实验二 参考 快速傅立叶变换(FFT)及其应用
实验二用FFT对信号进行频谱分析

实验二用FFT对信号进行频谱分析简介:频谱分析是信号处理中常用的一种方法,通过将信号变换到频域,可以得到信号的频谱特征。
其中,快速傅里叶变换(FFT)是一种高效的计算频域的方法。
在这个实验中,我们将学习如何使用FFT对信号进行频谱分析。
实验步骤:1.准备工作:a. 安装MATLAB或者Octave等软件,并了解如何运行这些软件。
2.载入信号:a. 在MATLAB或Octave中,使用内置函数加载信号文件,将信号读入到内存中。
b.查看信号的基本信息,例如采样频率、时长等。
3.FFT变换:a. 使用MATLAB或Octave的fft函数将信号由时域变换到频域。
b.设置合适的参数,例如变换的点数、窗口函数等。
可以尝试不同的参数,观察其对结果的影响。
4.频谱绘制:a. 使用MATLAB或Octave的plot函数将变换后的频率数据进行绘制。
b.可以绘制幅度谱(频率的能量分布)或相位谱(频率的相位分布),也可以同时绘制两个谱。
5.频谱分析:a.根据绘制出的频谱,可以观察信号的频率特征。
例如,可以识别出信号中的主要频率分量。
b.可以进一步计算信号的能量、均值、方差等统计量,了解信号的功率特征。
c.可以对不同的信号进行对比分析,了解它们在频域上的差异。
实验结果和讨论:1.绘制出的频谱图可以清晰地显示信号的频率分量,可以识别出信号中的主要频率。
2.通过对不同信号的对比分析,可以发现它们在频域上的差异,例如不同乐器的音调特征。
3.可以进一步分析频谱的统计特征,例如信号的能量、平均幅度、峰值频率等。
4.在进行FFT变换时,参数的选择对结果有一定的影响,可以进行参数的调优,获得更准确的频谱分析结果。
结论:本实验通过使用FFT对信号进行频谱分析,可以获得信号在频域上的特征。
通过观察频谱图和统计特征,可以进一步了解信号的频率分布、能量特征等信息。
这对信号处理、音频分析等领域具有很大的应用价值。
在实际应用中,可以根据不同的需求,选择合适的参数和方法,对不同的信号进行频谱分析。
数字信号处理 实验报告 实验二 应用快速傅立叶变换对信号进行频谱分析

数字信号处理实验报告实验二应用快速傅立叶变换对信号进行频谱分析2011年12月7日一、实验目的1、通过本实验,进一步加深对DFT 算法原理合基本性质的理解,熟悉FFT 算法 原理和FFT 子程序的应用。
2、掌握应用FFT 对信号进行频谱分析的方法。
3、通过本实验进一步掌握频域采样定理。
4、了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 。
二、实验原理与方法1、一个连续时间信号)(t x a 的频谱可以用它的傅立叶变换表示()()j t a a X j x t e dt +∞-Ω-∞Ω=⎰2、对信号进行理想采样,得到采样序列()()a x n x nT =3、以T 为采样周期,对)(n x 进行Z 变换()()n X z x n z +∞--∞=∑4、当ωj ez =时,得到序列傅立叶变换SFT()()j j n X e x n e ωω+∞--∞=∑5、ω为数字角频率sT F ωΩ=Ω=6、已经知道:12()[()]j a m X e X j T T Tωωπ+∞-∞=-∑ ( 2-6 )7、序列的频谱是原模拟信号的周期延拓,即可以通过分析序列的频谱,得到相应连续信号的频谱。
(信号为有限带宽,采样满足Nyquist 定理)8、无线长序列可以用有限长序列来逼近,对于有限长序列可以使用离散傅立叶变换(DFT )。
可以很好的反映序列的频域特性,且易于快速算法在计算机上实现。
当序列()x n 的长度为N 时,它的离散傅里叶变换为:1()[()]()N knN n X k DFT x n x n W-===∑ 其中2jNN W eπ-=,它的反变换定义为:101()[()]()N knN k x n IDFT X k X k W N --===∑比较Z 变换式 ( 2-3 ) 和DFT 式 ( 2-7 ),令kN z W -=则1()()[()]|kNN nkN N Z W X z x n W DFT x n ---====∑ 因此有()()|kNz W X k X z -==k N W -是Z 平面单位圆上幅角为2kNπω=的点,也即是将单位圆N 等分后的第k 点。
快速傅立叶变换FFT实验报告

快速傅立叶变换〔FFT〕算法试验一.试验目的1.加深对DFT 算法原理和根本性质的理解;2.生疏FFT 算法原理和FFT 子程序的应用;3.学习用FFT 对连续信号和时域信号进展谱分析的方法,了解可能消灭的分析误差及其缘由,以便在实际中正确应用FFT。
