浅议数学课堂提问的类型

合集下载

浅谈小学数学课堂提问技巧

浅谈小学数学课堂提问技巧

浅谈小学数学课堂提问技巧作为小学数学教师,提问是我们课堂教学中不可或缺的一部分。

通过有针对性的提问,能够引导学生主动思考、提高他们的学习兴趣和积极性,提高课堂教学效果。

提问技巧对于教师来说是非常重要的。

在小学数学课堂教学中,提问技巧的运用更是需要细致入微,下面我将分享一些浅谈小学数学课堂提问技巧的经验。

一、灵活使用不同类型的提问在数学课堂教学中,提问的种类和形式有很多,如开放式提问、封闭式提问、引导式提问、设问式提问等。

对于小学生来说,我们需要灵活运用这些提问形式,让学生在思考中获得成长。

1. 开放式提问开放式提问是指教师提出了一个问题,学生可以用自己的语言或思维方式进行回答,没有固定答案。

这种提问方式适合用于激发学生的思维,开拓他们的思维空间。

教师可以用开放式提问的方式引导学生解决一个数学问题:“请你们来思考一下,这个问题有哪些解决方法?你们可以用什么办法来解决呢?”通过这种提问方式,可以激发学生思考的兴趣,让他们在探究中获取知识。

封闭式提问是指教师提出的问题有一个明确的答案,学生只需要给出具体的数字或答案即可。

这种提问方式适合用于检验学生对知识点的掌握情况。

教师可以通过封闭式提问考察学生对于简单计算的掌握:“2+3等于多少?”这种提问方式可以帮助学生迅速巩固所学知识,检验他们的学习效果。

引导式提问是指教师通过提问引导学生逐步深入思考,让他们找到问题的关键点,然后得出结论。

教师可以通过引导式提问指导学生进行推理思维:“我们已经学过了两位数的加法,那你们说一下,当两个两位数相加时,我们应该注意哪些问题呢?”这种提问方式能够帮助学生理清思路,培养他们的逻辑思维能力。

设问式提问是指教师通过提问引导学生去探讨问题或者思考未知的答案。

教师可以通过设问式提问激发学生的兴趣:“我们现在来思考一下,平行线和垂直线有什么特点?它们在我们生活中有哪些实际应用?”通过这样的提问方式,学生可以主动思考,发现知识的实际应用,加深对知识点的理解。

中学数学课堂有效提问方式

中学数学课堂有效提问方式

中学数学课堂有效提问方式中学数学课堂中,提问是一种教师引导学生思考和参与讨论的重要方式。

有效的提问可以激发学生的学习兴趣,帮助他们巩固知识,培养问题解决能力和思维能力。

下面是中学数学课堂中一些有效的提问方式。

1. 开放性提问:这种提问方式通常以“为什么”、“怎样”、“哪个是最好的”等开放性问题开始,鼓励学生进行思考和探究,激发他们的学习兴趣,培养他们的分析和解决问题的能力。

教师可以问:“你认为怎样解决这个数学问题是最好的?为什么?”这种提问方式可以帮助学生深入思考,并激发他们的创造力。

2. 简答题提问:这类问题需要学生通过简短的回答来回顾或总结已学的知识点。

教师可以问:“请简单解释一下直角三角形的特点。

”这样的提问可以帮助学生回忆所学的知识,并检查他们的理解程度。

3. 定义类提问:教师可以提出一些需要学生定义的数学名词、概念等问题。

教师可以问:“什么是零为上限的等差数列?”这类问题可以帮助学生巩固概念的定义,提高他们的理论基础。

4. 专项选择题:这类问题通常是基于特定的数学知识点提出的选择题,可以帮助学生巩固和检验所学的知识点。

教师可以问:“在下列几个分数中,哪个是最简分数?”然后给出几个选项。

这类问题可以帮助学生通过选择来检查他们的知识掌握程度。

5. 推理判断题:这类问题要求学生根据已有的数学知识和推理能力来判断提出的问题的真假。

教师可以问:“通过什么方法可以判断一个数是奇数?”学生需要运用已学的知识和逻辑推理来回答这类问题。

除了以上提到的几种方式,还有一些其他的有效提问方式,如分组讨论、让学生解答一些复杂问题、提出数学实际应用问题等等。

无论使用何种提问方式,教师应该根据学生的年龄、认知水平和学习情况来灵活运用,将提问方式与课堂教学内容相结合,激发学生的学习动力和思维能力。

小学数学课堂教学的提问技巧

小学数学课堂教学的提问技巧

小学数学课堂教学的提问技巧小学数学课堂教学是培养学生数学思维和逻辑能力的重要阶段,而教师的提问技巧对于学生的学习效果起着至关重要的作用。

本文将探讨一些小学数学课堂教学中常用的提问技巧,帮助教师提升教学质量,激发学生的求知欲和学习兴趣。

一、提问的分类在小学数学课堂上,教师通常会使用不同类型的提问来引导学生思考和回答问题。

常见的提问方式包括以下几种:1. 开放性提问:开放性提问是一种不设限制的提问方式,教师在课堂上可以用“为什么”、“如何”等问题引导学生思考和表达观点,以便激发学生的思考能力和创造力。

