湖北省武汉市八年级上学期数学期末考试试卷(五四制)

合集下载

湖北省武汉市八年级上学期数学期末试卷

湖北省武汉市八年级上学期数学期末试卷

湖北省武汉市八年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)计算:(﹣3x2y)•(﹣2x2y)的结果是()A . 6x2yB . ﹣6x2yC . 6x4y2D . ﹣6x4y22. (2分)(2016·徐州) 下列图案中,是轴对称图形但不是中心对称图形的是()A .B .C .D .3. (2分)(2020·黄石模拟) 使代数式有意义的x的取值范围是()A . 且B .C . 且D .4. (2分) (2018八上·港南期中) 下列图形不具有稳定性的是()A . 正方形B . 等腰三角形C . 直角三角形D . 钝角三角形5. (2分)(2020·岳阳) 下列运算结果正确的是()A .B .C .D .6. (2分)如图,∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件是()A . ∠E=∠BB . ED=BCC . AB=EFD . AF=CD二、填空题 (共8题;共8分)7. (1分) (2020八下·新昌期中) 已知多边形的内角和等于外角和的三倍,则边数为________.8. (1分)(2019·岳阳模拟) 分解因式:a3b-2a2b+ab=________.9. (1分) (2017七上·杭州期中) 如下图是一个简单的数值运算程序,当输入x的值是-8,输出y的值是________.10. (1分)(2019八上·昭通期中) 如图,在中,平分于点,则的度数是________11. (1分) (2019八上·西岗期末) 如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.12. (1分)不改变分式的值,把分子分母的系数化为整数:=________ .13. (1分)如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=________度,若△ADE的周长为19cm,则BC=________ cm.14. (1分) (2020八下·北京月考) 如图,菱形ABCD的周长为16,∠ADC=120º,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是________.三、解答题 (共12题;共64分)15. (5分) (2019八上·海淀期中) 计算:(8x2y﹣4x4y3)÷(﹣2x2y)16. (5分) (2019八上·长春期中) 已知m2﹣3m=4,求2m3﹣6m2﹣8m+5的值.17. (5分)(2019·萍乡模拟)(1)计算:(2)解方程:18. (5分) (2015八上·平罗期末) 如图,四边形ABCD是平行四边形,点E 在BA 的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.19. (5分)(2020·营口) 先化简,再求值:(﹣x)÷ ,请在0≤x≤2的范围内选一个合适的整数代入求值.20. (2分) (2015八上·宜昌期中) 如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.21. (5分) (2020八上·郑州期末) 某校学生利用春假时间去距离学校10km的静园参观。

