证明:∵AB=AC,∠ABC=α,∴∠C=∠B=α.∵四边形ABFE是平行四边形,∴AE∥BF,AE=BF.∴∠EAC=∠C=α,由(1)知,∠DAE=2α,∴∠DAC=α,∴∠DAC=∠C.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.【总结升华】此题考查了平行四边形的判定与性质以及等腰三角形的性质与判定.注意(2)①中证得AD⊥BC是关键,(2)②中证得AD=CD是关键.举一反三:【变式】已知△ABC中,AB=3,AC=4,BC=5,分别以AB、AC、BC为一边在BC边同侧作正△ABD、正△ACE和正△BCF,求以A、E、F、D四点为顶点围成的四边形的面积.【答案】证明:∵ AB=3,AC=4,BC=5,∴∠BAC=90°∵△ABD、△ACE和△BCF为正三角形,∴AB=BD=AD,AC=AE=CE,BC=BF=FC ,∠1+∠FBA=∠2+∠FBA=60°∴∠1=∠2易证△BAC≌△BDF(SAS),∴DF=AC=AE=4,∠BDF=90°同理可证△BAC≌△FEC∴AB=AD=EF=3∴四边形AEFD是平行四边形(两组对边分别相等的四边形是平行四边形)∵DF∥AE,DF⊥BD延长EA交BD于H点,AH⊥BD,则H为BD中点∴平行四边形AEFD的面积=DF×DH=4×32=6.类型二、矩形2、如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥A C,OF=2cm,求矩形ABCD的面积.【答案与解析】(1)证明:∵四边形ABCD是矩形,∴OA=0B =OC =OD ,∵AE=BF =CG =DH ,∴AO-AE =OB -BF =CO -CG =DO -DH ,即:OE =OF =OG =OH ,∴四边形EFGH 是矩形;(2)解:∵G 是OC 的中点,∴GO=GC ,∵DG⊥AC,∴∠DGO=∠DGC=90°,又∵DG=DG ,∴△DGC≌△DGO,∴CD=OD ,∵F 是BO 中点,OF =2cm ,∴BO=4cm ,∵四边形ABCD 是矩形,∴DO=BO =4cm ,∴DC=4cm ,DB =8cm ,∴CB=2243DB DC -=,∴矩形ABCD 的面积=4×243163cm =.【总结升华】本题主要考查矩形的判定,首先要判定四边形是平行四边形,然后证明对角线相等.举一反三:【变式】(秋•抚州校级期中)在平行四边形ABCD 中,过点D 作DE⊥AB 于点E ,点F 在边CD 上,DF=BE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若CF=9,BF=12,DF=15,求证:AF 平分∠DAB.【答案】证明:(1)∵四边形ABCD 为平行四边形,∴DC∥AB,即DF∥BE,又∵DF=BE,∴四边形DEBF 为平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴四边形DEBF 为矩形;(2)∵四边形DEBF 为矩形,∴∠BFC=90°,∵CF=9,BF=12,∴BC==15,∴AD=BC=15,∴AD=DF=15,∴∠DAF=∠DFA,∵AB∥CD,∴∠FAB=∠DFA,∴∠FAB=∠DFA,∴AF平分∠DAB.3、在Rt△ABC中,∠ACB=90°,BC=4.过点A作AE⊥AB且AB=AE,过点E分别作EF⊥AC,ED⊥BC,分别交AC和BC的延长线与点F,D.若FC=5,求四边形ABDE的周长.【思路点拨】首先证明△ABC≌△EAF,即可得出BC=AF,AC=EF,再利用勾股定理得出AB的长,进而得出四边形EFCD是矩形,求出四边形ABDE的周长即可.【答案与解析】解:∵∠ACB=90°,AE⊥AB,∴∠1+∠B=∠1+∠2=90°.∴∠B=∠2.∵EF⊥AC,∴∠4=∠5=90°.∴∠3=∠4.在△ABC和△EAF中,∵342BAB AE∠=∠⎧⎪∠=∠⎨⎪=⎩,,∴△ABC≌△EAF(AAS).∴BC=AF,AC=EF.∵BC=4,∴AF=4.∵FC=5,∴AC=EF=9.在Rt△ABC中,AB=22224997CB AC+=+=.∴AE=97.∵ED⊥BC,∴∠7=∠6=∠5=90°.∴四边形EFCD是矩形.∴CD=EF=9,ED=FC=5.∴四边形ABDE的周长=AB+BD+DE+EA=97+4+9+5+97=18+297.【总结升华】此题主要考查了全等三角形的判定以及矩形的判定与性质和勾股定理等知识,根据已知得出AC=EF=9是解题关键.类型三、菱形4、如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=5.对角线AC,BD 相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.【思路点拨】(1)当旋转角为90°时,∠AOF=90°,由AB⊥AC,可得AB∥EF,即可证明四边形ABEF为平行四边形;(2)证明△AOF≌△COE即可;(3)当EF⊥BD时,四边形BEDF为菱形,又由AB⊥AC,AB=1,BC=5,易求得OA=AB,即可得∠AOB=45°,求得∠AOF=45°,则可得此时AC绕点O顺时针旋转的最小度数为45°.【答案与解析】(1)证明:当∠AOF=90°时,AB∥EF,又AF∥BE,∴四边形ABEF为平行四边形.(2)证明:四边形ABCD为平行四边形,∴AO=CO,∠FAO=∠ECO,∠AOF=∠COE.∴△AOF≌△COE∴AF=CE(3)四边形BEDF可以是菱形.理由:如图,连接BF,DE,由(2)知△AOF≌△COE,得OE=OF,∴EF与BD互相平分.∴当EF⊥BD时,四边形BEDF为菱形.AC=-=,在Rt△ABC中,512∴OA=1=AB,又AB⊥AC,∴∠AOB=45°,∴∠AOF=45°,∴AC绕点O顺时针旋转45°时,四边形BEDF为菱形.【总结升华】要证明四边形是菱形,先证明这个四边形是平行四边形,再利用对角线互相垂直的特征证明该平行四边形是菱形.举一反三:【变式】已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.【答案】证明:∵EF是BD的垂直平分线,∴EB=ED,∠EBD=∠EDB.又∵∠EBD= ∠FBD,∴∠FBD=∠EDB,ED∥BF. 同理,DF∥BE,∴四边形BFDE是平行四边形.又∵EB=ED,∴四边形BFDE是菱形.5、在口ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点.连接BE、EF.(1)求证:EF=BF;(2)在上述条件下,若AC=BD,G是BD上一点,且BG:GD=3:1,连接EG、FG,试判断四边形EBFG的形状,并证明你的结论.【思路点拨】(1)根据平行四边形性质推出BD=2BO,推出AB=BO,根据三线合一定理得出BE⊥AC,在△BEC 中,根据直角三角形斜边上中线性质求出EF=BF=CF即可;(2)根据矩形性质和已知求出G为OD中点,根据三角形中位线求出EG∥AD,EG=12BC,求出EG∥BC,EG=12BC,求出BF=EG,BF∥EG,EG=GF,得出平行四边形,根据菱形的判定推出即可.【答案与解析】(1)证明:∵四边形ABCD是平行四边形,∴BD=2BO,∵BD=2AB,∴AB=BO,∵E为OA中点,∴BE⊥AC,∴∠BEC=90°,∵F为BC中点,∴EF=BF=CF,即EF=BF;(2)四边形EBFG是菱形,证明:连接CG,∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,BD=2BO=2OD,∴BD=2AB=2CD,∴OC=CD,∵BG:GD=3:1,OB=OD,∴G为OD中点,∴CG⊥OD(三线合一定理),即∠CGB=90°,∵F为BC中点,∴GF=12BC=12AD,∵E为OA中点,G为OD中点,∴EG∥AD,EG=12 AD,∴EG∥BC,EG=12 BC,∵F为BC中点,∴BF=12BC,EG=GF,即EG∥BF,EG=BF,∴四边形EBFG是平行四边形,∵EG=GF,∴平行四边形EBFG是菱形(有一组邻边相等的平行四边形是菱形).【总结升华】本题考查了平行四边形的性质和判定,矩形性质,菱形性质,三角形的中位线,直角三角形斜边上中线性质,等腰三角形的性质等知识点,主要考查学生综合运用定理进行推理的能力,注意:直角三角形斜边上中线等于斜边的一半.