显著性检验(Significance Testing)
假设检验的基本概念

第六节
双侧检验与单侧检验
单侧检验:只关心差别单侧方 向的单向检验。备择假设为 H1:μ2<μ1 或H1:μ2>μ1。
双侧检验:只检验差别不 管差别方向的双向检验。 备择假设为 H1:μ1≠μ2
图8–2 双侧u检验的检验水准
图8–3 单侧u检验的检验水准α
单、双侧检验的选择
♦ 在作练习时,根据题中的交代及提问方式加以选 择。
2.小概率事件原理:根据“小概率事件在一次试 验中一般不会发生”的原理,用概率的思想决 定是否拒绝原假设。
第二节 假设检验的基本步骤
一、建立假设,确定检验水准。
H0:µ = µ 0 =34.50 H1:µ µ 0 =34.50
二、 选定统计方法,计算检验统计量。
根据资料类型,设计方法,分析目的和样本含量 大小选用适当的检验方法,如u检验,t检验,F检 验,秩和检验和卡方检验等。
作业:
一、 二、
三、
1.
1.
3. 4. 8.
体率是否相等?
检验步骤如下:
(1)建立假设,确定检验水准。 H0:π1 =π2 H1:π1≠π2 α=0.05。 (2)计算检验统计量u值。
(3)确定P值,作出推断结论。
u0.05/2=1.96,现|u|<u0.05/2 , 故P > 0.05,按 α=0.05 检验水准,不拒绝H0,差异无统计学意义,尚不 能认为两种疗法治疗小儿支气管哮喘的疗效有差 别。 当样本率的分布不符合正态分布条件时,如n较 小,假设检验需采用 检验或Fisher确切概率法, 详见第九章。
二、两个率比较的u检验
对两个样本率进行检验的目的是推断样本所 代表的两个未知总体率是否相等。
例8-5 某医院用黄芩注射液和胎盘球蛋白进行穴位注 射治疗小儿支气管炎哮喘病人,黄芩注射液治疗117
07《卫生统计学》第七章_假设检验基础(6版) (1)

sd t
n 1
n
2 7950 8832500
10 1
10
528.336IU / g
d d d 795.0 4.785 sd s d n 528.336 10
确定概率P:按ν =9查t 界值表,得P<0.01 判断结果:在α=0.05的水准上,拒绝H0,接受H1,可以认为 维生素E缺乏组大鼠肝脏维生素A含量低于正常饲料组。
二、 假设检验的基本步骤
• 确定检验水准: 检验水准(size of a test),亦称为 显著性水准(significance level),符号 为α,即拒绝或不拒绝H0所要冒出错的风 险大小。一般取α=0.05或α= 0.01。
二、 假设检验的基本步骤
• 确定单侧检验(one sided test)还是双侧检验(two sided test): 如果根据现有的专业知识无法预先判断该病 病人的脉搏是高于还是低于一般健康成年男,两 种可能性都存在,研究者对这两种可能性同等关 心,那么,就是要推断两总体均数有无差别,应 当采用双侧检验;如果根据专业知识,已知病人 的脉搏不会低于一般人,或是研究者只关心病人 的脉搏是否高于一般,而不关心是否低于一般, 则应当采用单侧检验(one sided test)。
二、 假设检验的基本步骤
本例的资料符合t 检验的应用条件,已知 μ=72次/min , x =75.572次/min ,s=5.0次/min , n=25,代入公式计算t 值,结果:
x x 75.5 72.0 t 3.50 sx s n 5.0 25
3. 确定P值
第二节 t 检验
1. 一组样本资料的 t 检验
正确理解显著性检验

正确理解显著性检验(Significance Testing)什么是显著性检验显著性检验是用于检验实验处理组与对照组或两种不同处理组的效应之间的差异是否为显著性差异的方法,其原理就是“小概率事件实际不可能性原理”。
显著性检验可用于两组数据是否有显著性差异,从而可以检验这两组数据所代表的“内涵”,如不同实验方法的差异有无,实验人员受训练的效果有无,不同来源的产品的质量差异,某产品的某特征在一定时间内稳定性,产品保质期的判断等等。
