高中数学必修五第三章不等式复习知识点与例题

合集下载

不等式知识点总结(人教B版必修五第三章)

不等式知识点总结(人教B版必修五第三章)

不等式知识点总结(人教B版必修五第三章) 不等式知识点总结(人教B版必修五第三章)不等式知识点小结1、不等式的定义我们用数学符号“”“>”“斜截式:已知直线的斜率为k,在y轴上的截距为b,则直线方程为;两点式:已知直线过点(x1,y1),(x2,y2)(x1x2,y1y2)则直线方程为;截距式:已知直线在x轴的截距为a,在y 轴的截距为b(a0,b0)则直线方程为(2)已知直线的倾斜角为,则斜率k;已知直线过点A(x1,y1),B(x2,y2),则斜率k。

(3)已知直线l1:yk1xb1,l2:yk2xb2,若l1∥l2则;若l1l2,则。

已知直线l1:A1xB1yC10,l2:A2xB2yC20,若l1∥l2则;若l1l2,则。

7、二次函数的相关知识已知二次函数f(x)axbxc(a0)(1)顶点坐标为;对称轴方程为;(2)函数f(x)与x轴交点个数的判断方法:当时,f(x)与x轴有两个交点;当时,f(x)与x轴有一个交点;当时,f(x)与x轴没有交点。

(3)二次函数的单调性:当a0时,f(x)在上为增函数;在上为减函数。

当a0时,f(x)在上为增函数;在上为减函数。

(4)二次函数的奇偶性:当时,f(x)为偶函数;否则f(x)为非奇非偶函数。

(5)二次函数的最值:当a0时,f(x)有最小值;当a0时,f(x)有最大值。

8、一元二次不等式的定义一般的,含有未知数,且未知数的最高次数为的整式不等式,叫做一元二次不等式。

9、三个二次之间的关系000b24acyaxbxc(a0)的图象22yOx1x2xyOx1x2xyOxax2bxc0(a0)的根ax2bxc0(a0)的解集ax2bxc0(a0)的解集10、(1)axbxc0(a0)恒成立的条件是;(2)axbxc0(a0)恒成立的条件是。

11、分式不等式22f(x)f(x)0;0。

g(x)g(x)12、二元一次不等式所表示的平面区域(1)直线l:AxByC0把坐标平面分为两部分,每个部分叫做,它与l的并集叫做,以不等式解(x,y)为坐标的所有点构成的集合叫做或。