类型四、正方形6、正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE =1时,求EF 的长.【答案与解析】解:(1)证明:∵△DAE 逆时针旋转90°得到△DCM,∴DE=DM ,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF =45°,在△DEF 和△DMF 中,DE DM EDF MDFDF DF =⎧⎪∠=∠⎨⎪=⎩,∴△DEF≌△DMF(SAS ),∴EF=MF ;(2)设EF =MF =x ,∵AE=CM =1,且BC =3,∴BM=BC +CM =3+1=4,∴BF=BM -MF =BM -EF =4-x ,∵EB=AB -AE =3-1=2,在Rt△EBF 中,由勾股定理得EB 2+BF 2=EF 2,即()22224x x +-=,解得:52x =,则EF =52. 【总结升华】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.举一反三:【变式】如图(1),正方形ABCD 和正方形CEFG 有一公共顶点C ,且B 、C 、E 在一直线上,连接BG 、DE .(1)请你猜测BG 、DE 的位置关系和数量关系?并说明理由.(2)若正方形CEFG 绕C 点向顺时针方向旋转一个角度后,如图(2),BG 和DE 是否还存在上述关系?若存在,试说明理由;若不存在,也请你给出理由.【答案】解:(1)BG=DE,BG⊥DE;理由是:延长BG交DE于点H,因为BC=DC,CG =CE,∠BCG=∠DCE所以△BCG≌△DCE,所以BG=DE,∠GBC=∠CDE.由于∠CDE+∠CED=90°,所以∠GBC+∠DEC=90°,得∠BHE=90°.所以BG⊥DE.(2)上述结论也存在.理由:设BG交DE于H,BG交DC于K,同理可证△BCG≌△DCE,得BG=ED,∠KBC=∠KDH.又因为∠KBC+∠BKC=90°,可得∠DKH+∠KDH=90°,从而得∠KHD=90°.所以BG⊥DE.【巩固练习】一.选择题1. 如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形面积的( )A. B. C. D.2. 顺次连结任意四边形四边中点所得的四边形一定是( )A.平行四边形B.矩形C.菱形D.正方形3. 已知平行四边形的一条边长为10cm.其两条对角线长可能是( )A.6cm ,12cmB. 8cm,10cmC. 10cm,12cmD. 8cm,12cm4. 如图,在矩形ABCD 中,点P 是BC 边上的动点,点R 是CD 边上的定点。

初三培优-易错-难题平行四边形辅导专题训练附详细答案

初三培优-易错-难题平行四边形辅导专题训练附详细答案

初三培优 易错 难题平行四边形辅导专题训练附详细答案一、平行四边形1.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由见解析.【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题;试题解析:解:(1)AC=AD+AB .理由如下:如图1中,在四边形ABCD 中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC 平分∠DAB ,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA ≌△CBE ,∴AD=BE ,∴AD+AB=AE .在Rt △ACE 中,∠CAB=45°,∴AE =245AC AC cos ︒= ∴2AD AB AC +=.2.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC △的外部作等腰Rt CED △,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.【答案】(1)证明见解析;(2)①AF 2AE =②4222【解析】【分析】 ()1如图①中,结论:AF 2AE =,只要证明AEF 是等腰直角三角形即可; ()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明EKF ≌EDA 再证明AEF 是等腰直角三角形即可;②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.【详解】()1如图①中,结论:AF 2AE =.理由:四边形ABFD 是平行四边形,AB DF ∴=,AB AC =,AC DF ∴=,DE EC =,AE EF ∴=,DEC AEF 90∠∠==,AEF ∴是等腰直角三角形,AF 2AE ∴=.故答案为AF 2AE =.()2①如图②中,结论:AF 2AE =.理由:连接EF ,DF 交BC 于K .四边形ABFD 是平行四边形,AB //DF ∴,DKE ABC 45∠∠∴==,EKF 180DKE 135∠∠∴=-=,EK ED =,ADE 180EDC 18045135∠∠=-=-=,EKF ADE ∠∠∴=,DKC C ∠∠=,DK DC ∴=,DF AB AC ==,KF AD ∴=,在EKF 和EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,EKF ∴≌EDA ,EF EA ∴=,KEF AED ∠∠=,FEA BED 90∠∠∴==,AEF ∴是等腰直角三角形,AF 2AE ∴=. ②如图③中,当AD AC =时,四边形ABFD 是菱形,设AE 交CD 于H ,易知EH DH CH 2===,22AH (25)(2)32=-=,AE AH EH 42=+=,如图④中当AD AC =时,四边形ABFD 是菱形,易知AE AH EH 32222=-=-=,综上所述,满足条件的AE 的长为4222【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.3.已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.4.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)23【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=223BD AD-=,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF=22AB AF+=23.5.如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.【答案】详见解析.【解析】【分析】由四边形ABCD为正方形,可得出∠BAD为90°,AB=AD,进而得到∠BAG与∠EAD互余,又DE垂直于AG,得到∠EAD与∠ADE互余,根据同角的余角相等可得出∠ADE=∠BAF,利用AAS可得出△ABF≌△DAE;利用全等三角的对应边相等可得出BF=AE,由AF-AE=EF,等量代换可得证.【详解】∵ABCD是正方形,∴AD=AB,∠BAD=90°∵DE ⊥AG ,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=∠BAF .∵BF ∥DE ,∴∠AFB=∠DEG=∠AED .在△ABF 与△DAE 中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DAE (AAS ).∴BF=AE .∵AF=AE+EF ,∴AF=BF+EF .点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.6.如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形ADBC 的面积.【答案】(1)见解析;(2)S 平行四边形ADBC 273 【解析】【分析】(1)在Rt △ABC 中,E 为AB 的中点,则CE=12AB ,BE=12AB ,得到∠BCE=∠EBC=60°.