2. 封闭性提问:封闭性提问是一种相对答案明确的提问方式,通常要求学生做出具体的回答。

这种提问方式适用于需要学生掌握基础知识和技能的情况。

3. 提问的层次:提问的层次可以分为认知层次和高层次思维层次两种。

在认知层次提问中,教师主要询问学生对知识的了解和记忆情况;而在高层次思维提问中,教师会要求学生对知识进行分析、综合和应用,以培养学生的批判性思维和解决问题的能力。

二、提问技巧在进行数学课堂教学时,教师应灵活运用各种提问技巧,以激发学生的学习兴趣和提升教学效果。

以下是一些常用的提问技巧:1. 提问前的铺垫:在进行提问之前,教师可以通过提出问题的背景和引入相关知识,吸引学生的兴趣,让学生在心理上做好准备回答问题。

2. 适当的沉默时间:在提出问题后,教师应给学生足够的时间进行思考和回答。

适当的沉默时间可以让学生有充分的思考和表达机会,同时也能培养学生的自信心和自主学习能力。

3. 引导性提问:在教学过程中,教师可以通过引导性提问来帮助学生理解和解决问题,激发学生的思维能力。

通过提问学生“你认为这个问题应该如何解决?”等方式,让学生自主发现问题的解决方法。

4. 鼓励性提问:在学生回答问题时,教师应给予鼓励和肯定,鼓励学生多说、多想、多做,使他们能够建立自信心,培养积极的学习态度。

5. 多角度提问:在提问时,教师可以从不同的角度和层次出发,引导学生进行多维度的思考和分析,培养学生的综合思维能力。

浅谈初中数学课堂中提问的技巧

浅谈初中数学课堂中提问的技巧

浅谈初中数学课堂中提问的技巧
在初中数学课堂中,老师的提问是学生学习的重要环节。

以下
是几个提问技巧:
1. 开放性问题:开放性问题不仅能够激发学生思考,而且能够
充分调动学生的积极性。

这种问题多问“为什么”、“怎么样”、“你的意见是什么”等。

2. 封闭性问题:封闭性问题通常是带有答案的问题。

这种问题
有助于巩固学生的知识点,帮助学生发现自己的不足之处。

3. 层次性问题:层次性问题包括回答问题的不同层次,问问题
的过程中可以根据答案进行深层次的提问,帮助学生更好的理解知
识点。

4. 引导性问题:引导性问题是指老师在提问时,通过一些提示,来帮助学生找到答案和解决问题的方法,提高学生的思维和解决问
题的能力。

在提问技巧时,老师需要注意问题的难易程度,以及学生的真
实掌握情况。

提问的目的在于帮助学生更好的掌握知识点,提高学
习效果,而不是刻意刁难学生。

小学数学课堂教学中的提问及策略

小学数学课堂教学中的提问及策略

小学数学课堂教学中的提问及策略小学数学是培养学生逻辑思维、加强计算能力和掌握基本数学知识的重要门课。

在数学课堂教学中,老师的提问是非常重要的教学策略之一,它可以帮助学生思考、巩固知识和培养能力。

本文将介绍小学数学课堂教学中的提问及策略。

一、提问类型1.记忆型提问:指老师要求学生回忆、提取已经学过的知识点。

例如:“请问有哪些园内绝对不可能相交?”“请问十进制下的最小的质数是多少?”2.理解型提问:指老师要求学生理解、分析所学知识并能够简略表述出来。

例如:“什么是分式?”“什么是不等关系?”3.应用型提问:指老师要求学生对所学知识进行运用,解决实际问题。

例如:“小明现在有6元钱,如果他再拿出2元钱,就可以买一枝铅笔,这支铅笔的售价是多少?”二、提问的策略1.启发式提问:老师根据学生的程度和学科特点,给予启发性、引导性的提问,目的是让学生通过思考和探究,达到理解和归纳总结的作用。