湖北省武汉市八年级上学期数学期末考试试卷

湖北省武汉市八年级上学期数学期末考试试卷

湖北省武汉市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列四个实数中,是无理数的为()A . 0B .C . ﹣1D .2. (2分) (2020八下·绍兴月考) 下列计算正确的是()A .B . -C .D .3. (2分) (2018八上·长春期末) 若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3 ,则△ABC是()A . 等边三角形B . 等腰三角形C . 直角三角形D . 等腰或直角三角形4. (2分) (2016九下·巴南开学考) 估计﹣2的值在()A . 0到1之间B . 1到2之间C . 2到3之间D . 3至4之间5. (2分)将平面直角坐标系内某个图形上各点的横坐标都乘以-1,纵坐标不变,所得图形与原图形的关系是()A . 关于x轴对称B . 关于y轴对称C . 关于原点对称D . 两图形重合6. (2分)若x,y为实数,且|x+2|+=0,则的值是()A . -2B . 2C . -1D . 17. (2分)已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A . 2.8B .C . 2D . 58. (2分)(2017·随州) 一组数据2,3,5,4,4的中位数和平均数分别是()A . 4和3.5B . 4和3.6C . 5和3.5D . 5和3.69. (2分) (2019八上·海州期中) 如图,在△ABC中,AB=AC,D为BC中点,∠BAD=20°,则∠C的度数是()A . 20 °B . 45°C . 60°D . 70°10. (2分)正方体的顶点数.面数和棱数分别是()A . 8.6.12B . 6.8.12C . 8.12.6D . 6.8.1011. (2分)如图,直线y=kx+l与x轴、y轴所围成三角形的面积为()A . 3B . 6C .D .12. (2分) (2015八下·龙岗期中) 已知△ABC在平面直角坐标系的位置如图所示,将△ABC向右平移6个单位,则平移后A点的坐标是()A . (﹣2,1)B . (2,1)C . (2,﹣1)D . (﹣2,﹣1)二、填空题 (共4题;共4分)13. (1分) (2016九上·玄武期末) 一组数据:2,3,﹣1,5的极差为________.14. (1分)△ABC中,AB=41,AC=15,高AH=9,则△ABC的面积是________.15. (1分) (2019八下·长沙期中) 如图,一次函数 y = kx + b 的图象与 x 轴的交点坐标为(2,0),则下列说法:① y 随 x 的增大而增大;② b>0;③关于 x 的方程 kx+b=0的解为x=2;④不等式kx+b>0的解集是 x>2.其中说法正确有________(把你认为说法正确序号都填上).16. (1分)(2019·许昌模拟) 如图,正方形ABCD的边长是2,点E是CD边的中点,点F是边BC上不与点B,C重合的一个动点,把∠C沿直线EF折叠,使点C落在点C′处.当△ADC′为等腰三角形时,FC的长为________.三、解答题 (共7题;共81分)17. (5分)(2018·东莞模拟)18. (20分)解方程(组)或不等式(1) 3x﹣5≤5x﹣(3﹣x)(2)﹣ =1(3)(4).19. (10分)(2016·集美模拟) 在平面直角坐际系xOy中,当m,n满足mn=k(k为常数,且m>0,n>0)时,就称点(m,n)为“等积点”.(1)若k=4,求函数y=x﹣4的图象上满足条件的,“等积点”坐标;(2)若直线y=﹣x+b(b>0)与x轴、y轴分别交于点A和点B,并且直线有且只有一个“等积点”,过点A与y 轴平行的直线和过点B与x轴平行的直线交于点C,点E是直线AC上的“等积点”,点F是直线BC上的“等积点”,若△OEF的面积为k2+ k﹣,求EF的值.20. (10分) (2018八上·天河期末) 如图,四边形ABCD中,AB∥CD,过点D作DF⊥BC,垂足为F,DF与AC交于点M,已知∠1=∠2.(1)求证:CM=DM;(2)若FB=FC,求证:AM-MD=2FM.21. (15分)(2011·柳州) 如图,一次函数y=﹣4x﹣4的图象与x轴、y轴分别交于A、C两点,抛物线y= x2+bx+c的图象经过A、C两点,且与x轴交于点B.(1)求抛物线的函数表达式;(2)设抛物线的顶点为D,求四边形ABDC的面积;(3)作直线MN平行于x轴,分别交线段AC、BC于点M、N.问在x轴上是否存在点P,使得△PMN是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由.22. (15分) (2016七上·岑溪期末) 为激励教师爱岗敬业,某市开展了“我最喜爱的老师”评选活动.某中学确定如下评选方案:有学生和教师代表对4名候选教师进行投票,每票选1名候选教师,每位候选教师得到的教师票数的5倍与学生票数的和作为该教师的总票数.以下是根据学生和教师代表投票结果绘制的统计表和条形统计图(不完整).学生投票结果统计表(1)若共有25位教师代表参加投票,则李老师得到的教师票数是多少?请补全条形统计图.(画在答案卷相对应的图上)(2)王老师与李老师得到的学生总票数是500,且王老师得到的学生票数是李老师得到的学生票数的3倍多20票,求王老师与李老师得到的学生票数分别是多少?(3)在(1)、(2)的条件下,若总得票数较高的2名教师推选到市参评,你认为推选到市里的是两位老师?为什么?23. (6分) (2017九上·信阳开学考) 如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),与y轴相交于点C,动点M在线段OA和射线AC上运动.(1)求直线AB的解析式;(2)若△OMC的面积是△OAC的面积的,请直接写出此时点M的坐标________.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共81分)17-1、18-1、18-2、18-3、18-4、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、。