由△AEF ≌△BEC ,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC ∥BD ,又因为∠BAD=∠ABC=60°,所以AD ∥BC ,即FD//BC ,则四边形BCFD 是平行四边形.(2)在Rt △ABC 中,求出BC ,AC 即可解决问题;【详解】解:(1)证明:在△ABC 中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD 中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E 为AB 的中点,∴AE=BE ,又∵∠AEF=∠BEC ,∴△AEF ≌△BEC ,在△ABC 中,∠ACB=90°,E 为AB 的中点,∴CE=12AB ,BE=12AB ,∴CE=AE ,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF ≌△BEC ,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC ∥BD ,又∵∠BAD=∠ABC=60°,∴AD ∥BC ,即FD ∥BC ,∴四边形BCFD 是平行四边形;(2)解:在Rt △ABC 中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=∴S 平行四边形BCFD =3×,S △ACF =12×3×,S 平行四边形ADBC . 【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.(问题情境)在△ABC 中,AB =AC ,点P 为BC 所在直线上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .当P 在BC 边上时(如图1),求证:PD+PE =CF .证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得:PD+PE =CF .(不要证明)(变式探究)(1)当点P 在CB 延长线上时,其余条件不变(如图3),试探索PD 、PE 、CF 之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C′处,点P 为折痕EF 上的任一点,过点P 作PG ⊥BE 、PH ⊥BC ,垂足分别为G 、H ,若AD =16,CF =6,求PG+PH 的值.(迁移拓展)(3)在直角坐标系中,直线l 1:y =-43x+8与直线l 2:y =﹣2x+8相交于点A ,直线l 1、l 2与x 轴分别交于点B 、点C .点P 是直线l 2上一个动点,若点P 到直线l 1的距离为2.求点P 的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222-=-8.106DF CF∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A(0,8),B(6,0),C(﹣4,0)∴AB2210,BC=10.68∴AB=BC,(1)由结论得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即点P1的纵坐标为6又点P1在直线l2上,∴y=2x+8=6,∴x=﹣1,即点P1的坐标为(﹣1,6);(2)由结论得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即点P1的纵坐标为10又点P1在直线l2上,∴y=2x+8=10,∴x=1,即点P1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.8.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.【答案】见解析.【解析】【分析】延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF.【详解】延长BF,交DA的延长线于点M,连接BD.∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【点睛】本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键.9.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置关系;(2)求线段B′C的长,并求△B′EC的面积.【答案】(1)见解析;(2)S△B′EC=108 25.【解析】【分析】(1)由折线法及点E 是BC 的中点,可证得△B'EC 是等腰三角形,再有条件证明∠AEF=90°即可得到AE ⊥EF ;(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B ,由E 是BC 的中点,可得EB′=EC ,∠ECB′=∠EB′C ,从而可证△BB′C 为直角三角形,在Rt △AOB 和Rt △BOE 中,可将OB ,BB′的长求出,在Rt △BB′C 中,根据勾股定理可将B′C 的值求出.【详解】(1)由折线法及点E 是BC 的中点,∴EB =EB ′=EC ,∠AEB =∠AEB ′,∴△B 'EC 是等腰三角形,又∵EF ⊥B ′C∴EF 为∠B 'EC 的角平分线,即∠B ′EF =∠FEC ,∴∠AEF =180°﹣(∠AEB +∠CEF )=90°,即∠AEF =90°,即AE ⊥EF ;(2)连接BB '交AE 于点O ,由折线法及点E 是BC 的中点,∴EB =EB ′=EC ,∴∠EBB ′=∠EB ′B ,∠ECB ′=∠EB ′C ;又∵△BB 'C 三内角之和为180°,∴∠BB 'C =90°;∵点B ′是点B 关于直线AE 的对称点,∴AE 垂直平分BB ′;在Rt △AOB 和Rt △BOE 中,BO 2=AB 2﹣AO 2=BE 2﹣(AE ﹣AO )2将AB =4cm ,BE =3cm ,AE =5cm ,∴AO =165 cm ,∴BO =125cm , ∴BB ′=2BO =245cm ,∴在Rt △BB 'C 中,B ′C 518cm , 由题意可知四边形OEFB ′是矩形,∴EF =OB ′=125, ∴S △B ′EC =*111812108225525B C EF '⨯=⨯⨯=.【点睛】考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.10.在ABC 中,AD BC ⊥于点D ,点E 为AC 边的中点,过点A 作//AF BC ,交DE 的延长线于点F ,连接CF .()1如图1,求证:四边形ADCF 是矩形;()2如图2,当AB AC =时,取AB 的中点G ,连接DG 、EG ,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF ).【答案】(1) 证明见解析;(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【解析】【分析】(1)由△AEF ≌△CED ,推出EF=DE ,又AE=EC ,推出四边形ADCF 是平行四边形,只要证明∠ADC=90°,即可推出四边形ADCF 是矩形.(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【详解】()1证明:∵//AF BC ,∴AFE EDC ∠=∠,∵E 是AC 中点,∴AE EC =,在AEF 和CED 中,AFE CDE AEF CED AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AEF CED ≅,∴EF DE =,∵AE EC =,∴四边形ADCF 是平行四边形,∵AD BC ⊥,∴90ADC ∠=,∴四边形ADCF 是矩形.