原假设为了判断两组数据是否有显著性差异,统计学上规定原假设(null hypothesis) 为“两组数据(或数据所代表的内涵)无显著差”,而与之对立的备择假设(alternative hypothesis),则为“两组数据有显著差异”。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,即,弃真错误,其出现的概率,记作α;⑵在原假设不真时,决定接受原假设,称为第二类错误,即,纳假错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。
这样的“假设检验”又称为显著性检验,概率α称为显著性水平。
显著性检验的P值及有无显著性差异的判断:通过显著性检验的计算方法计算而得的“犯第一类错误的概率p”,就是统计学上规定的P值。
若p<或=α,则说明“放弃原假设,在统计意义上不会犯错误,即原假设是假的,也即,”两组数据无显著差异”不是真的,也即两组数据有显著差异”!反之,若p大于α,则说明两组数据间无显著差异。
最常用的α值为0.01、0.05、0.10等。
一般情况下,根据研究的问题,如果犯弃真错误损失大,为减少这类错误,α取值小些,反之,α取值大些。
P值及统计意义见下表。
统计假设检验-t检验

统计假设检验
一、假设检验的概念与分类
假设检验(hypothesis test) 亦称显著 性检验(significance test),是利用 样本信息,根据一定的概率水准,推断 指标(统计量) 与总体指标(参数)、不 同样本指标间的差别有无意义的统计分 析方法。
(3)确定P 值,作出推断结论
t 7.925 t0.05/ 2,9 2.262, p 0.05
同理 t=7.925>t0.001/2,9=4.781,P<0.001 结论;按 =0.05水准,拒绝 H0 ,p<0.001, 差别有统计学意义。两种方法对脂肪含量的测 定结果不同,哥特里-罗紫法测定结果高于脂 肪酸水解法。
2.选择检验方法、计算统计量
根据:①研究目的, ②资料的类型和分布, ③设计方案, ④统计方法的应用条件, ⑤样本含量大小等, 选择适宜的统计方法并计算出相应 的统计量。
3.确定P值、做出推论
假设检验中的P值是指在由无效假设所 规定的总体作随机抽样,获得等于及大 于(和/或等于及小于)现有统计量的概 率。 即各样本统计量的差异来自抽样误差的 概率,它是判断H0成立与否的依据。
差值 d (4)=23 0.260 0.082 0.174 0.316 0.350 0.461 0.296 0.218 0.203 0.364 2.724
配对数据检验的统计量t,公式
d 0 d0 t Sd Sd / n
(3-16)
n -1
标题假设检验与显著性检验的基本步骤与原理

标题假设检验与显著性检验的基本步骤与原理标题:假设检验与显著性检验的基本步骤与原理假设检验(hypothesis testing)和显著性检验(significance testing)是统计学中常用的两种方法,用于验证观察到的数据是否支持某个假设。
它们在科学研究和实证分析中扮演着重要的角色。
本文将介绍假设检验和显著性检验的基本步骤和原理。
1. 假设检验的基本步骤假设检验通常包括以下五个基本步骤:(1)确定原假设(null hypothesis)和备择假设(alternative hypothesis)。
原假设是对研究对象或现象的已有认知或者对相应统计参数的设定,备择假设则是对原假设的否定或者其他可能的解释。
(2)选择适当的统计方法。
根据具体的研究目的和数据类型,选择适当的统计方法,如t检验、卡方检验、方差分析等。
(3)确定显著性水平(significance level)。
显著性水平是在统计推断中设定的一个阈值,通常取0.05或0.01等。
它反映了在原假设成立的情况下,发生类型 I 错误(拒绝原假设时原假设实际上成立)的概率。