二.试验设备计算机,CCS 3.1 版软件,E300 试验箱,DSP 仿真器,导线三.根本原理1.离散傅立叶变换DFT 的定义:将时域的采样变换成频域的周期性离散函数,频域的采样也可以变换成时域的周期性离散函数,这样的变换称为离散傅立叶变换,简称DFT。
2.FFT 是DFT 的一种快速算法,将DFT 的N2 步运算削减为〔N/2〕logN 步,极大2的提高了运算的速度。
3.旋转因子的变化规律。
4.蝶形运算规律。
5.基2FFT 算法。
四.试验步骤1.E300 底板的开关SW4 的第1 位置ON,其余置OFF。
其余开关不用具体设置。
2.E300 板子上的SW7 开关的第1 位置OFF,其余位置ON3.阅读本试验所供给的样例子程序;4.运行CCS 软件,对样例程序进展跟踪,分析结果;记录必要的参数。
5.填写试验报告。
6.供给样例程序试验操作说明A.试验前预备用导线连接“Signal expansion Unit”中2 号孔接口“SIN”和“A/D 单元”的2 号孔接口“AD_IN0”。
〔试验承受的是外部的AD模块〕B.试验1.正确完成计算机、DSP 仿真器和试验箱的连接后,系统上电。
2.启动CCS3.1,Project/Open 翻开“algorithm\01_fft”子名目下“fft.pjt”工程文件;双击“fft.pjt”及“Source”可查看各源程序;加载“Debug\fft.out”;3.单击“Debug\Go main”进入到主程序,在主程序“flag=0;”处设置断点;4.单击“Debug \ Run”运行程序,或按F5 运行程序;程序将运行至断点处停顿;5.用View / Graph / Time/Frequency 翻开一个图形观看窗口;设置该观看图形窗口变量及参数;承受双踪观看在启始地址分别为px 和pz,长度为128,数值类型为16 位整型,p x:存放经A/D 转换后的输入信号;p z:对该信号进展FFT 变换的结果。
实验二FFT实现信号频谱分析

0
2
4
6
4
2
0
-2
-4
-6
-4
-20246四、试验环节
4. 试验内容2旳程序运营成果如下图所示:
60
30
40
20
20
10
0
0
-10 -5
0
5
10
-40 -20
0
20 40
30
80
60 20
40 10
20
0
-40 -20
0
20 40
0
-40 -20
0
20 40
四、试验环节
|X(k)| x(n)
5. 试验内容 3旳程序运营成果如下图所示:
fft 计算迅速离散傅立叶变换
fftshift
ifft
调整fft函数旳输出顺序,将零频 位置移到频谱旳中心
计算离散傅立叶反变换
fft函数:调用方式如下
y=fft(x):计算信号x旳迅速傅立叶变换y。当x旳长度为 2旳幂时,用基2算法,不然采用较慢旳分裂基算法。
y=fft(x,n):计算n点FFT。当length(x)>n时,截断x,不 然补零。
【例2-11】产生一种正弦信号频率为60Hz,并用fft函数 计算并绘出其幅度谱。
fftshift函数:调用方式如下 y=fftshift(x):假如x为向量,fftshift(x)直接将x旳左右两 部分互换;假如x为矩阵(多通道信号),将x旳左上、右 下和右上、左下四个部分两两互换。 【例2-12】产生一种正弦信号频率为60Hz,采样率为1000Hz, 用fftshift将其零频位置搬到频谱中心。
以上就是按时间抽取旳迅速傅立叶变换
快速傅里叶变换(含详细实验过程分析)

快速傅⾥叶变换(含详细实验过程分析)[实验2] 快速傅⾥叶变换 (FFT) 实现⼀、实验⽬的1、掌握FFT 算法和卷积运算的基本原理;2、掌握⽤C 语⾔编写DSP 程序的⽅法;3、了解利⽤FFT 算法在数字信号处理中的应⽤。
⼆、实验设备 1. ⼀台装有CCS 软件的计算机; 2. DSP 实验箱的TMS320C5410主控板; 3. DSP 硬件仿真器。
三、实验原理(⼀)快速傅⾥叶变换傅⾥叶变换是⼀种将信号从时域变换到频域的变换形式,是信号处理的重要分析⼯具。
离散傅⾥叶变换(DFT )是傅⾥叶变换在离散系统中的表⽰形式。
但是DFT 的计算量⾮常⼤, FFT 就是DFT 的⼀种快速算法, FFT 将DFT 的N 2步运算减少⾄ ( N/2 )log 2N 步。
离散信号x(n)的傅⾥叶变换可以表⽰为∑=-=10][)(N N nk N W n x k X , Nj N e W /2π-=式中的W N 称为蝶形因⼦,利⽤它的对称性和周期性可以减少运算量。