()2∵线段DG 、线段GE 、线段DE 都是ABC 的中位线,又//AF BC ,∴//AB DE ,//DG AC ,//EG BC , ∴四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【点睛】考查平行四边形的判定、矩形的判定、三角形的中位线定理、全等三角形的判定和性质等知识,正确寻找全等三角形解决问题是解题的关键.11.猜想与证明:如图1,摆放矩形纸片ABCD 与矩形纸片ECGF ,使B 、C 、G 三点在一条直线上,CE 在边CD 上,连接AF ,若M 为AF 的中点,连接DM 、ME ,试猜想DM 与ME 的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为 .(2)如图2摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME ,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.12.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.求证:AE=AF.【答案】见解析【解析】【分析】根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得AF=AE.【详解】∵AF⊥AE,∴∠BAF+∠BAE=90°,又∵∠DAE+∠BAE=90°,∴∠BAF=∠DAE,∵四边形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90°,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AF=AE.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.13.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB 与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P 处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②1233)3a<3a>3【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x,则IQ=QN=2x、3,根据IJ=IQ+QJ求出x即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可.(1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF∴PB=PC∵沿折痕BG 折叠纸片,使点C 落在EF 上的点P 处 ∴PB=BC∴PB=PC=BC∴△PBC 是正三角形:(2)证明:①如图∵矩形AHIJ∴∠H=∠J=90°∵△MNJ 是等边三角形∴MI=NI在Rt △MHI 和Rt △JNI 中MI NI MH NJ =⎧⎨=⎩∴Rt △MHI ≌Rt △JNI (HL )∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt △IHM ≌Rt △IJN ,∴∠HIM=∠JIN ,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN 知∠JIN=∠QNI=15°,∴∠NQJ=30°,设NJ=x ,则IQ=QN=2x ,22=3QN NJ -x , ∵IJ=6cm ,∴3,∴33cm ). (3)分三种情况:①如图:设等边三角形的边长为b ,则0<b≤6,则tan60°=3=2a b ,∴a=32b , ∴0<b≤632=33; ②如图当DF 与DC 重合时,DF=DE=6,∴a=sin60°×DE=632=33, 当DE 与DA 重合时,a=6643sin6032==︒, ∴33<a <43;③如图∵△DEF 是等边三角形∴∠FDC=30°∴DF=6643 cos3032==︒∴a>43点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.14.如图①,在△ABC中,AB=7,tanA=,∠B=45°.点P从点A出发,沿AB方向以每秒1个单位长度的速度向终点B运动(不与点A、B重合),过点P作PQ⊥AB.交折线AC-CB于点Q,以PQ为边向右作正方形PQMN,设点P的运动时间为t(秒),正方形PQMN 与△ABC重叠部分图形的面积为S(平方单位).(1)直接写出正方形PQMN的边PQ的长(用含t的代数式表示).(2)当点M落在边BC上时,求t的值.(3)求S与t之间的函数关系式.(4)如图②,点P运动的同时,点H从点B出发,沿B-A-B的方向做一次往返运动,在B-A 上的速度为每秒2个单位长度,在A-B上的速度为每秒4个单位长度,当点H停止运动时,点P也随之停止,连结MH .设MH将正方形PQMN分成的两部分图形面积分别为S 1、S 2(平方单位)(0<S1<S 2),直接写出当S2≥3S1时t 的取值范围.【答案】(1) PQ=7-t.(2) t=.(3) 当0<t≤时,S=.当<t≤4,.当4<t<7时,.(4)或或.【解析】试题分析:(1)分两种情况讨论:当点Q 在线段AC 上时,当点Q在线段BC上时.(2)根据AP+PN+NB=AB,列出关于t的方程即可解答;(3)当0<t≤时,当<t≤4,当4<t<7时;(4)或或.试题解析:(1)当点Q在线段AC上时,PQ=tanAAP=t.当点Q在线段BC上时,PQ=7-t.(2)当点M落在边BC上时,如图③,由题意得:t+t+t=7,解得:t=.∴当点M落在边BC上时,求t的值为.(3)当0<t≤时,如图④,S=.当<t≤4,如图⑤,.当4<t<7时,如图⑥,.(4)或或..考点:四边形综合题.15.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.试题解析:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90°,BP=BP,在△ABP和△QBP中,,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90°,BH=BH,在△BCH和△BQH中,,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周长是定值.(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,在△EFM和△BPA中,,∴△EFM≌△BPA(AAS).∴EM=AP.设AP=x在Rt△APE中,(4-BE)2+x2=BE2.解得BE=2+,∴CF=BE-EM=2+-x,∴BE+CF=-x+4=(x-2)2+3.当x=2时,BE+CF取最小值,∴AP=2.考点:几何变换综合题.。

人教中考数学培优专题复习平行四边形练习题附答案

人教中考数学培优专题复习平行四边形练习题附答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由见解析.【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题;试题解析:解:(1)AC=AD+AB .理由如下:如图1中,在四边形ABCD 中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC 平分∠DAB ,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA ≌△CBE ,∴AD=BE ,∴AD+AB=AE .在Rt △ACE 中,∠CAB=45°,∴AE =245AC AC cos ︒= ∴2AD AB AC +=.2.如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形ADBC 的面积.【答案】(1)见解析;(2)S 平行四边形ADBC =32. 【解析】【分析】 (1)在Rt △ABC 中,E 为AB 的中点,则CE=12AB ,BE=12AB ,得到∠BCE=∠EBC=60°.