(4)计算检验统计量(test statistic)。
根据所选的统计方法和相应的假设,计算出检验统计量的具体数值。
(5)比较检验统计量与临界值。
根据显著性水平和检验统计量的结果,进行比较。
若检验统计量落在拒绝域(critical region)内,则拒绝原假设,否则不能拒绝原假设。
2. 显著性检验的基本原理显著性检验的基本原理是基于概率统计的思想。
它通过计算观察到的样本数据与预期值之间的差异,来判断该差异是否由随机因素引起。
(1)抽样分布显著性检验的前提是对总体分布具有一定的了解或假设。
通过大量的重复抽样和计算,可以得到样本统计量的分布,即抽样分布。
假设原假设成立,根据中心极限定理,抽样分布通常近似服从正态分布。
(2)计算P值P值(p-value)是指在原假设成立下,观察到样本数据或更极端情况出现的概率。
显著性检验方法在数据分析中的应用

显著性检验方法在数据分析中的应用随着数据时代的到来,数据分析在各个领域中变得越来越重要。
如何有效地分析数据并得出可靠的结论成为了每个研究者面对的问题。
显著性检验方法作为一种常用的统计方法,在许多学科中得到了广泛的应用,因其合理的假设和可靠性而备受青睐。
它可以帮助研究者确定样本数据与总体数据之间是否存在显著性差异,从而推断出样本代表的总体的特征。
本文将从显著性检验的概念与意义、常用显著性检验方法、显著性检验方法在数据分析中的应用等方面进行探讨,以期为读者提供实用的参考。
一、显著性检验的概念与意义显著性检验(Significance tests),简称显著检验,是一种基于样本所得数据推断总体参数的方法。
其本质是检验一个假设是否成立,在假设成立的情况下,用样本数据计算出来的统计量的概率为多少。
这个概率也被称为P值(P-value),它反映了假设成立的条件下得到比当前观测值更极端的概率。
通过比较P值与显著水平,即α值(通常设为0.05),我们可以判断假设是否成立。
显著性检验是一个重要的统计方法,它可以帮助我们回答许多问题,例如:在两个样本之间是否存在显著性差异?在一组样本中是否存在异常值?在多组数据之间是否存在相关性?在时间序列数据中是否存在趋势等等。
显著性检验的方法种类繁多,必须根据具体问题选择合适的方法。
二、常用显著性检验方法1. 单样本T检验单样本T检验是一种检验一个连续变量的平均值是否等于特定常数的方法,常用于检验某一总体参数是否达到了研究者设定的理论水平。
2. 独立样本T检验独立样本T检验是一种用于比较两组独立样本均值是否差异显著的方法。
当我们想比较两个独立的样本在某个连续变量上的平均值是否不同时,可以采用独立样本T检验。
3. 配对样本T检验配对样本T检验是一种用于比较两组相关样本均值是否差异显著的方法。
当我们需要比较同一组个体在两个时间点或者条件下的得分时,可以采用该方法。
4. 卡方检验卡方检验是一种用于比较两个分类变量之间是否存在关联的方法,可以用来检验两个分类变量的分布是否有显著性差异。
假设检验的原理和方法

第四章
do
something
第四章 统计推断
统计推断
由一个样本或一糸列样本所得的结果来推断总体的特征
假设检验
参数估计
统计推断的过程
分析误差产生的原因
任务
确定差异的性质
排除误差干扰
对总体特征做出正确判断
第四章
第一节
第二节
第三节
第四节
第五节
330
实例
?
三、假设检验的步骤
治疗前 0 =126 2 =240
N ( 126,240 )
治疗后 n =6 x =136 未知 那么 =0 ? 即克矽平对治疗矽肺是否有效?
例:设矽肺病患者的血红蛋白含量具平均数0=126(mg/L), 2 =240 (mg/L)2的正态分布。现用克矽平对6位矽肺病患者进行治疗,治疗后化验测得其平均血红蛋白含量x =136(mg/L)。
1 、提出假设
对立
无效假设/零假设/检验假设
备择假设/对应假设
0 =
0
误差效应
处理效应
H0
HA
例:克矽平治疗矽肺病是否能提高血红蛋白含量?
检验治疗后的总体平均数是否还是治疗前的126(mg/L)?