⼀般⽽⾔,FFT 算法分为时间抽取(DIT )和频率抽取(DIF )两⼤类。
两者的区别是蝶形因⼦出现的位置不同,前者中蝶形因⼦出现在输⼊端,后者中出现在输出端。
本实验以时间抽取⽅法为例。
时间抽取FFT 是将N 点输⼊序列x(n) 按照偶数项和奇数项分解为偶序列和奇序列。
偶序列为:x(0), x(2), x(4),…, x(N-2);奇序列为:x(1), x(3), x(5),…, x(N-1)。
这样x(n) 的N 点DFT 可写成:()()∑++∑=-=+-=12/0)12(12/02122)(N n kn NN n nkNW n x Wn x k X考虑到W N 的性质,即2/)2//(22/)2(2][N N j N j N W e e W ===--ππ因此有:()()∑++∑=-=-=12/02/12/02/122)(N n nkN k NN n nkN W n x WWn x k X或者写成:()()12()kN X k X k W X k =+由于X 1(k) 与X 2(k) 的周期为N/2,并且利⽤W N 的对称性和周期性,即:kNNkNWW-=+2/可得:()()12(/2)kNX k N X k W X k+=-对X1(k) 与X2(k)继续以同样的⽅式分解下去,就可以使⼀个N点的DFT最终⽤⼀组2点的DFT来计算。
快速傅里叶变换FFT算法及其应用

快速傅里叶变换FFT算法及其应用快速傅里叶变换(Fast Fourier Transform, FFT)是一种高效的计算离散傅里叶变换(Discrete Fourier Transform, DFT)的算法,它可以将一个时间域上的信号转换为频域上的表示。
FFT算法的提出改变了信号处理、图像处理、音频处理等领域的发展,广泛应用于各种科学与工程领域。
FFT算法的基本思想是将一个N点的DFT分解为多个较小规模的DFT,然后再通过合并子问题的解来得到原问题的解。
这种分治思想使得FFT算法的时间复杂度从O(N^2)降低到了O(NlogN),大大提高了计算效率。
FFT算法主要利用了DFT的对称性和周期性质,通过递归和迭代的方式,以分离出DFT的实部和虚部的形式计算出频域上的信号。
FFT算法的应用非常广泛。
在通信领域中,FFT算法常被用于信号的频谱分析、频域滤波、信号调制解调等方面。
在图像处理中,FFT算法可用于图像增强、滤波、噪声去除等。
在音频处理中,FFT算法可以用于音频压缩、声音合成等。
此外,FFT算法还广泛应用于科学计算、数字信号处理、雷达信号处理、语音识别、生物信息学等领域。
以音频处理为例,使用FFT算法可以将音频信号从时域转换到频域表示,使得我们可以对音频信号进行频谱分析。
通过FFT计算,我们可以获取音频信号的频率分量、频谱特征、能量分布等信息。
这对于音频的压缩、降噪、音频增强、音频特征提取等操作非常有帮助。
例如,在音频压缩中,我们可以根据音频信号的频谱特性,选择性地保留主要的频率成分,从而实现压缩效果。
而在音频增强中,我们可以通过FFT计算,去除或减弱一些频率上的噪声,提高音频的质量。
在实际应用中,为了提高计算效率和减少计算量,通常会使用基于FFT算法的快速卷积、快速滤波等技术。
这些技术可以利用FFT算法的高效性质,实现更快速、更准确的计算。
此外,也可以采用多线程、并行计算等技术,进一步提高FFT算法的性能。
快速傅里叶变换FFT及其应用

快速傅里叶变换FFT 及其应用摘要: FFT(Fast Fourier transform)技术是快速傅里叶变换,它是离散傅里叶的快速算法,随着大规模集成器件的问世以及计算机技术的迅速发展,FFT 技术已应用于现代科学技术的各个领域。
本文首先简单介绍了FFT 的原理,还介绍了FFT 在数字图像处理、机床噪声分析、数据采集、现代雷达、机车故障检测记录等领域的应用。
关键词:DFT ;FFT ;应用;1. 快速傅里叶变换FFT 简介1.1离散傅里叶变换(DFT)在信号处理中,DFT 的计算具有举足轻重的地位,信号的相关、滤波、谱估计等等都可通过DFT 来实现。
然而,由DFT 的定义式可以看出,求一个N 点的DFF 要N 2次复数乘法和N(N-1)次负数加法。
当N 很大时,其计算量是相当大。
傅立叶变换是信号分析和处理的重要工具。
离散时间信号*(n)的连续傅立叶变换定义为:式中()j X e ω是一个连续函数,不能直接在计算机上做数字运算。
为了在计算机上实现频谱分析,必须对x(n)的频谱作离散近似。
有限长离散信号x(n), n=0, 1, .......,N-1的离散傅立叶变换(DFT)定义为:式中()exp -2/N ,n=0,1,........N-1N W j π=。