由△AEF ≌△BEC ,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE =∠D=60度.所以FC ∥BD ,又因为∠BAD=∠ABC=60°,所以AD ∥BC ,即FD//BC ,则四边形BCFD 是平行四边形.(2)在Rt △ABC 中,求出BC ,AC 即可解决问题;【详解】解:(1)证明:在△ABC 中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD 中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E 为AB 的中点,∴AE=BE ,又∵∠AEF=∠BEC ,∴△AEF ≌△BEC ,在△ABC 中,∠ACB=90°,E 为AB 的中点,∴CE=12AB ,BE=12AB ,∴CE=AE ,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF ≌△BEC ,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC ∥BD ,又∵∠BAD=∠ABC=60°,∴AD ∥BC ,即FD ∥BC ,∴四边形BCFD 是平行四边形;(2)解:在Rt △ABC 中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33∴S 平行四边形BCFD =3×33=93,S △ACF =12×3×33=932,S 平行四边形ADBC =2732. 【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.3.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .(1)求证:DE DF ⊥;(2)求证:DH DF =:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠,得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形的判定定理【要点梳理】要点一、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.一组对边平行且相等的四边形是平行四边形;3.两组对边分别相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据. 【典型例题】类型一、平行四边形的判定例1、如图所示,E、F分别为四边形ABCD的边AD、BC上的点,且四边形AECF和DEBF都是平行四边形,AF和BE相交于点G,DF和CE相交于点H.求证:四边形EGFH为平行四边形.【思路点拨】欲证四边形EGFH为平行四边形,只需证明它的两组对边分别平行,即EG∥FH,FG ∥HE可用来证明四边形EGFH为平行四边形.【答案与解析】证明:∵四边形AECF为平行四边形,∴ AF∥CE.页1∵四边形DEBF为平行四边形,∴ BE∥DF.∴四边形EGFH为平行四边形.【变式】如图,在四边形ABCD中,AB∥CD,∠BAD的平分线交直线BC于点E,交直线DC于点F,若CE=CF,求证:四边形ABCD是平行四边形.【答案】证明:∵∠BAD的平分线交直线BC于点E,∴∠1=∠2,∵AB∥CD,∴∠1=∠F,∵CE=CF,∴∠F=∠3,∴∠1=∠3,∴∠2=∠3,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形.例2、如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.【思路点拨】(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.页2(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF 是平行四边形即可.【答案与解析】证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.【总结升华】此题主要考查了平行四边形的判定和性质的应用,以及全等三角形的判定和性质的应用,要熟练掌握.例3、已知:如图四边形ABCD是平行四边形,P、Q是直线AC上的点,且AP=CQ.求证:四边形PBQD是平行四边形.页3页 4【思路点拨】证明四边形是平行四边形有很多种方法,此题可由对角线互相平分来证明. 【答案与解析】证明:连接BD 交AC 与O 点,∵四边形ABCD 是平行四边形, ∴AO=CO,BO=DO , 又∵AP=CQ, ∴AP+AO=CQ+CO, 即PO=QO ,∴四边形PBQD 是平行四边形.【总结升华】本题主要考查平行四边形的判定,利用“对角线互相平分的四边形是平行四边形”来证明.举一反三:【变式1】如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF=DC ,连接CF .试说明:D 是BC 的中点.【答案】证明:∵AF∥BC ,∴∠AFE=∠DBE , ∵E 是AD 的中点, ∴AE=DE ,页 5在△AEF 和△DEB 中,∵ ∴△AEF ≌△DEB (AAS ), ∴AF=BD , ∵AF=DC , ∴BD=DC , ∴D 是BC 的中点.【变式2】如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE ,已知:∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF . (1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.【答案】证明:(1)∵Rt △ABC 中,∠BAC=30°, ∴AB=2BC ,又∵△ABE 是等边三角形,EF ⊥AB , ∴AB=2AF ∴AF=BC ,在Rt △AFE 和Rt △BCA 中,,∴Rt △AFE ≌Rt △BCA (HL ),,,,===AFE DBE AEF DEB AE DE ∠∠⎧⎪∠∠⎨⎪⎩页 6∴AC=EF ;(2)∵△ACD 是等边三角形, ∴∠DAC=60°,AC=AD , ∴∠DAB=∠DAC +∠BAC=90° 又∵EF ⊥AB , ∴EF ∥AD , ∵AC=EF ,AC=AD , ∴EF=AD ,∴四边形ADFE 是平行四边形.例4、如图,平行四边形ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F .求证:四边形AECF 是平行四边形.【思路点拨】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为四边形ABCD 是平行四边形,可证OF=OE ,OA=OC ,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决. 【答案与解析】证明:∵四边形ABCD是平行四边形,∴OD=OB ,OA=OC , ∵AB ∥CD ,∴∠DFO=∠BEO ,∠FDO=∠EBO , ∴在△FDO 和△EBO 中,,===DFO BEO FDO EBO OD OB ∠∠⎧⎪∠∠⎨⎪⎩∴△FDO≌△EBO(AAS),∴OF=OE,∴四边形AECF是平行四边形.类型二、平行四边形的性质定理与判定定理的综合运用例1、如图,在平行四边形ABCD中,E、F是对角线AC上的点,且AE=CF.(1)猜想探究:BE与DF之间的关系: ________________.(2)请证明你的猜想.【思路点拨】(1)BE平行且等于DF;(2)连接BD交AC于O,根据平行四边形的性质得出OA=OC,OD=OB,推出OE=OF,得出平行四边形BEDF即可.【答案与解析】(1)解:BE和DF的关系是:BE=DF,BE∥DF,故答案为:平行且相等.(2)证明:连接BD交AC于O,∵ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∴BFDE是平行四边形,∴BE=DF,BE∥DF.【总结升华】本题考查了平行四边形的性质和判定的应用,能否熟练地运用平行四边形的性质和判定进行推理是你解决本题的关键,题型较好,通过此题培养了学生分析问题和解决问题的能力,同时培养了学生的观察能力和猜想能力.