高中数学必修5第三章《不等式》复习知识点总结与练习

高中数学必修5第三章《不等式》复习知识点总结与练习

高中数学必修5__第三章《不等式》复习知识点总结与练习(一)第一节不等关系与不等式[知识能否忆起]1.实数大小顺序与运算性质之间的关系a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.不等式的基本性质1.在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加,“同向且两边同正的不等式”才可相乘;可乘性中“c 的符号”等也需要注意.2.作差法是比较两数(式)大小的常用方法,也是证明不等式的基本方法.要注意强化化归意识,同时注意函数性质在比较大小中的作用.高频考点1. 比较两个数(式)的大小[例1] 已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较S 3a 3与S 5a 5的大小.[自主解答] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q >0且q ≠1时,S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5)q 4(1-q )=-q -1q 4<0,所以S 3a 3<S 5a 5. 综上可知S 3a 3<S 5a 5.由题悟法比较大小的常用方法 (1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.[注意] 用作商法时要注意商式中分母的正负,否则极易得出相反的结论.以题试法1.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b解析:选A c -b =4-4a +a 2=(2-a )2≥0, ∴c ≥b .将题中两式作差得2b =2+2a 2,即b =1+a 2. ∵1+a 2-a =⎝⎛⎭⎫a -122+34>0,∴1+a 2>a . ∴b =1+a 2>a .∴c ≥b >a . 2. 不等式的性质(2012·包头模拟)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc<0;③a-c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4(2)∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②正确. ∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C.由题悟法1.判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的性质.2.特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试,可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立,则该命题为假命题.以题试法2.若a 、b 、c 为实数,则下列命题正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a <b <0,则a 2>ab >b 2 C .若a <b <0,则1a <1bD .若a <b <0,则b a >ab解析:选B A 中,只有a >b >0,c >d >0时,才成立;B 中,由a <b <0,得a 2>ab >b 2成立;C ,D 通过取a =-2,b =-1验证均不正确. 3. 不等式性质的应用典题导入[例3] 已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围. [自主解答] f (-1)=a -b ,f (1)=a +b . f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].由题悟法利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.以题试法3.若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2.∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7.∴α+3β的取值范围为[1,7].第二节一元二次不等式及其解法[知识能否忆起]一元二次不等式的解集二次函数y=ax2+bx+c的图象、一元二次方程ax2+bx+c=0的根与一元二次不等式ax2+bx+c>0与ax2+bx+c<0的解集的关系,可归纳为:若a<0时,可以先将二次项系数化为正数,对照上表求解.解一元二次不等式应注意的问题:(1)在解一元二次不等式时,要先把二次项系数化为正数.(2)二次项系数中含有参数时,参数的符号会影响不等式的解集,讨论时不要忘记二次项系数为零的情况.(3)解决一元二次不等式恒成立问题要注意二次项系数的符号.(4)一元二次不等式的解集的端点与相应的一元二次方程的根及相应的二次函数图象与x轴交点的横坐标相同高频考点1.一元二次不等式的解法典题导入[例1] 解下列不等式: (1)0<x 2-x -2≤4; (2)x 2-4ax -5a 2>0(a ≠0). [自主解答] (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1,或2<x ≤3. (2)由x 2-4ax -5a 2>0知(x -5a )(x +a )>0. 由于a ≠0故分a >0与a <0讨论. 当a <0时,x <5a 或x >-a ; 当a >0时,x <-a 或x >5a .综上,a <0时,解集为{}x |x <5a ,或x >-a ;a >0时,解集为{}x |x >5a ,或x <-a .由题悟法1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图象,写出不等式的解集.2.解含参数的一元二次不等式可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.以题试法1.解下列不等式: (1)-3x 2-2x +8≥0;(2)ax 2-(a +1)x +1<0(a >0).解:(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0. 解得-2 ≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43. (2)原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a <x <1;当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 2.一元二次不等式恒成立问题典题导入[例2] 已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.[自主解答] 法一:f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1) 时,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3. 要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1; ②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2,由2-a 2≥a ,解得-1 ≤a ≤1. 综上所述,a 的取值范围为[-3,1].法二:令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧Δ>0,a <-1,g (-1)≥0.解得-3 ≤a ≤1.所求a 的取值范围是[-3,1].本题中的“x ∈[-1,+∞)改为“x ∈[-1,1)”,求a 的取值范围.解:令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,1)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧ Δ>0,a <-1,g (-1)≥0或⎩⎨⎧Δ>0,a >1,g (1)≥0.解得-3≤a ≤1,所求a 的取值范围是[-3,1] .由题悟法1.对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.2.一元二次不等式恒成立的条件:(1)ax 2+bx +c >0(a ≠0)(x ∈R ) 恒成立的充要条件是: a >0且b 2-4ac <0.(2)ax 2+bx +c <0(a ≠0)(x ∈R )恒成立的充要条件是: a <0且b 2-4ac <0.以题试法2.(2012·九江模拟)若关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),则实数a 的取值范围是________;若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,则实数a 的取值范围是________.解析:由Δ1<0,即a 2-4(-a )<0,得-4<a <0; 由Δ2≥0,即a 2-4(3-a )≥0,得a ≤-6或a ≥2. 答案:(-4,0) (-∞,-6]∪[2,+∞) 2. 