湖北省武汉市八年级上学期数学期末考试试卷

湖北省武汉市八年级上学期数学期末考试试卷

湖北省武汉市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)下列式子中是分式的是()A .B .C .D .2. (2分) (2017七下·南江期末) 下列四个图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)下列是某同学在一次作业中的计算摘录:①3a+2b=5ab,②4m3n-5mn3=-m3n,③4x3•(-2x2)=-6x5 ,④4a3b÷(-2a2b)=-2a,⑤(a3)2=a5 ,⑥(-a)3÷(-a)=-a2 ,其中正确的个数有()A . 1个B . 2个C . 3个4. (2分)(2018·松桃模拟) 如图,AB是⊙O的直径,C,D是⊙O上两点,若∠D=35°,则∠OCB的度数是()A . 35°B . 55°C . 65°D . 70°5. (2分) (2019七上·松江期末) 下列各等式中,从左到右的变形是因式分解的是()A .B .C .D .6. (2分)两个直角三角形全等的条件是()A . 一锐角对应相等;B . 两锐角对应相等;C . 一条边对应相等;D . 两条边对应相等.7. (2分)在平面直角坐标系中,点P(-3,5)关于x轴的对称点的坐标为()A . (-3,-5)B . (3,5)C . (3,-5)D . (5,-3)8. (2分) (2016八上·柳江期中) 在△ABC中,∠A=30°,∠B=50°,则∠C为()A . 30°B . 50°C . 80°9. (2分) (2020八上·大冶期末) 张老师和李老师同时从学校出发,骑车去距学校20千米的县城购买书籍,张老师的汽车速度是李老师的1.5倍,结果张老师比李老师早到40分钟.设张老师骑车速度为x千米/小时,依题意,得到的方程是()A .B .C . =﹣D .10. (2分) (2020八上·柳州期末) 如图,正的边长为,过点的直线,且与关于直线对称,为线段上一动点,则的最小值是()A .B .C .D .二、填空 (共8题;共8分)11. (1分)已知一个三角形的三条边长均为正整数.若其中仅有一条边长为5,且它不是最短边,则满足条件的三角形个数为________12. (1分)分式的值为零的条件是________13. (1分)若一个多边形的内角和为360°,则这个多边形的边数为________.14. (1分)(2019·陕西模拟) 如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC=105°,则∠A的度数是________.15. (1分) (2016七下·东台期中) 已知某种植物花粉的直径为0.00035cm,将数据0.00035用科学记数法表示为________.16. (1分) (2017八下·宝丰期末) 如图,在四边形ABCD中,AB∥CD,∠D=2∠B,若AD=3,AB=5,则CD=________.17. (1分) (2017七下·江阴期中) 9x2﹣mxy+16y2是一个完全平方式,则m的值为________.18. (1分) (2020八上·徐州期末) 如图,BD是△ABC的角平分线,DE⊥BC,垂足为E.△ABC的面积为21,AB=8,BC=6,则DE的长为________.三、解答题: (共7题;共61分)19. (10分)先化简,再求值:[(xy+2)(xy-2)-2(x2y2-2)]÷(xy),其中x=10,y=-.20. (5分)(2018·惠州模拟) 先化简,再求值:( + ),其中a=﹣4.21. (10分) (2016八上·腾冲期中) △ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△ABlCl;(2)点P在x轴上,且点P到点B与点C的距离之和最小,直接写出点P的坐标为________.22. (10分)(2017·温州) 如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.23. (5分)把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论,请写出来.(2)如图2,是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?24. (6分)(2012·沈阳) 甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等(1)求甲、乙两人每小时各加工多少个机器零件?25. (15分)(2017·越秀模拟) 中点、平行线、等腰直角三角形、等边三角形都是常见的几何图形!(1)如图1,若点D为等腰直角三角形ABC斜边BC的中点,点E,F分别在AB、AC边上,且∠EDF=90°,连接AD、EF,当BC=5 ,FC=2时,求EF的长度;(2)如图2,若点D为等边三角形ABC边BC的中点,点E,F分别在AB,AC边上,且∠EDF=90°;M为EF 的中点,连接CM,当DF∥AB时,证明:3ED=2MC;(3)如图3,若点D为等边三角形ABC边BC的中点,点E,F分别在AB,AC边上,且∠EDF=90°;当BE=6,CF=0.8时,直接写出EF的长度.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共7题;共61分)19-1、20-1、21-1、21-2、22-1、22-2、23-1、24-1、25-1、25-3、第11 页共11 页。