举一反三:【变式】如图,在ABCD中,E、F分别在AD、BC边上,且AE=CF.请你猜想BE与DF的关系,并说明理由.页7页 8【答案】解:猜想BE 与DF 的关系是BE=DF ,BE ∥DF ,理由是:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC , ∵AE=CF , ∴AD-AE=BC-CF , 即DE=BF , ∵DE ∥BF ,∴四边形BFDE 是平行四边形, ∴BE=DF ,BE ∥DF .例2、如图,四边形ABCD 的对角线AC 、BD 交于点P ,过点P 作直线交AD 于点E ,交BC 于点F .若PE=PF ,且AP+AE=CP+CF . (1)求证:PA=PC .(2)若AD=12,AB=15,∠DAB=60°,求四边形ABCD 的面积.【思路点拨】(1)首先在PA 和PC 的延长线上分别取点M 、N ,使AM=AE ,CN=CF ,可得PN=PM ,则易证四边形EMFN 是平行四边形,则可得ME=FN ,∠EMA=∠CNF ,即可证得△EAM ≌△FCN ,则可得PA=PC ;(2)由PA=PC ,EP=PF ,可证得四边形AFCE 为平行四边形,易得△PED ≌△PFB ,则可得四边形ABCD 为平行四边形,由AB=15,AD=12,∠DAB=60°,即可求得四边形ABCD 的面积. 【答案与解析】(1)证明:在PA 和PC 的延长线上分别取点M 、N ,使AM=AE ,CN=CF . ∵AP+AE=CP+CF , ∴PN=PM . ∵PE=PF ,∴四边形EMFN 是平行四边形.∴ME=FN ,∠EMA=∠CNF.又∵∠AME=∠AEM,∠CNF=∠CFN,∴△EAM≌△FCN.∴AM=CN.∵PM=PN,∴PA=PC.(2)解:∵PA=PC,EP=PF,∴四边形AFCE为平行四边形.∴AE∥CF.∵∠PED=∠PFB,∠EPD=∠FPB,EP=PF,∴△PED≌△PFB.∴DP=PB.由(1)知PA=PC,∴四边形ABCD为平行四边形.∵AB=15,AD=12,∠DAB=60°,∴四边形ABCD的面积为90.【总结升华】此题考查了平行四边形的判定与性质,以及全等三角形的判定与性质等知识.此题图形比较复杂,难度适中,解题的关键是数形结合思想的应用.例3、如图,△ABC中AB=AC,点D从点B出发沿射线BA移动,同时,点E从点C出发沿线段AC的延长线移动,已点知D、E移动的速度相同,DE与直线BC相交于点F.(1)如图1,当点D在线段AB上时,过点D作AC的平行线交BC于点G,连接CD、GE,判定四边形CDGE的形状,并证明你的结论;(2)过点D作直线BC的垂线垂足为M,当点D、E在移动的过程中,线段BM、MF、CF有何数量关系?请直接写出你的结论.【思路点拨】(1)由题意得出BD=CE,由平行线的性质得出∠DGB=∠ACB,由等腰三角形的性质得出∠B=∠ACB,得出∠B=∠DGB,证出BD=GD=CE,即可得出结论;(2)由(1)得:BD=GD=CE,由等腰三角形的三线合一性质得出BM=GM,由平行线得出GF=CF,即可得出结论.【答案与解析】解:(1)四边形CDGE是平行四边.理由如下:如图1所示:3页9∵D、E移动的速度相同,∴BD=CE,∵DG∥AE,∴∠DGB=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DGB,∴BD=GD=CE,又∵DG∥CE,∴四边形CDGE是平行四边形;(2)BM+CF=MF;理由如下:如图2所示:由(1)得:BD=GD=CE,∵DM⊥BC,∴BM=GM,∵DG∥AE,∴GF=CF,∴BM+CF=GM+GF=MF.【总结升华】本题考查了等腰三角形的判定与性质、平行四边形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.举一反三【变式】如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).【答案】页10∴ AB=CD,AB∥CD,∴∠ABD=∠CDB,∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD=90°,∴△ABE≌△CDF(AAS),∴BE=DF;(2)四边形MENF是平行四边形.证明:由(1)可知:BE=DF,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠MDB=∠NBD,∵DM=BN,∴△DMF≌△BNE,∴NE=MF,∠MFD=∠NEB,∴∠MFE=∠NEF,∴MF∥NE,∴四边形MENF是平行四边形.例4、如图,已知在ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)【思路点拨】(1)先由平行四边形的性质,得AB=CD,AB∥CD,根据两直线平行内错角相等得∠GBE=∠HDF.再由SAS可证△GBE≌△HDF,利用全等的性质,证明∠GEF=∠HFE,从而得GE∥HF,又GE=HF,运用一组对边平行且相等的四边形是平行四边形得证.(2)仍成立.可仿照(1)的证明方法进行证明.【答案与解析】页11页 12∴AB=CD ,AB ∥CD ,∴∠GBE=∠HDF . 又∵AG=CH ,∴BG=DH . 又∵BE=DF ,∴△GBE ≌△HDF .∴GE=HF ,∠GEB=∠HFD ,∴∠GEF=∠HFE , ∴GE ∥HF ,∴四边形GEHF 是平行四边形.(2)解:仍成立.(证法同上)【总结升华】本题考查的知识点为:一组对边平行且相等的四边形是平行四边形. 举一反三 【变式】如图,ABCD 中,对角线AC ,BD 相交于O 点,AE ⊥BD 于E ,CF ⊥BD 于F ,BG ⊥AG 于G ,DH ⊥AC 于H .求证:四边形GEHF 是平行四边形.【答案】证明:∵四边形ABCD 是平行四边形,∴BO=DO ,AO=CO ,AB=CD ,AB ∥CD , ∴∠ABD=∠CDB ,∵AE ⊥BD 于E ,CF ⊥BD 于F ,∴∠AEB=∠CFD=90°, 在△ABE 和△CDF 中,∴△ABE ≌△CDF (AAS ), ∴BE=DF , ∴BO-BE=DO-DF , 即:EO=FO ,同理:△ABG ≌△CDH , ∴AG=CH , ∴AO-AG=CO-CH , ,===AB CD ABE CDF AEB CFD ∠∠∠∠⎧⎪⎨⎪⎩即:GO=OH,∴四边形GEHF是平行四边形.【课堂练习】一.选择题1.点P、Q、R是平面内不在同一条直线上的三个定点,点M是平面内任意一点,若P、Q、R、M四点恰能构成一个平行四边形,则在平面内符合这样条件的点M有()A.1个 B.2个 C.3个 D.4个2. 四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有( ).A.1组 B.2组 C.3组 D.4组3. 下面给出了四边形ABCD中∠A、∠B、∠C、∠D的度数之比, 其中能识别四边形ABCD为平行四边形的是( ).A. 1:2:3:4B. 2:3:2:3C. 2:2:3:3D. 1:2:2:14. 如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形 B.矩形 C.菱形 D.梯形5. 已知一个凸四边形ABCD的四条边的长顺次是a、b、c、d,且a2+ab-ac-bc=0,b2+bc-bd-cd=0,那么四边形ABCD是()A.平行四边形 B.矩形 C.菱形 D.梯形页136. 如图,图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为()A.甲<乙<丙 B.乙<丙<甲 C.丙<乙<甲 D.甲=乙=丙二.填空题7. 如图,E、F 是ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.8.如图,平行四边形ABCD的对角线交于点O,直线EF过点O且EF∥AD,直线GH过点O且GH∥AB,则能用图中字母表示的平行四边形共有______________个.9.