例如:“你认为每个人手里都有几个十指?”“今天大家搞的这个问题,有没有突破点,哪些地方可以挖掘出新的知识点?”2.递进式提问:老师在提问过程中,应该注意递进,从简单到复杂不断提高难度,从简单的知识点到对这些知识点的运用,再到引出新知识。

例如:“请问有哪些形状?请画出你知道的形状。

”“请问,在直角三角形中,直角在什么位置?”3.变异式提问:老师可以采取变异式提问,即变换题干中某一要素,以引导学生学会变通解决问题的能力。

例如:“请问:4乘以什么数等于20?”“请问:20除以什么数等于4?”4.随机式提问:老师在提问时可以采用随机式提问,即不是按照学生座位顺序、字母表顺序或每个人依次回答,而是随机换人,或者通过班内小测验或游戏等方式,进行随机提问。

这样可以增加课堂的趣味性和互动性,使每个学生都有机会思考、回答问题。

5.无害化提问:在提问时,老师应该避免让学生因答错而受到羞辱或者惩罚,应该鼓励学生发表自己的看法和想法,引导学生从自身和他人的错误中学习和成长。

中学数学课堂有效提问方式

中学数学课堂有效提问方式

中学数学课堂有效提问方式在中学数学课堂中,有效的提问方式对于帮助学生理解和掌握知识非常重要。

以下是一些中学数学课堂有效提问的方式:1. 直接提问:老师可以直接向学生提问问题,鼓励他们积极参与课堂讨论。

这种提问方式可以激发学生的学习兴趣,并促使他们思考问题。

例如:a) 请问平行线的定义是什么?b) 哪些图形可以称为多边形?2. 引导式提问:老师可以使用引导式提问的方式来帮助学生思考并逐步达到正确的答案。

通过提出一系列相关的问题,引导学生思考并建立起知识的框架。

例如:a) 如果两个线段的长度相等,我们可以说什么关于它们之间的关系?b) 你能给我举一个平行四边形的例子吗?3. 扩散式提问:老师可以通过扩散式提问来让学生应用所学知识解决更复杂的问题。

这种提问方式可以培养学生的综合思考能力和解决问题的能力。

例如:a) 给定一个三角形,如何证明它是等边三角形?b) 如果一个学生平均分数是80分,他下一次考试得了90分,那他的平均分数会变成多少?4. 旁敲侧击的提问:老师可以提出一些与课堂内容相关但不直接涉及知识点的问题,引发学生探索问题、思考和发现规律。

例如:a) 请问从一个数字的个位数和十位数可以推算出什么?b) 如果你是一个园丁,你会如何安排花坛的位置?5. 前瞻性提问:老师可以在课堂上提前为学生展示一些将来可能出现的问题,通过这种提问方式引发学生的探索和思考。

例如:a) 我们已经学习了一些三角函数的基本概念,你们认为这些知识可以用在什么实际问题中?有效的提问方式可以激发学生的思维和好奇心,帮助他们更好地理解和掌握数学知识。

通过鼓励学生自己思考问题和积极参与课堂讨论,有效的提问方式也可以培养学生的学习能力和解决问题的能力。

数学课堂教学中提问的艺术

数学课堂教学中提问的艺术

数学课堂教学中提问的艺术提问是教学中常用的一种教学方式,它能够引导学生思考、激发学生的学习兴趣、帮助学生巩固知识和建立自信心。

在数学课堂教学中,提问更是一种艺术,教师需要根据学生的理解能力和学习状态来巧妙地设计问题,引导学生进行思考,从而达到教学目的。

本文将从提问的形式、内容和技巧三个方面探讨数学课堂教学中提问的艺术。

一、提问的形式1.开放性提问开放性提问是指教师提出一个开放的问题,让学生自由发挥思维,展开讨论。

这种提问方式能够激发学生的思考兴趣,培养学生的创新能力和解决问题的能力。

教师可以问:“如何证明勾股定理?”这样的问题可以引导学生运用几何知识和推理能力,从不同角度思考问题,促进他们的自主学习。

2.封闭性提问封闭性提问是指教师提出一个具体的问题,学生只需回答“是”或“否”或给出具体的答案。

这种提问方式可以帮助教师快速了解学生对知识点的掌握情况,及时纠正学生的错误观念。

教师可以问:“直角三角形中,斜边的长度是否一定大于直角边的长度?”这类问题可从一些基础概念开始迅速检查学生的学习情况。

3.追问式提问追问式提问是指教师在学生回答问题后,继续追问相关问题,引导学生深入思考。

采用追问式提问能够引导学生逐步扩展知识面,增强学生的逻辑思维和批判性思维。

教师可以问:“为什么在三角形中,两角相等的两边也相等?”学生回答后,教师可以追问:“你能用什么定理来解释这个现象?”这种追问式的提问能够促使学生更深入地思考问题,加深对知识点的理解。