一元二次不等式的应用典题导入[例3] 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. [自主解答] (1)由题意得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价, 所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2]. (2)由题意得20(10-x )(50+8x )≥10 260, 化简得8x 2-30x +13≤0. 解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.由题悟法解不等式应用题,一般可按如下四步进行:(1)认真审题,把握问题中的关键量,找准不等关系; (2)引进数学符号,用不等式表示不等关系; (3)解不等式; (4)回答实际问题.以题试法3.某同学要把自己的计算机接入因特网.现有两家ISP 公司可供选择.公司A 每小时收费1.5元;公司B 在用户每次上网的第1小时内收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算).假设该同学一次上网时间总是小于17小时,那么该同学如何选择ISP 公司较省钱?解:假设一次上网x 小时,则公司A 收取的费用为1.5x 元,公司B 收取的费用为x (35-x )20元.若能够保证选择A 比选择B 费用少,则x (35-x )20>1.5x (0<x <17), 整理得x 2-5x <0,解得0<x <5,所以当一次上网时间在5小时内时,选择公司A 的费用少;超过5小时,选择公司B 的费用少.练习题[小题能否全取]1.(教材习题改编)下列命题正确的是( ) A .若ac >bc ⇒a >b B .若a 2>b 2⇒a >b C .若1a >1b ⇒a <bD .若a <b ⇒a <b答案:D2.若x +y >0,a <0,ay >0,则x -y 的值( ) A .大于0 B .等于0 C .小于0D .不确定解析:选A 由a <0,ay >0知y <0,又x +y >0,所以x >0.故x -y >0. 4.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<5.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c .其中正确的是____________(请把正确命题的序号都填上). 解析:①若c =0则命题不成立.②正确.③中由2c >0知成立. 答案:②③4.若x >y, a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤a y >bx这五个式子中,恒成立的所有不等式的序号是________. 解析:令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此 ①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx,因此⑤不正确. 由不等式的性质可推出 ②④成立. 答案:②④[小题能否全取]1.(教材习题改编)不等式x (1-2x )>0的解集是( ) A.⎝⎛⎭⎫-∞,12 B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎝⎛⎭⎫12,+∞D.⎝⎛⎭⎫12,+∞答案:B2.不等式9x 2+6x +1≤0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-13 B.⎩⎨⎧⎭⎬⎫-13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤13D .R答案:B3.(2011·福建高考)若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)解析:选C 由一元二次方程有两个不相等的实数根,可得:判别式Δ>0,即m 2-4>0,解得m <-2或m >2.4.(2012·天津高考)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =__________,n =________.解析:因为|x +2|<3,即-5<x <1,所以A =(-5,1),又A ∩B ≠∅,所以m <1,B =(m,2),由A ∩B =(-1,n )得m =-1,n =1.答案:-1 15.不等式1x -1<1的解集为________.解析:由1x -1<1得1-1x -1>0,即x -2x -1>0,解得x <1,或x >2.答案:{x |x <1,或x >2}1.(2012·重庆高考)不等式x -1x +2<0的解集为( )A .(1,+∞)B .(-∞,-2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:选C 原不等式化为(x -1)(x +2)<0,解得-2<x <1,故原不等式的解集为(-2,1).2.(2013·湘潭月考)不等式4x -2≤x -2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)解析:选B ①当x -2>0即x >2时,原不等式等价于(x -2)2≥4,解得x ≥4. ②当x -2<0即x <2时,原不等式等价于(x -2)2≤4, 解得0≤x <2.3.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( ) A .(4,5) B .(-3,-2)∪(4,5) C .(4,5]D .[-3,-2)∪(4,5]解析:选D 原不等式可能为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5]4.若(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(-∞,-1)C.⎝⎛⎭⎫-∞,-1311D.⎝⎛⎭⎫-∞,-1311∪(1,+∞) 解析:选C ①m =-1时,不等式为2x -6<0,即x <3,不合题意.②m ≠-1时,⎩⎪⎨⎪⎧m +1<0,Δ<0,解得m <-1311.6.(2012·长沙模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)解析:选C ∵f (x )=ax 2-(a +2)x +1, Δ=(a +2)2-4a =a 2+4>0,∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点, 又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0,解得-1<x <0.7.若不等式k -3x -3>1的解集为{x |1<x <3},则实数k =________.解析:k -3x -3>1,得1-k -3x -3<0,即x -k x -3<0,(x -k )(x -3)<0,由题意得k =1.答案:18.不等式x 2-2x +3 ≤a 2-2a -1在R 上的解集是∅,则实数a 的取值范围是________. 解析:原不等式即x 2-2x -a 2+2a +4≤0,在R 上解集为∅, ∴Δ=4-4(-a 2+2a +4)<0, 即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)9.(2012·陕西师大附中模拟)若函数f (x )=⎩⎪⎨⎪⎧x +5,x <3,2x -m ,x ≥3,且f (f (3))>6,则m 的取值范围为________.解析:由已知得f (3)=6-m ,①当m ≤3时,6-m ≥3,则f (f (3))=2(6-m )-m =12-3m >6,解得m <2;②当m >3时,6-m <3,则f (f (3))=6-m +5>6,解得3<m <5.综上知,m <2或3<m <5.答案:(-∞,2)∪(3,5) 10.解下列不等式: (1)8x -1≤16x 2;(2)x 2-2ax -3a 2<0(a <0).解:(1)原不等式转化为16x 2-8x +1≥0, 即(4x -1)2 ≥0,则x ∈R , 故原不等式的解集为R .(2)原不等式转化为(x +a )(x -3a )<0, ∵a <0,∴3a <-a ,得3a <x <-a .故原不等式的解集为{x |3a <x <-a }.11.一个服装厂生产风衣,月销售量x (件)与售价p (元/件)之间的关系为p =160-2x ,生产x 件的成本R =500+30x (元).(1)该厂月产量多大时,月利润不少于1 300元?(2)当月产量为多少时,可获得最大利润,最大利润是多少? 解:(1)由题意知,月利润y =px -R , 即y =(160-2x )x -(500+30x ) =-2x 2+130x -500.由月利润不少于1 300元,得-2x 2+130x -500≥1 300. 即x 2-65x +900≤0,解得20≤x ≤45.故该厂月产量在20~45件时,月利润不少于1 300元. (2)由(1)得,y =-2x 2+130x -500 =-2⎝⎛⎭⎫x -6522+3 2252, 由题意知,x 为正整数.故当x =32或33时,y 最大为1 612.所以当月产量为32或33件时,可获最大利润,最大利润为1 612元.12.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小.解:由题意知,F (x )=f (x )-x =a (x -m )·(x -n ),当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0 的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .。