本例中零假设是指治疗后的血红蛋白平均数仍和治疗前一样,二者来自同一总体,接受零假设则表示克矽平没有疗效。
可能错误
例:上例中 P=0.1142>0.05所以接受H0,从而得出结论:使用克矽平治疗前后血红蛋白含量未发现有显著差异,其差值10应归于误差所致。
P( u >1.96) =0.05
P( u >2.58) =0.01
《显著性检验》课件

方差分析
1 原理
通过比较多个样本的均值之间的差异,判断 差异是否显著。
2 单因素方差分析
用于比较一个因素对多个组之间的差异是否 显著。
3 多因素方差分析
用于比较多个因素对多个组之间的差异是否 显著。
4 实例演示
以不同培训方法的绩效评估数据为例,演示 如何进行方差分析。
卡方检验
1 原理
通过比较观察频数与期望 频数之间的差异,判断差 异是否显著。
2 展望
显著性检验在未来的发展中将更加精确和高效。
2 步骤
建立假设、计算卡方值、 查找卡方分布临界值、判 断显著性。
3 实例演示
以实际调查数据为例,演 示如何进行卡方检验。
F检验
1 原理
通过比较不同组之间的方差之间的差异,判 断差异是否显著。
2 单因素F检验
用于比较一个因素对多个组之间的方差差异 是否显著。
3 多因素F检验
用于比较多个因素对多个组之间的方差差异 是否显著。
2 步骤
3 实例演示
确定假设、计算t值、查找 t分布临界值、判断显著性。
以一个医疗研究的样本数 据为例,演示如何进行单 样本t检验。
双样本t检验
1 原理
通过计算两个独立样本的 均值之间的差异,判断差 异是否显著。
2 步骤
3 实例演示
确定假设、计算t值、查找 t分布临界值、判断显著性。
以两组产品的销售数据为 例,演示如何进行双样本t 检验。
《显著性检验》PPT课件
在这个PPT课件中,我们将介绍显著性检验的定义、目的和基本要求,以及不 同类型的显著性检验的原理、步骤和实例演示。
引言
1 定义
显著性检验是一种统计方法,用于判断样本数据是否与期望值存在显著差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
显著性检验(Significance T esting)显著性检验就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(原假设)是否合理,即判断总体的真实情况与原假设是否显著地有差异。
或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。
显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。
抽样实验会产生抽样误差,对实验资料进行比较分析时,不能仅凭两个结果(平均数或率)的不同就作出结论,而是要进行统计学分析,鉴别出两者差异是抽样误差引起的,还是由特定的实验处理引起的。
[编辑]显著性检验的含义显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
常把一个要检验的假设记作H0,称为原假设(或零假设) (null hypothesis) ,与H0对立的假设记作H1,称为备择假设(alternative hypothesis) 。
⑴在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;⑵在原假设不真时,决定接受原假设,称为第二类错误,其出现的概率通常记作β。
通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。
这样的假设检验又称为显著性检验,概率α称为显著性水平。
最常用的α值为0.01、0.05、0.10等。
一般情况下,根据研究的问题,如果犯弃真错误损失大,为减少这类错误,α取值小些,反之,α取值大些。
[编辑]显著性检验的原理无效假设显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的机率(P)水平的选择。
所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。
经统计学分析后,如发现两组间差异系抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。