如图,四边形ABCD中,AB∥CD,AB⊥BC,点E在AB边上从A向B以1cm/s的速度移动,同时点F在CD边上从C向D以2cm/s的速度移动,若AB=7cm,CD=9cm,则秒时四边形ADFE是平行四边形.页1410. 如图,已知等边△ABC的边长为8,P是△ABC内一点,PD∥AC,PE∥AD,PF∥BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF=______________.11.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.12.如图,平行四边形ABCD中,AC、BD相交于点O,E、F、G、H分别是AB、OB、CD、OD 的中点.有下列结论:①AD=BC,②△DHG≌△BFE,③BF=HO,④AO=BO,⑤四边形HFEG是平行四边形,其中正确结论的序号是.三.解答题13.如图,在口ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:(1)△BEG≌△DFH;(2)四边形GEHF是平行四边形.14.在Rt△ABC中,∠ACB=90°,D、E分别为边AB、BC的中点,点F在边AC的延长线上,∠FEC=∠B,求证:四边形CDEF是平行四边形.页1515.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.【答案与解析】一.选择题1.【答案】C;【解析】解:如图,连接PQ、QR、PR,分别过P、Q、R三点作直线l∥QR、m∥PR、n∥PQ,分别交于点D、E、F,∵DP∥QR,DQ∥PR,∴四边形PDQR为平行四边形,同理可知四边形PQRF、四边形PQER也为平行四边形,故D、E、F三点为满足条件的M点,故选C.页162.【答案】C;【解析】①②③能判定平行四边形.3.【答案】B;【解析】平行四边形对角相等.∠A与∠C为对角,∠B与∠D为对角.4.【答案】A;【解析】∵分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,∴AD=BC AB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).故选A.5.【答案】A;【解析】由a2+ab-ac-bc=0,可知(a+b)(a-c)=0,则a-c=0,即a=c;由b2+bc-bd-cd=0,可知(b+c)(b-d)=0;则b-d=0,即b=d.(其中a,b,c,d都是正数,a+b、b+c一定不等于0)由a=c;b=d知四边形ABCD的两组对边分别相等,则四边形ABCD是平行四边形.故选A.6.【答案】D;【解析】图1中,甲走的路线长是AC+BC的长度;延长AD和BF交于C,如图2,∵∠DEA=∠B=60°,∴DE∥CF,同理EF∥CD,∴四边形CDEF是平行四边形,∴EF=CD,DE=CF,即乙走的路线长是AD+DE+EF+FB=AD+CD+CF+BC=AC+BC的长;延长AG和BK交于C,如图3,与以上证明过程类似GH=CK,CG=HK,即丙走的路线长是AG+GH+HK+KB=AG+CG+CK+BK=AC+BC的长;即甲=乙=丙,故选D.页17页 18二.填空题 7.【答案】BE=DF ;【解析】添加的条件是BE=DF ,理由是:连接AC 交BD 于O , ∵平行四边形ABCD , ∴OA=OC ,OB=OD , ∵BE=DF , ∴OE=OF ,∴四边形AECF 是平行四边形. 故答案为:BE=DF .8.【答案】18;【解析】图中平行四边形有:AEOG ,AEFD ,ABHG ,GOFD ,GHCD ,EBHO ,EBCF ,OHCF ,ABCD ,EHFG ,AEHO ,AOFG ,EODG ,BHFO ,HCOE ,OHFD ,OCFG ,BOGE .共18个.故答案为:18. 9.【答案】3;【解析】解:设t 秒时四边形ADFE 是平行四边形;理由:当四边形ADFE是平行四边形,则AE=DF,即t=9﹣2t,解得:t=3,故3秒时四边形ADFE是平行四边形.故答案为:3.10.【答案】8;【解析】过E点作EG∥PD,过D点作DH∥PF,∵PD∥AC,PE∥AD,∴PD∥GE,PE∥DG,∴四边形DGEP为平行四边形,∴EG=DP,PE=GD,又∵△ABC是等边三角形,EG∥AC,△BEG为等边三角形,∴EG=PD=GB,同理可证:DH=PF=AD,∴PD+PE+PF=BG+GD+AD=AB=8..11.【答案】平行四边形;12.【答案】①,②,③,⑤;【解析】解:平行四边形ABCD中,∴AD=BC,故①正确;∵平行四边形ABCD,∴DC∥AB,DC=AB,OD=OB,∴∠CDB=∠DBA,∵E、F、G、H分别是AB、OB、CD、OD的中点,∴DG=BE=AB,DH=BF=OD,∴②△DHG≌△BFE,故②正确;∵HO=DH,DH=BF,∴BF=HO,故③正确;平行四边形ABCD,OA=OC,OB=OD,故④错误;E、F、G、H分别是AB、OB、CD、OD的中点,∴HG∥OC,HG=OC,EF∥OA,EF=OA,∴HG∥EF,HG=EF,HEFG是平行四边形,故⑤正确;故答案为:①,②,③,⑤.三.解答题页1913.【解析】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC,∴∠ABE=∠CDF,∵AG=CH,∴BG=DH,在△BEG和△DFH中,,∴△BEG≌△DFH(SAS);(2)∵△BEG≌△DFH(SAS),∴∠BEG=∠DFH,EG=FH,∴∠GEF=∠HFB,∴GE∥FH,∴四边形GEHF是平行四边形.14.【解析】证明:∵在Rt△ABC中,∠ACB=90°,D、E分别为边AB、BC的中点,∴DE∥AC,CD=AB=AD=BD,∴∠B=∠DCE,∵∠FEC=∠B,∴∠FEC=∠DCE,∴DC∥EF,∴四边形CDEF是平行四边形.15.【解析】解:∵∠ACB=90°,DE⊥BC,页20∴AC∥DE.又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=2在Rt△CDE中,由勾股定理∵D是BC的中点,∴BC=2CD=在Rt△ABC中,由勾股定理.∵D是BC的中点,DE⊥BC,∴EB=EC=4∴四边形ACEB的周长=AC+CE+BE+BA=10+.【课后作业】一.选择题1.如图,在平面直角坐标系中,以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形第四个顶点坐标的是()A.(3,-1) B.(-1,-1) C.(1,1) D.(-2,-1)2.以不共线的三点A、B、C为顶点的平行四边形共有( )个.A.1B.2C.3D.无数CD==AB==页21页 223.A ,B ,C ,D 在同一平面内,从①AB ∥CD ,②AB=CD ,③BC ∥AD ,④BC=AD 这四个中任选两个作为条件,能使四边形ABCD 为平行四边形的选法有( ) A .6种 B .5种 C .4种 D .3种4. 如图,在▱ABCD 中,EF ∥AD ,HN ∥AB ,则图中的平行四边形(不包括四边形ABCD )的个数共有( )A .9个B .8个C .6个D .4个5. 如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A. AE =CFB.DE =BFC. D.6.如图,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED 是平行四边形; ②△BCE 是等腰三角形; ③四边形ACEB 的周长是10+2; ④四边形ACEB 的面积是16. 则以上结论正确的是( )CBF ADE ∠=∠CFB AED ∠=∠A.①②③ B.①②④ C.①③④ D.②④二.填空题7.已知四边形ABCD的对角线相交于O,给出下列5个条件①AB∥CD ②AD∥BC③AB=CD ④∠BAD=∠DCB,从以上4个条件中任选2个条件为一组,能推出四边形ABCD为平行四边形的有____________组.8.在▱ABCD中,对角线相交于点O,给出下列条件:①AB=CD,AD=BC,②AD=AB,AD∥BC,③AB∥CD,AD∥BC,④AO=CO,BO=DO其中能够判定ABCD是平行四边形的有____________.9.