其反变换定义为:将DFT 变换的定义式写成矩阵形式,得到X=Ax 。
其中DFT 的变换矩阵A 为1.2快速傅里叶变换(FFT)快速傅里叶变换(FFT)是1965年J. W. Cooley 和J. W Tukey 巧妙地利用造了DFT 的快速算法,即快速离散傅里叶变换(FFT)。
在以后的几十年中,FFT 算法有了进一步的发展,目前较常用的是基2算法和分裂基算法。
在讨论图像的数学变换时,我们把图像看成具有两个变量x, y 的函数。
首先引入二维连续函数的傅里叶变换,设f(x,y)是两个独立变量x ,y 的函数,且满足()++--,<0f x y dxdy ∞∞∞∞⎰⎰, 则定义:()++-2(ux+vy)--(u,v) = ,j F f x y e dxdy π∞∞∞∞⎰⎰为f(x,Y)的傅立叶变换。
快速 Fourier 变换(FFT)及其应用

0.0395 0.0538 0.0098 0.0245 -0.0054 -0.0737 -0.0881 -0.1385 -0.1163
Columns 46 through 54
-0.0813 -0.0359 -0.0453 -0.0418 -0.0116 -0.0676 -0.0672 -0.0403 -0.0966
x=ifft(X,64);
n=k;
stem(n,abs(x))
grid
运行结果:
3、对实验现象、数据及观察结果的分析与讨论:
图一的理论分析:
图二的理论分析:
比较用IFFT函数时,得其结果是复数求其模值与理论值进行比较得:
程序代码:
x1=1/(1-0.8^N)*0.8.^n;
delta=x1-abs(x)
Columns 19 through 27
-0.0035 0 0.0035 -0.0208 -0.0694 -0.0685 -0.0572 -0.0048 0.0529
Columns 28 through 36
0.0659 0.0969 0.1177 0.1598 0.1266 0.1231 0.0762 0.1276 0.0911
5、实验总结
⑴本次实验成败之处及其原因分析:
⑵本实验的关键环节及改进措施:
①做好本实验需要把握的关键环节:
对matlab语言要极其的熟悉,其次对于课程理论学习的知识要很好的掌握。
②若重做本实验,为实现预期效果,仪器操作和实验步骤应如何改善:
实践前做好充足的准备,熟练掌握matlaB软件,多加练习相关类似的习题一增加理解。
运行结果:
delta =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二快速傅立叶变换(FFT )及其应用一、实验目的1.在理论学习的基础上,通过本实验,加深对FFT 的理解,熟悉FFT 子程序。
2.熟悉应用FFT 对典型信号进行频谱分析的方法3.了解应用FFT 进行信号频谱分析过程中可能出现的问题以便在实际中正确应用FFT 。
二、实验原理在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier 变换(DFT)。
这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N 时,它的DFT 定义为:10()()N knNn X k x n W -==∑,2n j NN W e-=反换为:101()()N knNk x n X k W N --==∑有限长序列的DFT 是其Z 变换在单位圆上的等距采样,或者是序列Fourier 变换的等距采样,因此可以用于序列的谱分析。
FFT 并不是与DFT 不同的另一种变换,而是为了减少DFT 运算次数的一种快速算法。
它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。
常用的FFT 是以2为基数的,其长度 N=2L ,它的效率高,程序简单使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT ,可以用末位补零的方法,使其长度延长至2的整数次方。
在运用DFT 进行频谱分析的过程中可能产生几种问题: (1) 混叠序列的频谱时被采样信号的周期延拓,当采样速率不满足Nyquist 定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。
避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。