湖北省武汉市武昌区八年级(上)期末数学试卷

湖北省武汉市武昌区八年级(上)期末数学试卷

2022-2022学年湖北省武汉市武昌区八年级(上)期末数学试卷一、选择题:每小题3分,共30分.四个选项中只有一项是符合题目要求的.1.下列图形中,不是轴对称图形的是()A.B.C.D.2.若分式的值为0,则的值为()A.2 B.﹣2 C. D.﹣3.点M(﹣2,1)关于轴的对称点N的坐标是()A.(2,1) B.(﹣2,1)C.(﹣2,﹣1) D.(2,﹣1)4.以下列各组长度的线段为边,能构成三角形的是()A.3,4,8 B.5,6,10 C.5,6,11 D.5,9,155.下列运算中正确的是()A.b3•b3=2b3B.2•3=6C.(a5)2=a7D.a2÷a5=a﹣36.分式与的最简公分母是()A.6y B.3y2C.6y2D.6y37.下列多项式中,能分解因式的是()A.a2b2B.﹣a2﹣b2C.a2﹣4a4 D.a2abb28.如图,AD∥BC,AD=CB,要使△ADF≌△CBE,需要添加的下列选项中的一个条件是()A.AE=CF B.DF=BE C.∠A=∠C D.AE=EF9.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且ABBC=BE,则∠B的度数是()A.45° B.50° C.55° D.60°10.如图,在等腰Rt△ABC中,∠ABC=90°,O是AC的中点,9是一个完全平方式,则m的值是.15.如图,AB⊥BC,AD⊥DC,∠BAD=130°,点M,N分别在BC,CD上,当△AMN的周长最小时,∠MAN的度数为.16.如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=8,AB=AC,∠CBD=30°,BD=4,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为.三、解答题:共9小题,共72分.解答时写出必要的文字说明、演算步骤或画出图形.17.计算:(ab)2﹣2ab.18.解方程: =.19.分解因式:(1)2﹣9(2)3ab26ab3a.20.如图,∠BAC=∠DAC,∠B=∠D.求证:AB=AD.21.先化简,再求值:( )÷,其中=3.22.如图,已知A (1,2),B (3,1),C (4,3).(1)作△ABC 关于y 轴的对称图形△A 1B 1C 1,写出点C 关于y 轴的对称点C 1的坐标;(2)作△ABC 关于直线m (直线m 上各点的纵坐标都为﹣1)的对称图形△A 2B 2C 2,写出点C 关于直线m 的对称点C 2的坐标.23.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元(2)超市销售这种干果共盈利多少元24.如图1,在△ABC 中,AB=AC ,BAC=30°,点D 是△ABC 内一点,DB=DC ,∠DCB=30°,点E 是BD 延长线上一点,AE=AB .(1)直接写出∠ADE 的度数;(2)求证:DE=ADDC ;(3)作B,0),B(0,n)(n>m>0),点C在第一象限,AB⊥BC,BC=BA,点,n的式子表示);(2)求证:BM=BN;(3)设点C关于直线AB的对称点为D,点C关于直线A 2 106224a9是一个完全平方式,则m的值是±6 .【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵2m9是一个完全平方式,∴m=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.如图,AB⊥BC,AD⊥DC,∠BAD=130°,点M,N分别在BC,CD上,当△AMN的周长最小时,∠MAN的度数为80°.【考点】轴对称-最短路线问题.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M∠A″=∠HAA′=60°,进而得出∠AMN∠ANM=2(∠AA′M∠A″),然后根据三角形内角和即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,∵∠DAB=130°,∴∠HAA′=50°,∴∠AA′M∠A″=∠HAA′=50°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A∠MAA′=∠AMN,∠NAD∠A″=∠ANM,∴∠AMN∠ANM=∠MA′A∠MAA′∠NAD∠A″=2(∠AA′M∠A″)=2×50°=100°,∴∠MAN=80°故答案为:80°.【点评】此题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.16.如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=8,AB=AC,∠CBD=30°,BD=4,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为44 .【考点】旋转的性质;全等三角形的判定与性质;勾股定理.【分析】将△ACN绕点A逆时针旋转,得到△ABE,由旋转得出∠NAE=90°,AN=AE,∠ABE=∠ACD,∠EAB=∠CAN,求出∠EAM=∠MAN,根据SAS推出△AEM≌△ANM,根据全等得出MN=ME,求出MN=CNBM,解直角三角形求出DC,即可求出△DMN的周长=BDDC,代入求出即可.