二、提问的内容1.基础概念的理解在教学中,教师可以通过提问考察学生对基础概念的理解情况,例如平行线的性质、三角形的分类及对应关系等。

通过提问,教师可以及时发现学生对基础概念的理解不清晰的地方,及时进行纠正和复习。

2.解题方法和策略教师可以通过提问引导学生思考解题方法和策略,例如使用什么定理、何种途径可以更快地解决问题等。

通过这种提问,学生能够学会灵活运用所学知识,提高解题效率。

小学数学课堂上的有效提问

小学数学课堂上的有效提问

小学数学课堂上的有效提问
在小学数学课堂上,教师的提问是促使学生思考、巩固知识、拓宽思维的重要手段之一。

有效的提问可以激发学生的学习兴趣和思维能力,帮助他们理解并运用数学知识。

一、激发学生思考的提问方式:
1. 开放性问题:“你知道有哪些平面图形?”这样的问题可以激发学生思考并尝试
回答,并且可以得到多个不同的答案。

2. 引导性问题:例如:“有一根长木棍,你应该如何用它测量一条曲线的长度?”
这样的问题可以引导学生思考和探索,并且可以促使他们应用已学知识解决问题。

3. 启发性问题:例如:“你有两个数字,它们的和是15,差是5,你能算出这两个数字吗?”这样的问题可以激发学生的逻辑思维和推理能力,让他们找到解决问题的方法。

二、巩固知识的提问方式:
1. 运用性问题:例如:“请你计算2+3的和。

”这样的问题可以帮助学生巩固加法运算的基本知识,并且可以通过反复练习提高他们的计算能力。

2. 归纳总结问题:例如:“你能从下面的一组数字中找出规律吗?1, 3, 5, 7, 9, ...”这样的问题可以帮助学生总结规律,并且可以通过推理和类比掌握数列的概念。

3. 判断意义问题:例如:“你认为1毫米和1米有什么区别?”这样的问题可以让学生思考数字的意义和大小,并且可以帮助他们理解不同单位之间的换算关系。

2. 反问问题:例如:“你觉得这个答案对吗?为什么?”这样的问题可以帮助学生
重新审视自己的答案,并且可以培养他们的思辨能力。

3. 探究性问题:例如:“你觉得两个相似的三角形,它们的面积和边长有什么关系?”这样的问题可以激发学生的好奇心和求知欲,并且可以帮助他们深入理解几何概
念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅议数学课堂提问的类型
摘要:课堂提问可依据所提问题的类型不同而实行分类,也可根据提问的目的和作用分类。

实际上,提问是师生双方的共同活动,教师更要注重的是提问对于学生思维活动的激发和主体作用的体现问题。

数学课堂上提问分为复述性提问、铺垫性提问、理解性提问、探索性提问、效果性提问和概括性提问。

关键词:课堂提问;提问类型;激发思维
课堂提问可依据所提问题的类型不同而实行分类,比如美国的贝尔在《中学数学的教与学》中按照事实、技能、概念、原理四种对象与理解、理解、应用、分析、综合、评价六种认知水平交叉结合,把问题分成24种类型(如事实理解、事实分析、技能应用、技能评价、概念理解、原理综合等)。

也可根据提问的目的和作用分为引入性提问、复习性提问、启发性提问、显示性提问、表现性提问、激趣型提问、联想型提问、类比型提问、悬念型提问、迁移型提问、暗示型提问、猜想型提问、发散型提问、反馈型提问等类型。

这是从教师的主观愿望的角度考虑的分类。

实际上,提问是师生双方的共同活动,教师更要注重的是提问对于学生思维活动的激发和主体作用的体现问题。

所以能够按问题本身实行分类,如概念性提问、定理性提问等;还能够按照学生的认知水平实行分类,有低级认知问题、高级认知问
题,还可细分为记忆型问题、理解型问题、分析型问题、评价型问题等。