(2) 泄漏实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT 来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。
泄漏不能与混叠完全分开,因为泄漏导致频谱的扩展,从而造成混叠。
为了减少泄漏的影响,可以选择适当的窗函数使频谱的扩散减至最小。
DFT 是对单位圆上Z 变换的均匀采样,所以它不可能将频谱视为一个连续函数,就一定意义上看,用DFT 来观察频谱就好像通过一个栅栏来观看一个图景一样,只能在离散点上看到真实的频谱,这样就有可能发生一些频谱的峰点或谷点被“尖桩的栅栏”所拦住,不能别我们观察到。
减小栅栏效应的一个方法就是借助于在原序列的末端填补一些零值,从而变动DFT 的点数,这一方法实际上是人为地改变了对真实频谱采样的点数和位置,相当于搬动了每一根“尖桩栅栏”的位置,从而使得频谱的峰点或谷点暴露出来。
用FFT 可以实现两个序列的圆周卷积。
在一定的条件下,可以使圆周卷积等于线性卷积。
一般情况,设两个序列的长度分别为N1和N2,要使圆周卷积等于线性卷积的充要条件是FFT 的长度N ≥N1+N2对于长度不足N 的两个序列,分别将他们补零延长到N 。
当两个序列中有一个序列比较长的时候,我们可以采用分段卷积的方法。
有两种方法: 重叠相加法。
将长序列分成与短序列相仿的片段,分别用FFT 对它们作线性卷积,再将分段卷积各段重叠的部分相加构成总的卷积输出。
重叠保留法。
这种方法在长序列分段时,段与段之间保留有互相重叠的部分,在构成总的卷积输出时只需将各段线性卷积部分直接连接起来,省掉了输出段的直接相加。
(3) 栅栏效应DFT 是对单位圆上z 变换的均匀采样,所以它不可能将频谱视为一个连续 函数,从某种意义上讲,用DFT 来观察频谱就如同通过一个栅栏来观看景象一 样,只能在离散点上看到真实的频谱,这样一些频谱的峰点或谷点就可能被"尖 桩的栅栏"挡住,也就是正好落在两个离散采样点之间,不能被观察到。
减小栅栏效应的一个方法是在原序列的末端填补一些零值,从而变动DFT 的点数,这一方法实际上是人为地改变了对真实频谱采样的点数和位置,相当于 搬动了"尖桩栅栏"的位置,从而使得频谱的峰点或谷点暴露出来。
(4) DFT 的分辨率填补零值可以改变对DTFT 的采样密度,人们常常有一种误解,认为补零可以提高DFT 的频率分辨率,事实上,DFT 的频率分辨率通常规定为s f N ,这里的N 是指信号[]x n 的有效长度,而不是补零的长度。
不同长度的[]x n ,其DTFT 的结果是不同的;而相同长度的[]x n 尽管补零的长度不同其DTFT 的结果应是相同的,它们的DFT 只是反映了对相同的DTFT 采用了不同的采样密度。
总结一下: 要提高DFT 分辨率只有增加信号[]x n 的截取长度N 。
三、实验用到序列 a) 高斯序列()()20150n p q a en x n --⎧⎪≤≤=⎨⎪⎩其他b) 衰减正弦序列()()sin 20150an b e fn n x n π-⎧≤≤⎪=⎨⎪⎩其他c) 三角波序列()c n038n 470 n x n n ≤≤⎧⎪=-≤≤⎨⎪⎩其他d) 反三角波序列()4034470 d n n x n n n -≤≤⎧⎪=-≤≤⎨⎪⎩其他四、实验内容Matlab 编程实现FFT 实践及频谱分析 .1.用Matlab 产生正弦波,矩形波,以及白噪声信号,并显示各自时域波形图 2.进行FFT 变换,显示各自频谱图,其中采样率,频率、数据长度自选 3.做出上述三种信号的均方根图谱,功率图谱,以及对数均方根图谱4.用IFFT 傅立叶反变换恢复信号,并显示恢复的正弦信号时域波形图 源程序%***************1.正弦波****************% fs=100;%设定采样频率 N=128; n=0:N-1; t=n/fs;f0=10;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f0*t); figure(1); subplot(231);plot(t,x);%作正弦信号的时域波形 xlabel('t'); ylabel('y');title('正弦信号y=2*pi*10t 时域波形'); grid;%进行FFT 变换并做频谱图 y=fft(x,N);%进行fft 变换 mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换 figure(1); subplot(232);plot(f,mag);%做频谱图 axis([0,100,0,80]); xlabel('频率(Hz)'); ylabel('幅值');title('正弦信号y=2*pi*10t 幅频谱图N=128'); grid;%求均方根谱 sq=abs(y); figure(1); subplot(233); plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('正弦信号y=2*pi*10t均方根谱');grid;%求功率谱power=sq.