高中数学必修5(北师版)第三章不等式3.3 基本不等式(与最新教材完全匹配)知识点总结含同步练习题及答案

高中数学必修5(北师版)第三章不等式3.3 基本不等式(与最新教材完全匹配)知识点总结含同步练习题及答案
,即 x =
1 1 时,f (x) 取得最大值 . 6 12
设 a, b, c ∈ R,求证:a2 + b 2 + c 2 ⩾ ab + bc + ca . 证明:因为 a2 + b 2 ⩾ 2ab ,b 2 + c 2 ⩾ 2bc,c 2 + a2 ⩾ 2ca ,所以
某种汽车,购车费用是 10 万元,每年使用的保险费、汽油费约为 0.9 万元,年维修费第一年是 0.2 万元,以后逐年递增 0.2 万元.问这种汽车使用多少年时,它的年平均费用最少? 解:设使用 x 年时,年平均费用 y 最少. 由于“年维修费第一年是 0.2 万元,以后逐年递增 0.2 万元”,可知汽车每年维修费构成以 0.2 万元为首项,0.2 万元为公差的等差数列. 因此汽车使用 x 年的总维修费用为
(a2 + b 2 ) + (b 2 + c 2 ) + (c 2 + a2 ) ⩾ 2ab + 2bc + 2ca,
2
+
2
+
2

+
+
当且仅当 a = b = c 时,等号成立,所以 a2 + b 2 + c 2 ⩾ ab + bc + ca .
3.均值不等式的实际应用 描述: 利用基本不等式解决实际问题的一般步骤: ①正确理解题意,设出变量,一般可以把要求最大(小)值的变量定为函数; ②建立相应的函数关系式,把实际问题抽象成函数的最大值或最小值问题; ③在定义域内,求出函数的最大值或最小值; ④正确写出答案. 例题: 建造一个容积为 8 m 3 ,深为 2 m 的长方形无盖水池,如果池底的造价是每平方米 120 元, 池壁的造价是每平方米 80 元,求这个水池的最低造价. 解:设水池的造价为 y 元,池底的长为 x m ,则宽为