若两组间差异不是由抽样引起的,则“无效假设”不成立,可认为这种差异是显著的(即实验处理有效)。
“无效假设”成立的机率水平检验“无效假设”成立的机率水平一般定为5%(常写为p≤0.05),其含义是将同一实验重复100次,两者结果间的差异有5次以上是由抽样误差造成的,则“无效假设”成立,可认为两组间的差异为不显著,常记为p>0.05。
若两者结果间的差异5次以下是由抽样误差造成的,则“无效假设”不成立,可认为两组间的差异为显著,常记为p≤0.05。
如果p≤0.01,则认为两组间的差异为非常显著。
[编辑]显著性检验的相关概念[编辑]原假设和备择假设1、原假设:对总体所作的论断或推测,指观察到的差异只反映机会变异。
记作H0。
2、备择假设:是指观察到的差异是真实的。
记作H1。
3、原假设和备择假设合在一起,应涵盖我们所研究的总体特征的所有可能性。
[编辑]双尾检验和单尾检验采用双尾检验还是采用单尾检验(以及左单尾还是右单尾),取决于备择假设的形式。
表1:拒绝域的单、双尾与备择假设之间的对应关系(([编辑]显著性检验的作用分析工作者常常用标准方法与自己所用的分析方法进行对照试验,然后用统计学方法检验两种结果是否存在显著性差异。
若存在显著性差异而又肯定测定过程中没有错误,可以认定自己所用的方法有不完善之处,即存在较大的系统误差。
因此分析结果的差异需进行统计检验或显著性检验。
[编辑]显著性检验的基本思想显著性检验的基本思想可以用小概率原理来解释。
1、小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中事件事实上发生了。
那只能认为事件不是来自我们假设的总体,也就是认为我们对总体所做的假设不正确。
2、观察到的显著水平:由样本资料计算出来的检验统计量观察值所截取的尾部面积为。
这个概率越小,反对原假设,认为观察到的差异表明真实的差异存在的证据便越强,观察到的差异便越加理由充分地表明真实差异存在。
3、检验所用的显著水平:针对具体问题的具体特点,事先规定这个检验标准。
4、在检验的操作中,把观察到的显著性水平与作为检验标准的显著水平标准比较,小于这个标准时,得到了拒绝原假设的证据,认为样本数据表明了真实差异存在。
大于这个标准时,拒绝原假设的证据不足,认为样本数据不足以表明真实差异存在。
5、检验的操作可以用稍许简便一点的作法:根据所提出的显著水平查表得到相应的值,称作临界值,直接用检验统计量的观察值与临界值作比较,观察值落在临界值所划定的尾部内,便拒绝原假设;观察值落在临界值所划定的尾部之外,则认为拒绝原假设的证据不足。
[编辑]显著性检验的两类错误1、显著性检验中的第一类错误及其概率显著性检验中的第一类错误是指,原假设H0:θ = θ0事实上正确,可是检验统计量的观察值却落入拒绝域,因而否定了本来正确的假设。
这是弃真的错误。
发生第一类错误的概率(记作)也就是当原假设H0:θ = θ0正确时检验统计量的观察值落入拒绝域的概率。
显然,在双尾检验时是两个尾部的拒绝域面积之和;在单尾检验时是单尾拒绝域的面积。
2、显著性检验中的第二类错误及其概率显著性检验中的第二类错误是指,原假设H0:θ = θ0不正确,而备择假设H1:θ < θ0或H1:θ > θ0是正确的,可是检验统计量的观察值却落入了接受域,因而没有否定本来不正确的原假设。
这是取伪的错误。
发生第二类错误的概率(记作)是指,把来自的总体的样本值代入检验统计量所得结果落入接受域的概率。
3、α和β的关系当样本容量一定时,α越小,β就越大;反之,α越大,β就越小。
[编辑]显著性检验的P值[1]若用计算机统计软件进行假设检验, 我们会见到P—值。
将算得检验统计量样本值查表得的概率是就是P值(在那里我们称之为观察到的显著水平)。
P值是怎么来的从某总体中抽样所得的样本,其参数会与总体参数有所不同,这可能是由于两种原因:⑴、这一样本是由该总体抽出,其差别是由抽样误差所致;⑵、这一样本不是从该总体抽出,所以有所不同。
如何判断是那种原因呢?统计学中用显著性检验赖判断。
其步骤是:⑴、建立检验假设(又称无效假设,符号为H0):如要比较A药和B药的疗效是否相等,则假设两组样本来自同一总体,即A药的总体疗效和B药相等,差别仅由抽样误差引起的碰巧出现的。