【解答】解:将△ACN绕点A逆时针旋转,得到△ABE,如图:由旋转得:∠NAE=90°,AN=AE,∠ABE=∠ACD,∠EAB=∠CAN,∵∠BAC=∠D=90°,∴∠ABD∠ACD=360°﹣90°﹣90°=180°,∴∠ABD∠ABE=180°,∴E,B,M三点共线,∵∠MAN=45°,∠BAC=90°,∴∠EAM=∠EAB∠BAM=∠CAN∠BAM=∠BAC﹣∠MAN=90°﹣45°=45°,∴∠EAM=∠MAN,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴MN=ME,∴MN=CNBM,∵在Rt△BCD中,∠BDC=90°,∠CBD=30°,BD=4,CD=BD×tan∠CBD=4,∴△DMN的周长为DMDNMN=DMDNBMCN=BDDC=44,故答案为:44.【点评】本题考查了解直角三角形,全等三角形的性质和判定,旋转的性质的应用,能正确作出辅助线是解此题的关键.三、解答题:共9小题,共72分.解答时写出必要的文字说明、演算步骤或画出图形.17.计算:(ab)2﹣2ab.【考点】完全平方公式.【分析】根据完全平方公式,可得同类项,根据合并同类项,可得答案.【解答】解:原式=a22abb2﹣2ab=a2b2.【点评】本题考查了完全平方公式,和的平方等于平方和加积得2倍.18.解方程: =.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【解答】解:去分母得:22=5,解得:=,经检验=是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.分解因式:(1)2﹣9(2)3ab26ab3a.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式后,利用完全平方公式分解即可.【解答】解:(1)原式=(3)(﹣3);(2)原式=3a(b1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.如图,∠BAC=∠DAC,∠B=∠D.求证:AB=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】如图,直接证明△ABC≌△ADC,即可解决问题.【解答】证明:如图,在△ABC与△ADC中,,∴△ABC≌△ADC(AAS),∴AB=AD.【点评】该题主要考查了全等三角形的判定及其性质的应用问题;牢固掌握判定定理是灵活解题的基础和关键.21.先化简,再求值:()÷,其中=3.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把的值代入计算即可求出值.【解答】解:原式=•=, 当=3时,原式==2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.如图,已知A (1,2),B (3,1),C (4,3).(1)作△ABC 关于y 轴的对称图形△A 1B 1C 1,写出点C 关于y 轴的对称点C 1的坐标;(2)作△ABC 关于直线m (直线m 上各点的纵坐标都为﹣1)的对称图形△A 2B 2C 2,写出点C 关于直线m 的对称点C 2的坐标.【考点】作图-轴对称变换.【分析】(1)分别作出点A、B、C关于y轴的对称点,然后顺次连接,写出C的坐标;1的坐标.(2)先作出直线m:y=﹣1,然后作出点A、B、C关于y=﹣1对称的点,顺次连接,写出点C2【解答】解:(1)所作图形如图所示:C的坐标为(﹣4,3);1(2)所作图形如图所示:C的坐标为(4,﹣5).2【点评】本题考查了根据轴对称变化作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.23.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元(2)超市销售这种干果共盈利多少元【考点】分式方程的应用.【专题】销售问题.【分析】(1)设该种干果的第一次进价是每千克元,则第二次进价是每千克(120%)元.根据第二次购进干果数量是第一次的2倍还多300千克,列出方程,解方程即可求解;(2)根据利润=售价﹣进价,可求出结果.【解答】解:(1)设该种干果的第一次进价是每千克元,则第二次进价是每千克(120%)元,由题意,得=2×300,解得=5,经检验=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[﹣600]×9600×9×80%﹣(30009000)=(6001500﹣600)×94320﹣12000=1500×94320﹣12000=135004320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图1,在△ABC中,AB=AC,BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)直接写出∠ADE的度数;(2)求证:DE=ADDC;(3)作B,0),B(0,n)(n>m>0),点C在第一象限,AB⊥BC,BC=BA,点n)(用含m,n的式子表示);(2)求证:BM=BN;(3)设点C关于直线AB的对称点为D,点C关于直线A,∴OE=OBBE=mn,∴点C的坐标为(n,mn).故答案为:(n,mn);(2)证明:∵△AOB≌△BEC,∴BE=OA=O与△CBN中,,∴△ABM≌△CBN(ASA),∴BM=BN;(3)证明:∵点C关于直线AB的对称点为D,点C关于直线A≌△CBN,SAS证明△DAH≌△GAH.。