数学必修5第三章不等式知识梳理

数学必修5第三章不等式知识梳理

第三章 不等式§3.1 不等关系与不等式1.比较实数a ,b 的大小 (1)文字叙述如果a -b 是正数,那么a >b ; 如果a -b 等于0,那么a =b ;如果a -b 是负数,那么a <b ,反之也成立. (2)符号表示 a -b >0⇔a >b ; a -b =0⇔a =b ; a -b <0⇔a <b .2.常用的不等式的基本性质 (1)a >b ⇔b <a (对称性);(2)a >b ,b >c ⇒a >c (传递性); (3)a >b ⇒a +c >b +c (可加性);(4)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ; (5)a >b ,c >d ⇒a +c >b +d ; (6)a >b >0,c >d >0⇒ac >bd ;(7)a >b >0,n ∈N ,n ≥2⇒a n >b n ;(8)a >b >0,n ∈N ,n ≥2⇒1.比较两个实数的大小,只要考察它们的差就可以了. a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.作差法比较的一般步骤 第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“积”; 第三步:定号,就是确定是大于0,等于0,还是小于0.(不确定的要分情况讨论) 最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.3.不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,千万不可想当然.§3.2 一元二次不等式及其解法(一)1.一元一次不等式一元一次不等式经过变形,可以化成ax >b (a ≠0)的形式.(1)若a >0,解集为⎩⎨⎧⎭⎬⎫x |x >b a ;(2)若a <0,解集为⎩⎨⎧⎭⎬⎫x |x <b a .2.一元二次不等式一元二次不等式经过变形,可以化成下列两种标准形式:(1)ax 2+bx +c >0 (a >0);(2)ax 2+bx +c <0 (a >0).3.一元二次不等式与二次函数、一元二次方程的关系如下表所示:1.解一元二次不等式可按照“一看,二算,三写”的步骤完成,但应注意,当二次项系数为负数时,一般先化为正数再求解,一元二次不等式的解集是一个集合,要写成集合的形式.2.一元二次不等式解集的端点值一般是对应的一元二次方程的根. 3.含参数的一元二次不等式的求解往往要分类讨论,分类标准要明确,表达要有层次,讨论结束后要进行总结.§3.2 一元二次不等式及其解法(二)1.一元二次不等式的解集: (1)f (x )g (x )>0⇔f (x )·g (x )>0; (2)f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x )≤0g (x )≠0; (3)f (x )g (x )≥a ⇔f (x )-ag (x )g (x )≥0. 3.处理不等式恒成立问题的常用方法:(1)一元二次不等式恒成立的情况:ax 2+bx +c >0 (a ≠0)恒成立⇔⎩⎨⎧a >0Δ<0;ax 2+bx +c ≤0 (a ≠0)恒成立⇔⎩⎪⎨⎪⎧a <0Δ≤0.(2)一般地,若函数y =f (x ),x ∈D 既存在最大值,也存在最小值,则: a >f (x ),x ∈D 恒成立⇔a >f (x )max ; a <f (x ),x ∈D 恒成立⇔a <f (x )min .1.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解.若不等式含有等号时,分母不为零.2.对于有的恒成立问题,分离参数是一种行之有效的方法.这是因为将参数予以分离后,问题往往会转化为函数问题,从而得以迅速解决.当然这必须以参数容易分离作为前提.分离参数时,经常要用到下述简单结论:(1)a >f (x )恒成立⇔a >f (x )max ;(2)a <f (x )恒成立⇔a <f (x )min .§3.3 二元一次不等式(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域1.二元一次不等式(组)的概念含有两个未知数,并且未知数的次数是1的不等式叫做二元一次不等式. 由几个二元一次不等式组成的不等式组称为二元一次不等式组. 2.二元一次不等式表示的平面区域在平面直角坐标系中,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0某一侧所有点组成的平面区域,把直线画成虚线以表示区域不包括边界.不等式Ax +By +C ≥0表示的平面区域包括边界,把边界画成实线. 3.二元一次不等式(组)表示平面区域的确定(1)直线Ax +By +C =0同一侧的所有点的坐标(x ,y )代入Ax +By +C 所得的符号都相同.(2)在直线Ax +By +C =0的一侧取某个特殊点(x 0,y 0),由Ax 0+By 0+C 的符号可以断定Ax +By +C >0表示的是直线Ax +By +C =01.二元一次不等式(组)的解集对应着坐标平面的一个区域,该区域内每一个点的坐标均满足不等式(组).常用特殊点法确定二元一次不等式表示的是直线哪一侧的部分.2.画平面区域时,注意边界线的虚实问题.3.求平面区域内的整点个数时,要有一个明确的思路不可马虎大意,常先确定x 的范围,再逐一代入不等式组,求出y 的范围最后确定整数解的个数.3.3.2 简单的线性规划问题(一)线性目标函数关于x ,y 的一次解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 所有可行解组成的集合最优解 使目标函数取得最大值或最小值的可行解线性规划问题 在线性约束条件下求线性目标函数的最大值或最小值问题1.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.2.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.3.3.2 简单的线性规划问题(二)1.用图解法解线性规划问题的步骤: (1)分析并将已知数据列出表格; (2)确定线性约束条件; (3)确定线性目标函数; (4)画出可行域;(5)利用线性目标函数(直线)求出最优解;根据实际问题的需要,适当调整最优解(如整数解等).2.在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.1.画图对解决线性规划问题至关重要,关键步骤基本上是在图上完成的,所以作图应尽可能准确,图上操作尽可能规范.2.在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等)而直接根据约束条件得到的不一定是整数解,可以运用枚举法验证求最优整数解,或者运用平移直线求最优整数解.最优整数解有时并非只有一个,应具体情况具体分析.§3.4 基本不等式:ab ≤a +b2(一)1.如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”号).2.若a ,b 都为正数,那么a +b2≥ab 当且仅当a =b 时,等号成立),称上述不等式为基本不等式,其中a +b2称为a ,b 的算术平均数,ab 称为a ,b 的几何平均数.3.基本不等式的常用推论(1)ab ≤⎝⎛⎭⎫a +b 22≤a 2+b 22 (a ,b ∈R);(2)当x >0时,x +1x ≥2;当x <0时,x +1x ≤-2.(3)当ab >0时,b a +a b ≥2;当ab <0时,b a +ab≤-2.(4)a 2+b 2+c 2≥ab +bc +ca ,(a ,b ,c ∈R).§3.4 基本不等式:ab ≤a +b2(二)1.设x ,y 为正实数(1)若x +y =s (和s 为定值),则当x =y 时,积xy 有最大值,且这个值为s 24.(2)若xy =p (积p 为定值),则当x =y 时,和x +y 有最小值,且这个值为2p . 2.利用基本不等式求积的最大值或和的最小值时,需满足: (1)x ,y 必须是正数;(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值.(3)等号成立的条件是否满足.利用基本不等式求最值时,一定要注意三个前提条件,这三个前提条件概括为“一正、二定、三相等”.1.利用基本不等式求最值必须满足“一正、二定、三相等”三个条件,并且和为定值,积有最大值;积为定值,和有最小值.2.使用基本不等式求最值时,若等号取不到,则考虑用函数单调性求解.3.解决实际应用问题,关键在于弄清问题的各种数量关系,抽象出数学模型,利用基本不等式解应用题,既要注意条件是否具备,还要注意有关量的实际含义.。

高二数学必修5第三章不等式知识点总结

高二数学必修5第三章不等式知识点总结

高二数学必修5第三章不等式知识点总结高中数学不等式知识点不仅是考查重点也是考查难点,很多考生都被高中数学不等式知识点困惑,下面是店铺给大家带来的高二数学必修5第三章第三章不等式知识点总结,希望对你有帮助。

高二数学不等式的定义:① 其实质是运用实数运算来定义两个实数的大小关系。

它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

高二数学不等式的性质:① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:”即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

② 关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

高二数学不等式易错易混知识点:1、利用均值不等式求最值时,你是否注意到:"一正;二定;三等"。

2、绝对值不等式的解法及其几何意义是什么?3、解分式不等式应注意什么问题?用"根轴法"解整式(分式)不等式的注意事项是什么?4、解含参数不等式的通法是"定义域为前提,函数的单调性为基础,分类讨论是关键",注意解完之后要写上:"综上,原不等式的解集是……"。