⑵、选择适当的统计方法计算H0成立的可能性即概率有多大,概率用P值表示。
⑶、根据选定的显著性水平(0.05或0.01),决定接受还是拒绝H0。
如果P>0.05,不能否定“差别由抽样误差引起”,则接受H0;如果P<0.05或P <0.01,可以认为差别不由抽样误差引起,可以拒绝H0,则可以接受令一种可能性的假设(又称备选假设,符号为H1),即两样本来自不同的总体,所以两药疗效有差别。
统计学上规定的P值意义见下表理解P值,下述几点必须注意:⑴P的意义不表示两组差别的大小,P反映两组差别有无统计学意义,并不表示差别大小。
因此,与对照组相比,C药取得P<0.05,D药取得P <0.01并不表示D的药效比C强。
⑵ P>0.05时,差异无显著意义,根据统计学原理可知,不能否认无效假设,但并不认为无效假设肯定成立。
在药效统计分析中,更不表示两药等效。
哪种将“两组差别无显著意义”与“两组基本等效”相同的做法是缺乏统计学依据的。
⑶统计学主要用上述三种P值表示,也可以计算出确切的P值,有人用P <0.001,无此必要。
⑷显著性检验只是统计结论。
判断差别还要根据专业知识。
[编辑]显著性检验的结果关于显著性检验的结果:(一)显著性检验回答什么问题我们所观察到的差异(是纯属于机会变异,还是反映了真实的差异?1、如果显著性检验得到差异显著的结论这时并不能评价差异的大小和重要性。
2、显著性检验只能告诉我们差异是否在事实上存在,而不能回答差异产生的原因。
3、显著性检验不能检查我们对实验所作的设计是否有缺陷(二)显著性检验回答问题的方式在表述显著性检验结论的时候,应与检验的逻辑推理相符。
当检验统计量的观察值落在拒绝域时,我们应该说,样本资料显著地(或高度显著地)表明,差异是存在的。
(三)对观察到的显著水平数值的评价[编辑]显著性检验中的总体和样本1、显著性检验的对象是无限总体。
2、大样本可能会使检验统计量过分敏感。
3、从有限总体中抽取样本用于显著性检验时,必须作概率抽样。
[编辑]显著性检验的步骤显著性检验的一般步骤或格式,如下:1、提出假设H0:______H1:______同时,与备择假设相应,指出所作检验为双尾检验还是左单尾或右单尾检验。
2、构造检验统计量,收集样本数据,计算检验统计量的样本观察值。
3、根据所提出的显著水平,确定临界值和拒绝域。
4、作出检验决策。
把检验统计量的样本观察值和临界值比较,或者把观察到的显著水平与显著水平标准比较;最后按检验规则作出检验决策。
当样本值落入拒绝域时,表述成:“拒绝原假设”,“显著表明真实的差异存在”;当样本值落入接受域时,表述成:“没有充足的理由拒绝原假设”,“没有充足的理由表明真实的差异存在”。
另外,在表述结论之后应当注明所用的显著水平。
[编辑]总体均值为某定值的显著性检验总体均值的显著性检验可有双尾、左单尾、右单尾三种不同的情况。
下面就总体分布的不同情况,总体方差是否已知的不同情况以及样本大小的不同情况分别介绍检验统计量和检验规则。
一、总体为正态分布,总体方差已知,样本不论大小对于假设:H0:μ = μ0,在H0成立的前提下,有检验统计量如果规定显著性水平为,在双尾,左单尾,右单尾三种不同情形下,拒绝域分别为:①和;②;③。
二、总体分布未知,总体方差已知,大样本对于假设H0:μ = μ0,在H0成立的前提下,如果样本足够大(n≥30),近似地有检验统计量如果规定显著性水平为a,在双尾,左单尾,右单尾三种不同情形下,拒绝域分别为①和;②;③。
三、总体为正态分布,总体方差未知,小样本对于假设H0:μ = μ0,在H0成立的前提下,有检验统计量如果规定显著性水平为a,在双尾,左单尾,右单尾三种不同情形下,拒绝域分别为:①和;②;③。
四、总体分布未知,总体方差未知,大样本对于假设H0:μ = μ0,在H0成立的前提下,如果总体偏斜适度,且样本足够大,近似地有检验统计量如果规定显著性水平为a,在双尾,左单尾,右单尾三种不同情形下,拒绝域分别为:①和;②;③[编辑]总体比例为某定值的显著性检验总体比例指的是随机试验中某种指定事件出现的概率。
随机试验中某种指定事件出现叫做“成功”,把一次试验中成功的概率记作π。
对于假设H0:π = π0,在H0成立的前提下,如果,并且样本容量足够大,大到足以满足时,近似地有检验统计量其中p是样本比例。