^2;figure(1);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('正弦信号y=2*pi*10t功率谱');grid;%求对数谱ln=log(sq);figure(1);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('正弦信号y=2*pi*10t对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(1);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的正弦信号波形');grid;%****************2.矩形波****************% fs=10;%设定采样频率t=-5:0.1:5;x=rectpuls(t,2);x=x(1:99);figure(2);subplot(231);plot(t(1:99),x);%作矩形波的时域波形xlabel('t');ylabel('y');title('矩形波时域波形');grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(2);subplot(232);plot(f,mag);%做频谱图xlabel('频率(Hz)');ylabel('幅值');title('矩形波幅频谱图');grid;%求均方根谱sq=abs(y);figure(2);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('矩形波均方根谱');grid;%求功率谱power=sq.^2;figure(2);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('矩形波功率谱');grid;%求对数谱ln=log(sq);figure(2);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('矩形波对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(2);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的矩形波波形');grid;%****************3.白噪声****************% fs=10;%设定采样频率t=-5:0.1:5;x=zeros(1,100);x(50)=100000;figure(3);subplot(231);plot(t(1:100),x);%作白噪声的时域波形xlabel('t');ylabel('y');title('白噪声时域波形');grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(3);subplot(232);plot(f,mag);%做频谱图xlabel('频率(Hz)');ylabel('幅值');title('白噪声幅频谱图');grid;%求均方根谱sq=abs(y);figure(3);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('白噪声均方根谱');grid;%求功率谱power=sq.^2;figure(3);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('白噪声功率谱');grid;%求对数谱ln=log(sq);figure(3);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('白噪声对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(3);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的白噪声波形'); grid;。