5、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

6、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意"同号可倒"即a》b》0,a。

必修5-第三章不等式知识点总结

必修5-第三章不等式知识点总结

不等式知识总结一、不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>; d b c a d c b a +>+⇒>>,(4)乘法法则:bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,;bd ac d c b a >⇒>>>>0,0(5)倒数法则:b a ab b a 110,<⇒>>; (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且二、一元二次不等式02>++c bx ax (0>a )和)0(02><++a c bx ax 及其解法0>∆ 0=∆ 0<∆ 二次函数c bx ax y ++=2 的图象))((212x x x x a c bx ax y --=++= ))((212x x x x a c bx ax y --=++= c bx ax y ++=2一元二次方程02=++c bx ax有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 02>++c bx ax{}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 02<++c bx ax {}21x x x x << ∅∅ 顺口溜:在二次项系数为正的前提下:大于取两边,小于取中间三、均值不等式:若0a >,0b >,则2a b ab +≥,即).""(2号时取当且仅当==≥+b a ab b a 1. 使用均值不等式的条件:一正、二定、三相等 2、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈; ③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭;⑤)0(2>≥+ab b a a b 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即2112a ba b+≥≥≥+(当a=b时取等)4、极值定理:设x、y都为正数,则有⑴若x y s+=(和为定值),则当x y=时,积xy取得最大值24s.⑵若xy p=(积为定值),则当x y=时,和x y+取得最小值四、含有绝对值的不等式1、绝对值的几何意义:||x是指数轴上点x到原点的距离;12||x x-是指数轴上12,x x两点间的距离2、解含有绝对值不等式的主要方法:(1)解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;(2)去掉绝对值的主要方法有:①公式法:|| (0)x a a a x a<>⇔-<<,|| (0)x a a x a>>⇔>或x a<-.②定义法:零点分段法;③平方法:不等式两边都是非负时,两边同时平方.五、分式不等式的解法:先移项通分标准化,则()()0()()0()()0;0()0()()f xg xf x f xf xg xg xg x g x≥⎧>⇔>≥⇔⎨≠⎩六、数轴穿根法:奇穿,偶不穿例题:不等式03)4)(23(22≤+-+-xxxx的解为七、线性规划:1、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验;“直线定界、特殊点定域”(1)在平面直角坐标系中作出直线Ax+By+C=0;(2)在直线的一侧任取一点P(x0,y0),特别地,当C≠0时,常把原点作为此特殊点.(3)若Ax0+By0+C>0,则包含此点P的半平面为不等式Ax+By+C>0所表示的平面区域,不包含此点P 的半平面为不等式Ax+By+C<0所表示的平面区域.(4)同侧同号,异侧异号方法二:“直线定界、左右定域”利用规律:ﻩ(由x的大小确定左右,由y的大小确定上下)1.Ax+By+C>0,当A>0时表示直线Ax+By+C=0右方,当A<0时表示直线Ax+By+C=0左方;2.Ax+By+C<0,当A>0时表示直线Ax+By+C=0右方,当A<0时表示直线Ax+By+C=0左方。

高中数学必修五第三章不等式复习知识点与例题

高中数学必修五第三章不等式复习知识点与例题

一对一个性化辅导教案例1:解下列不等式题型2:简单的无理不等式的解法例1 :解下列不等式(2) x 2x 2 1题型3 :指数、对数不等式2例1 :若log a 1,则a 的取值范围是()3A. a 1B . 0 a —C - — a 133练习:1 2x 1 .x 1 ;(1) x 3 4x 0 ;2 2(2) (x 1) (x 5x 6) 0 ;(3)2x 2 x 1 2x 1练习: 解不等式(1)3x 5 x 2 2x 3(2) (2x 1)2(x 7)3(3 2x)(x 4)6D. 0 a -或 a 131、不等式2x 3 4x的解集是__________________ 。

2、不等式log1(x 2) 0的解集是_____________ 。

22e x 1x 23、设f(x)=‘1则不等式f(x) 2的解集为( )log3(x2 1),x 2,A. (1,2) (3, ) B . (710, ) C. (1,2) ) D . (1,2)题型4 :不等式恒成立问题1 2例1:若关于x的不等式一X 2x mx的解集是{x |0 x 2},则m的值是2练习:2 1 1一元二次不等式ax bx 2 0的解集是(一,—),贝U a b的值是( )2 3A. 10 B . 10 C. 14 D . 14例2:已知不等式x2 (a 1)x a 0,(1)若不等式的解集为(1,3),则实数a的值是_________________ 。

(2) __________________________________________________________ 若不等式在(1,3)上有解,则实数a 的取值范围是 _______________________________________________________ 。

(3) ____________________________________________________________ 若不等式在(1,3)上恒成立,则实数a的取值范围是 _____________________________________________________ 。

高中数学必修五第三章复习知识点及题型

高中数学必修五第三章复习知识点及题型

必修五第三章 不等式一.不等关系与不等式1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.比较两个数的大小可以用相减法;除法;平方法;开方法;倒数法等等。