湖北省八年级上学期数学期末考试试卷

湖北省八年级上学期数学期末考试试卷

湖北省八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·荆州模拟) 下列二次根式中,为最简二次根式的是A .B .C .D .2. (2分)如图,把两根钢条AB,CD的中点O连在一起,可以做成一个测量工件内槽宽的工具(卡钳).只要量得AC之间的距离,就可知工件的内径BD.其数学原理是利用△AOC≌△BOD,判断△AOC≌△BOD的依据是()A . SASB . SSSC . ASAD . AAS3. (2分)下列各式从左到右的变形正确的是()A . =B .C .D .4. (2分) (2017七下·迁安期末) 下面的多项式中,能因式分解的是()A . m2﹣2m+1B . m2+nC . m2﹣m+1D . m2﹣n5. (2分) (2019七下·监利期末) (a,-6)关于x轴的对称点的坐标为()A . (-a, 6)B . (a, 6)C . (a,-6)D . (-a,-6)6. (2分) (2019八上·武汉月考) 在△ABC中,∠B和∠C的平分线交于点I,边AB和AC的垂直平分线交于点O,若∠BIC=90°+ θ,则∠BOC=()A . 90°﹣θB . 2θC . 180°﹣θD . 以上答案都不对7. (2分) (2016八下·固始期末) 实数a,b在数轴上的位置如图所示,则化简的结果是()A . ﹣2bB . ﹣2aC . 2(b﹣a)D . 08. (2分)如图,已知∠AOB,按照以下步骤画图:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长半径画弧,两弧在∠AOB内部相交于点C.(3)作射线OC.则判断△OMC≌△ONC的依据是()A . SASB . SSSC . ASAD . AAS9. (2分)已知两个分式:A=,B=,其中x≠±2.下面的结论正确的是()A . A=BB . A,B互为相反数C . A,B互为倒数D . 以上结论都不对10. (2分) (2019八上·武汉月考) 如图:Rt△ABC 中,AC=BC,∠ACB=90°,D 为 BC 边中点,CF⊥AD 交AD 于 E,交 AB 于 F,BE交 AC 于 G,连 DF,下列结论:①AC=AF,②CD+DF=AD,③∠ADC=∠BDF,④CE=BE,⑤∠ BED=45°,其中正确的有()A . 5 个B . 4 个C . 3 个D . 2 个二、填空题 (共8题;共8分)11. (1分) (2020八上·金华月考) 最简二次根式在实数范围内有意义,则x的取值范围12. (1分) (2019八上·金平期末) 当x=,分式的的值为零。