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出______个平行四边形.10.如图,已知AB=CD,AD=CB,则∠ABC+∠BAD=___________度.11.如图,四边形ABCD的对角线AC与BD相交于点O,AD∥BC,若要使四边形是平行四边形,则需要添加的一个条件是.(只写出一种情况即可)12.如图,在△ABC中,AB=4,AC=3,BC=5,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为.页23三.解答题13. 在ABCD中,对角线BD、AC相交于点O,BE=DF,过点O作线段GH交AD于点G,交BC于点H,顺次连接EH、HF、FG、GE,求证:四边形EHFG是平行四边形.14.如图,已知点A、B、C、D在一条直线上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC.(1)求证:△ACE≌△DBF;(2)如果把△DBF沿AD折翻折使点F落在点G,连接BE和CG.求证:四边形BGCE是平行四边形.15. 如图所示,已知△ABC是等边三角形,D、F两点分别在线段BC、AB上,∠EFB=60°,DC=EF.页24(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.【答案与解析】一.选择题1.【答案】D;【解析】A、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,当第四个点为(3,-1)时,∴BO=AC1=2,∵A,C1,两点纵坐标相等,∴BO∥AC1,∴四边形OAC1B是平行四边形;故此选项正确;B、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,当第四个点为(-1,-1)时,∴BO=AC2=2,∵A,C2,两点纵坐标相等,∴BO∥AC2,∴四边形OC2AB是平行四边形;故此选项正确;C、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,页25页 26当第四个点为(1,1)时, ∴BO=AC 1=2,∵A ,C 1,两点纵坐标相等, ∴C 3O=BC 3=, 同理可得出AO=AB=,进而得出C 3O=BC 3=AO=AB ,∠OAB=90°, ∴四边形OABC 3是正方形;故此选项正确;D 、∵以O (0,0)、A (1,-1)、B (2,0)为顶点,构造平行四边形, 当第四个点为(-1,-1)时,四边形OC 2AB 是平行四边形;∴当第四个点为(-2,-1)时,四边形OC 2AB 不可能是平行四边形; 故此选项错误.故选:D .2.【答案】C ;【解析】分别以AB ,BC ,AC 为对角线作平行四边形. 3.【答案】C ;【解析】根据平行四边形的判定,可以有四种:①与②,③与④,①与③,②与④都能判定四边形是平行四边形,故选C .4.【答案】B ;【解析】设EF 与NH 交于点O ,∵在▱ABCD 中,EF ∥AD ,HN ∥AB ,∴AD ∥EF ∥BC ,AB ∥NH ∥CD ,则图中的四边AEOH 、DHOF 、BEON 、CFON 、AEFD 、BEFC 、AHNB 、DHNC 和ABCD 都是平行四边形,共9个. 故选B .5.【答案】B ; 22页 27【解析】C 选项和D 选项均可证明△ADE ≌△CBF ,从而得到AE =CF ,EO =FO ,BO =DO ,所以可证四边形DEBF 是平行四边形.6.【答案】A ;【解析】解:①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°, ∴AC∥DE, ∵CE∥AD,∴四边形ACED 是平行四边形,故①正确; ②∵D 是BC 的中点,DE⊥BC, ∴EC=EB,∴△BCE 是等腰三角形,故②正确; ③∵AC=2,∠ADC=30°, ∴AD=4,CD=2,∵四边形ACED 是平行四边形, ∴CE=AD=4, ∵CE=EB,∴EB=4,DB=2, ∴CB=4,∴AB==2,∴四边形ACEB 的周长是10+2故③正确; ④四边形ACEB 的面积:×2×4+×4×2=8,故④错误,故选:A .二.填空题 7.【答案】4;【解析】①和②根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD 为平行四边形;①和③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD 为平行四边形;①和④,②和④根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;所以能推出四边形ABCD为平行四边形的有四组.故答案为:4.8.【答案】①③④;【解析】∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴①正确;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∴②正确;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴③正确;∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴④正确;即其中能判定四边形ABCD是平行四边形的有①②③④,故答案为:①②③④.9.【答案】15;【解析】两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故答案为:15.10.【答案】180°;【解析】依题意得ABCD是平行四边形,∴AD∥BC,∴∠ABC+∠BAD=180°.11.【答案】AD=BC;【解析】∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,故答案为:AD=BC.12.【答案】6;【解析】解:∵在△ABC中,AB=3,AC=4,BC=5,∴BC2=AB2+AC2,∴∠BAC=90°,页28页 29∵△ABD,△ACE 都是等边三角形, ∴∠DAB=∠EAC=60°, ∴∠DAE=150°.∵△ABD 和△FBC 都是等边三角形, ∴∠DBF+∠FBA=∠ABC+∠ABF=60°, ∴∠DBF=∠ABC. 在△ABC 与△DBF 中,∴△ABC≌△DBF(SAS ), ∴AC=DF=AE=4,同理可证△ABC≌△EFC, ∴AB=EF=AD=3,∴四边形DAEF 是平行四边形(两组对边分别相等的四边形是平行四边形). ∴∠FDA=180°﹣∠DAE=30°,∴S 口AEFD =AD•(DF ×)=3×(4×)=6. 即四边形AEFD 的面积是6. 故答案为:6.二.解答题 13.【解析】 证明:在ABCD 中AD ∥BC ,AO =CO ,BO =DO∴∠GAO =∠HCO 在△AGO 和△CHO 中∴△AGO ≌△CHO∴GO =HO 又∵BO =DO ,BE =DF GAO HCO AO CO GOA HOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴EO=FO∴四边形EHFG为平行四边形.14.【解析】证明:(1)如图1,∵OB=OC,∴∠ACE=∠DBF,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS);(2)如图2,∵∠ACE=∠DBF,∠DBG=∠DBF,∴∠ACE=∠DBG,∴CE∥BG,∵CE=BF,BG=BF,∴CE=BG,∴四边形BGCE是平行四边形.15.【解析】证明:(1)∵△ABC是等边三角形,∴∠ABC=60°.页30又∵∠EFB=60°,∴ EF∥BC,即EF∥DC.又∵ DC=EF,∴四边形EFCD是平行四边形.(2)如图,连接BE.∵ BF=EF,∠EFB=60°,∴△EFB是等边三角形,∴ BE=BF=EF,∠EBF=60°,∴ DC=EF=BE.∵△ABC是等边三角形,∴ AC=AB,∠ACD=60°.在△ABE和△ACD中,∵ AB=AC,∠ABE=∠ACD,BE=CD,∴△ABE≌△ACD,∴ AE=AD.页31。

相关文档
最新文档