2、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+;④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n n a b a b n n >>⇒>∈N >;⑧)0,1a b n n >>⇒>∈N >. 例1 对于实数判断下列命题真假:,,,c b a(1)若;,bc ac b a <>则 (2);,22b a bc ac >>则若(3)22,0b ab a b a >><<则若 (4) .0,0,11,<>>>b a ba b a 则若 例2(1).已知x ∈R,则22+x 与2的大小关系是 ( ).A.22+x >2 B.222≥+x C.22+x <2 D.222≤+x(2).2)2(-≥n m 等价的是( ). A.2)2(-≤n m B.m n ≥-2)2( C.m n ≤-2)2( D.2)2(-n <m(3)设则下列不等式成立的是是非零实数,若,,b a b a < ( ) A.22b a < B.b a ab 22< C.b a ab 2211< D.ba ab <例3(1)2. 函数122-+=x x y 的定义域是 ( ) A.{}34>-<x x x 或 B.{}34<<-x x C.{}34≥-≤x x x 或 D.{}34≤≤-x x(2) 不等式022>++bx ax 的解为3121<<-x ,则b a +等于 ( )A.10B.-10C.14D.-14(3) 对于任意的实数x ,不等式04)2(2)2(2<----x a x a 恒成立,实数a 的取值范围是( ) A.()2,∞- B.(]2,∞- C.()22,- D.(]22,- (4) 解关于的不等式)0(01)1(2><++-a x a ax .例4.解不等式(1)()()()0321≥-+-x x x (2)()()()0321>-+-x x x(3)()()()()032112≤-+-+-x x x x x (4)()()()()032112>-+-+x x x x(5)012<-+x x (6)221≤-+x x (7)027313222≥+-+-x x x x例5(1).已知不等式22622>++++x x kx kx 对任意R x ∈恒成立,求k 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一对一个性化辅导教案题型1:简单的高次不等式的解法例1:解下列不等式(1)340x x ->; (2)22(1)(56)0x x x --+<; (3)221021x x x +-≥+练习:解不等式(1)232532≥-+-x x x ; (2)0)4)(23()7()12(632>----x x x x题型2:简单的无理不等式的解法例1:解下列不等式(1)21x ->(2)2x +<题型3:指数、对数不等式例1:若2log 13a <,则a 的取值范围是( ) A .1a >B .320<<aC .132<<aD .320<<a 或1a > 练习:1、不等式2x x 432>-的解集是_____________。

2、不等式12log (2)0x +≥的解集是_____________。

3、设()f x = 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式()2f x >的解集为( ) A .(1,2)(3,)⋃+∞ B.)+∞C.(1,2))⋃+∞ D .(1,2)题型4:不等式恒成立问题例1:若关于x 的不等式2122x x mx -+>的解集是{|02}x x <<,则m 的值是_____________。

练习:一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( )A .10B .10- C. 14D .14-例2:已知不等式2(1)0x a x a -++<, (1)若不等式的解集为(1,3),则实数a 的值是_____________。

(2)若不等式在(1,3)上有解,则实数a 的取值范围是_____________。

(3)若不等式在(1,3)上恒成立,则实数a 的取值范围是_____________。

例3:若一元二次不等式042≤+-a x ax 的解集是R 则a 的取值范围是_____________。

练习:已知关于x 的不等式()()012422≥-++-x a x a 的解集为空集,求a 的取值范围。

已知关于x 的一元二次不等式ax 2+(a-1)x+a-1<0的解集为R ,求a 的取值范围.若函数f(x)=)8(62++-k kx kx 的定义域为R ,求实数k 的取值范围.解关于x 的不等式:x 2-(2m+1)x+m 2+m<0.例12 解关于x 的不等式:x 2+(1-a)x-a<0.线性规划例题选讲:题型1:区域判断问题例1:已知点00(,)P x y 和点A (1,2)在直线0823:=-+y x l 的异侧,则( )A .02300>+y xB .<+0023y x 0C .82300<+y xD .82300>+y x练习:1、已知点(1,2)P -及其关于原点的对称点均在不等式012>+-by x 表示的平面区域内,则b 的取值范围是__________。

2、原点和点(1,1)在直线0x y a +-=的两侧,则a 的取值范围_________。

题型3:画区域求最值问题 若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,(1)求2x y +的最大值; (2)求x y -的最小值; (3)求11y x ++的取值范围; (4)求2y x -的取值范围; (5)求22x y +的最大值; (6的最小值。