湖北省武汉市江夏区八年级(上)期末数学试卷

湖北省武汉市江夏区八年级(上)期末数学试卷

湖北省武汉市江夏区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下列名题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.(3分)计算:a2•a的结果是()A.a B.a2C.a3D.2a22.(3分)如图,图形中x的值为()A.65B.75C.85D.953.(3分)使分式有意义,则x满足条件()A.x>0B.x≠0C.x>1D.x≠14.(3分)如图,△OCA≌△OBD,∠1=40°,∠C=110°,则∠D=()A.30°B.40°C.50°D.无法确定5.(3分)在Rt△ABC中,∠C=90°,∠B=2∠A,则边AB与BC的关系()A.AB=BC B.AB=2BC C.AB=BC D.AB<BC 6.(3分)把8m2n﹣2mn分解因式()A.2mn(4m+1)B.2m(4m﹣1)C.mn(8m﹣2)D.2mn(4m﹣1)7.(3分)如图的三角形纸片中,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长是()A.7B.8C.11D.148.(3分)计算的结果是()A.B.0C.D.9.(3分)如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,连CD,下列结论:①AB﹣AC=CE;②∠CDB=135°;③S△ACE=2S△CDB;④AB=3CD,其中正确的有()A.4个B.3个C.2个D.1个10.(3分)若等式恒成立,则(a2+b2﹣2ab)﹣8a+8b+17的值是()A.50B.37C.29D.26二、填空题(共6小题,每小题3分,共18分)11.(3分)如图,在等腰三角形中,它的一个底角的度数是度.12.(3分)已知△ABC≌△DEF,若△ABC的三边长分别为6cm、8cm、10cm,则△DEF的周长是cm.13.(3分)计算:(x﹣4)(x+1)=.14.(3分)如图,在△ABC中,AD是高,AE是角平分线,若∠B=72°,∠DAE=16°,则∠C=度.15.(3分)若,则=.16.(3分)如图,在平面直角坐标系中,点B、A分别在x轴、y轴上,∠BAO =60°,在坐标轴上找一点C,使得△ABC是等腰三角形,则符合条件的等腰三角形ABC有个.三、解答题(共8小题,共72分)17.(8分)解下列方程:(1)(2)18.(8分)计算:(1)(2a)3•b4÷12a3b2(2)(x﹣3y)(﹣6x)19.(8分)如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O,OB=OC,连AO,求证:∠1=∠2.20.(8分)(1)如图1,在△ABC中,点D、E分别是AB、AC的中点,请你在BC边上确定一点P,使△PDE的周长最小.(要求:保留作图痕迹,不写作法,但要说明点P是如何确定的.)(2)如图2,∠AOB内有一定点P,试在OA、OB上各找一点D、E,使△PDE 的周长最小.(要求:保留作图痕迹,不写作法,但要说明点D、E是如何确定的.)21.(8分)先化简,再求值.[(x+3y)(x﹣3y)+(2y﹣x)2+5y2(1﹣x)﹣(2x2﹣x2y)]÷(﹣xy),其中x=95,y=220.22.(10分)如图,“主收1号”小麦的试验田是边长为am(a>1)的正方形去掉一个边长为1m的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a﹣1)m的正方形,两块试验田的小麦都收获了500kg.(1)哪种小麦的单位面积产量高?(2)若高的单位面积产量是低的单位面积产量的(kg)倍,求a的值(3)利用(2)中所求的a的值,分解因式x2﹣ax﹣108=.23.(10分)已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE 交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出的值.24.(12分)如图,在平面直角坐标系中,A(x,0),B(0,y),其中x与y互为相反数,且x满足:x2﹣14ax+49a2=0(a>0),点C为x轴负半轴上一点,AD⊥AB,垂足为A,∠DCA=∠CBO.(1)求∠ABC+∠D的度数;(2)如图1,若点C的坐标为(﹣3a,0),求点D的坐标.(用含a的式子表示)(3)如图2,在(2)的条件下,若a=1,过点D作DE⊥y轴于E,DF⊥x轴于F,点M为线段DF上一点.若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点的坐标.湖北省武汉市江夏区八年级(上)期末数学试卷参考答案一、选择题(共10小题,每小题3分,共30分)下列名题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.C;2.A;3.D;4.A;5.B;6.D;7.A;8.B;9.B;10.D;二、填空题(共6小题,每小题3分,共18分)11.30;12.24;13.x2﹣3x﹣4;14.40;15.;16.6;三、解答题(共8小题,共72分)17.;18.;19.;20.;21.;22.(x ﹣12)(x+9);23.;24.;。

武汉市八年级数学上册期末测试卷(含答案)

武汉市八年级数学上册期末测试卷(含答案)