我在教学中习惯按问题的作用对课堂提问实行分类。

一、复述性提问
复述性提问,即要求学生复述教材的提问。

教科书里重要的概念、公理、定理、性质、法则,是数学基础知识的组成部分,也是学生数学思维的重要“元件”,很多内容学生必须首先熟记它们。

例如,立体几何中直线和平面相关的一系列判定定理和性质定理,学生如果不能熟记,这个章的证明和计算将难以掌握。

教师不时在课堂上实行提问并要求学生复述,是促使学生熟记的有力手段。

要求学生复述教材的提问,往往在新教材实行后的一段时间,也能够在以后用到它们时事先提问。

当然,这类机械复述要以先讲清产生这些结论的过程为前提,以这些结论的使用为目的。

我们仍然不主张不求甚解的死记硬背。

所以,这类提问所占比重并不高。

二、铺垫性提问
铺垫性提问,即学生学习新知识前的提问。

这种提问的目的是为学生学习新教材扫清障碍,垫铺性提问的问题所涉及的内容往往是学生已经学过,并且在讲新知识时又要用到的。

例如,在讲“对数函数”之前,教师可先提问指数函数的概念、指数函数的单调性、反函数的概念,然后在此基础上讲对数函数的概念。

这样做有利于新、旧教材的相互联系,易于使学生达到有意义学习。

教师所提问题的形式应更多注重灵活性,以避免学生照书直答,对于上例,能够这样来提问:
(1)函数y=7x,y=(■)x,y=nx(x∈R)中,哪些不是指数函数?(2)描述y=7x,y=(■)x的图像的形状,并说明它们的单调性。

(3)y=7x,y=(■)x 有没有反函数?为什么?
这样的问题,学生仅靠翻书是无法得到答案的。

学生若要准确回答这些问题,就得开动脑筋思考。

这显然比教师直问概念、性质,学生照书直答好一些。

三、理解性提问
理解性提问,即为加深学生对知识的理解实行的提问。

学生刚学新概念、新规律后,并不是马上就能理解。

为了加深学生的理解,教师能够提出一些不太复杂的问题,促使学生对所学概念有比较清晰的理解。

例如,学生学了“任意角三角函数”,对“y=sinx的定义域是一切实数”往往理解不深,不易与角的弧度制之间建立有意义的联系。

教师能够考虑提出“sin4是什么意思?‘4’这个角的终边在第几象限”或“sin(-2)是什么意思?‘-2’这个角的终边在第几象限”等问题,但此类问题不宜过多、过深。

象这样为深化概念和规律而提出问题,在高中数学教学中有广泛的使用。

四、探索性提问
探索性提问,即引导学生探索解题思路的提问。

这样的问题提问应能启发学生积极思维,协助他们主动探索解题思路。

此类问题并不需要很多,并且不能离开学生的实际水平。

提问的梯度不能太大,否则启而不发;梯度也不能太小,否则学生的思维过程被教师“包办”。

例如习题:“2n-1与2n+1表示两个连续奇数,说明这两个连续奇数的平方差是8的倍数。


教学时依题意写出(2n+1)2-(2n-1)2之后,能够考虑提出这样的问题:“将上式变形为怎样的形式,就能够说明它是8的倍数?”为的是启发学生明确变形的目标,避免盲目推导。

这样的问题,一定水准上揭示了解题的思维过程,对学生具有一定的启发性。

五、效果性提问
效果性提问,即检查学生学习效果的提问。

这类问题的目的在于了解学生的学习情况,发现问题即时补救。

这类提问往往和巩固知识结合起来。

例如,学了同角三角函数的倒数关系、商数关系、平方关系之后,教师可提出“哪些关系式能够互相推导?”使学生加深对公式的理解。

在学生回答的过程中,教师能够依据“反馈”回来的信息,对学生的误解和错误即时给予纠正。

六、概括性提问
概括性提问,即要求学生概括学习材料的提问。

对学习材料能够实行概括,才能提升数学教学的理论水平。

教师实行概括当然是能够的,但是,有些时候概括过程让学生来做,有利于培养学生的数学水平。

此类问题的提问可选择中等难度的材料。

例如,学了“二面角的平面角”的概念后,让学生将解析几何中两条相交直线所成的角、立体几何中两条异面直线所成的角、直线和平面所成的角、二面角的平面角等实行比较,找出它们的共同点与不同点。

经过教师适时启发,学生逐渐概括为:相同点是它们都归结为两条直线或两条射线所成的角,度量结果都具有确定性。

对于不同点,学生可能首先发现,前三种角都是在到之间,而二面角的平面角是在到之间。

学生找到第二个不同点:前三种角归结为两条直线所成的角时,指的是两条直线相交所得角中较小的那一个;而二面角的平面角,却不具备这种“最小性”。

事实上,一个平面截二面角时,截得的角能够无限接近。

学生能对教师提出的问题概括出一系列的数学材料,此类问题有利于学生知识的系统化。

相关文档
最新文档