题型4:无穷最优解问题2)例1:已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≥⎨⎪≤⎩,使ay x z +=(0a >)取得最小值的最优解有无数个,则a 的值为( )A 、3-B 、3C 、1D 、1练习:给出平面区域(包括边界)如图所示,若使目标函数(0)z ax y a =+>取得最大多个,则a 的值为( ) ()A 14()B 35()C 4()D 53题型5:整点解问题例1:强食品安全管理,某市质监局拟招聘专业技术人员x 名,行政管理人员y 名,若x 、y 满足4y x y x ≤⎧⎨≤-+⎩,33z x y =+的最大值为( ) A .4B .12C .18D .24练习: 1、某所学校计划招聘男教师x 名,女教师y 名, x 和y 须满足约束条件25,2,6.x y x y x -≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师人数最多是( )A .6B .8C .10D .122、满足2x y +≤的点(,)x y 中整点(横纵坐标都是整数)有( )A 、9个B 、10个C 、13个D 、14个题型6:线性规划中的参数问题例1:已知0a >,,x y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .14 B .12 C .1 D .2练习: 1、设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点00(,)P x y ,满足0022x y -=,求得m 的取值范围是( )A .4,3⎛⎫-∞ ⎪⎝⎭B .1,3⎛⎫-∞ ⎪⎝⎭C .2,3⎛⎫-∞-⎪⎝⎭ D .5,3⎛⎫-∞- ⎪⎝⎭2、设不等式组0,02036x y x y x y -+-⎧⎪-+⎨⎪⎩≤≥≥,表示的平面区域为D ,若直线20kx y k -+=上存在区域D 上的点,则k 的取值范围是________。

线性规划问题的推广-----利用几何意义解决最值问题解题思路:1、找出各方程、代数式的几何意义;2、找出参数的几何意义;3、画图求解。

例1:若直线1y kx =-()k R ∈与圆22(1)1x y +-=有公共点,则k 的取值范围是___________。

练习:1、点(,)P x y 在圆22:(2)3C x y -+=上,则y x的最大值为_______。

2、已知点)4,1(A ,)1,3(B ,点),(y x P 在线段AB 上,则1+x y 的取值范围为________。

例2:若直线20x y b -+=与圆5)2()1(22=++-y x 有公共点,则b 的取值范围为_______。

练习:1、已知x ,y 满足22240x y x y +-+=,则2x y -的取值范围是__________。

2、若60125=+y x ,则22)1(y x ++的最小值为________。

3、已知点),(y x P 为圆2)1()1(:22=++-y x C 上任意一点,则22)1()1(-++y x 的取值范围为____。

线性规划作业1、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是_______。

2、已知点(,)P x y 的坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,点O 为坐标原点,那么||PO 的最小值等于_______,最大值等于_____。

3、设x 、y 满足的约束条件⎪⎩⎪⎨⎧≤+≥≥12340y x x y x ,则132+-x y 的最大值为_______。

4、设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为______。

5、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z x ay =-(0a >)取得最小值的最优解有无数个,则a 的值为( )A 、3-B 、3C 、1-D 、16、若实数,x y 满足2045x y x y +-≥⎧⎪≤⎨⎪≤⎩则s y x =-的最小值为____________。

7、已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=m ( )A. 2-B. 1-C. 1D. 48、设不等式组0,02036x y x y x y -+-⎧⎪-+⎨⎪⎩≤≥≥,表示的平面区域为D ,若直线0kx y k -+=上存在区域D 上的点,则k 的取值范围是____________。

基本不等式1111n n a a n n a a ++≤≤≤++L L例题选讲:题型1:基本不等式应用条件的判断例1: 已知a,b R ∈,下列不等式中不正确的是( )(A )2ab b a 22≥+ (B )ab 2b a ≥+ (C )4a 4a 2≥+ (D )4b b422≥+练习:在下列函数中最小值为2的函数是( )()A 1y x x=+()B 33x x y -=+ ()C 1lg (110)lg y x x x =+<<()D 1sin (0)sin 2y x x x π=+<<题型2:+≥a b例1:若0x >,则2x x +的最小值为。

练习:若0x >,求123y x x =+的最小值。

例2:当x 时21>,求128-+x x 的最小值及对应的x 的值. 练习:若3x >,求13y x x =+-的最小值。

例3:设x 、y 为正数, 则14()()x y xy++的最小值为( ) A. 6 B.9 C.12 D.15例4:当x>1时,不等式11x a x +≥-恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞)D .(-∞,3]例5:函数)0(4)(≠+=x xx x f 的值域是_____________。

题型3:2a b ab 2⎛⎫+≤ ⎪⎝⎭的应用例1:若01x <<,求(1)y x x =-的最大值。

练习: 1、若102x <<,求(12)y x x =-的最大值为________。

2、若0x >,则y x =________。

题型4:构造基本不等式解决最值问题例1:求函数221()x x f x x-+=(0x >)的值域。

练习: 1、2()24=-+xf x x x (0x >)的值域是________。

2、)1(11072->+++=x x x x y 的最小值为_________。

(分离法、换元法)根式判别法把函数转化成关于x 的二次方程()0,=y x F ,通过方程有实根,判别式0φ∆,从而求得原函数的值域.对于形如,g fx ex cbx ax y ++++=22其定义域为R ,且分子分母没有公因式的函数常用此法。

相关文档
最新文档