湖北省武汉市八年级(上)期末测试数学试卷一、选择题(每小题3分,共30分)1.(3分)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 2.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°3.(3分)在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为()A.120° B.110° C.100° D.40°4.(3分)如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150° B.180° C.210° D.225°5.(3分)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50° B.100° C.120° D.130°6.(3分)以下图形中对称轴的数量小于3的是()A. B. C. D.7.(3分)一个等腰三角形的两边长分别为4,8,则它的周长为() A.12 B.16 C.20 D.16或20 8.(3分)下列计算正确的是()A.x2+x2=x4 B.2x3﹣x3=x3 C.x2•x3=x6 D.(x2)3=x5 9.(3分)下列计算正确的是() A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2C.(x+1)(x﹣1)=x2﹣1D.(x﹣1)2=x2﹣110.(3分)下列分式中,最简分式是()[来源:]二、填空题(每小题3分,共18分)11.(3分)以长为8cm、6cm、10cm、4cm的四条线段中的三条线段为边,可以画出三角形的个数是.12.(3分)如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC= 度.13.(3分)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 度.14.(3分)分解因式:(2a+b)2﹣(a+2b)2= .15.(3分)若代数式与的值相等,则x= .16.(3分)如图,OB平分∠MON,A为OB的中点,AE⊥ON于点E,AE=3,D为OM上一点,BC∥OM交DA于点C,则CD的最小值为.三、解答题(共9小题,共72分) 17.(4分)分解因式:2x2﹣8.18.(4分)解方程:19.(8分)计算:21.(8分)如图,平面直角坐标系中,△AOB的顶点均在边长为1的正方形在顶点上.(1)求△AOB的面积;(2)若点B关于y轴的对称点为C,点A关于x轴的对称点为D,求四边形ABCD的面积.22.(3分)已知:如图,C是AB上一点,点D、E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.连接DE,交AB于点F,猜想△BEF的形状,并给予证明.23.(10分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和B型车共60辆,要使这批车获利不少于33000元,A型车至多进多少辆?A,B两种型号车的进货和销售价格如表:24.(10分)在△ABC中,∠BAC=90°,AB=AC,∠ABC=∠ACB=45°,在△ABC外侧作∠ACM,使得∠ACM=∠ABC,点D是射线CB上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.(1)当点D与点B重合时,如图1所示,线段DF与EC的数量关系是;(2)当点D运动到CB延长线上某一点时,线段DF和EC是否保持上述数量关系?请在图2中画出图形,并说明理由.25.(12分)已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM 于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值./-/-/-//-/-/-/湖北省武汉市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误; B、因为2+4<6,所以不能构成三角形,故B错误; C、因为3+4<8,所以不能构成三角形,故C错误; D、因为3+3>4,所以能构成三角形,故D正确.故选:D.2.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.3.(3分)在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为()A.120° B.110° C.100° D.40°【解答】解:∵在四边形ABCD中,∠A+∠B+∠C+∠D=360°,且∠A+∠B+∠C=260°,/-/-/-//-/-/-/∴∠D=100°,故选:C.4.(3分)如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150° B.180° C.210° D.225°【解答】解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC,∴∠BAC=∠DEC,∠1+∠2=180°.故选:B.5.(3分)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50° B.100° C.120° D.130°【解答】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选:B./-/-/-//-/-/-/6.(3分)以下图形中对称轴的数量小于3的是() A.B.C.D.【解答】解:A、有4条对称轴; B、有6条对称轴; C、有4条对称轴; D、有2条对称轴.故选:D.7.(3分)一个等腰三角形的两边长分别为4,8,则它的周长为() A.12 B.16 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.8.(3分)下列计算正确的是()A.x2+x2=x4 B.2x3﹣x3=x3 C.x2•x3=x6 D.(x2)3=x5 【解答】解:A、x2+x2=2x2,故此选项错误; B、2x3﹣x3=x3,正确; C、x2•x3=x5,故此选项错误; D、(x2)3=x6,故此选项错误;故选:B.9.(3分)下列计算正确的是() A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2C.(x+1)(x﹣1)=x2﹣1D.(x﹣1)2=x2﹣1【解答】解:A、(x+y)2=x2+y2+2xy,故此选项错误; B、(x﹣y)2=x2﹣2xy+y2,故此选项错误; C、(x+1)(x﹣1)=x2﹣1,正确;/-/-/-//-/-/-/D、(x﹣1)2=x2﹣2x+1,故此选项错误;故选:C.10.(3分)下列分式中,最简分式是() A.B.C. D.【解答】解:A、原式为最简分式,符合题意; B、原式==,不合题意; C、原式==,不合题意;D、原式==,不合题意,故选:A.二、填空题(每小题3分,共18分)11.(3分)以长为8cm、6cm、10cm、4cm的四条线段中的三条线段为边,可以画出三角形的个数是 3 .【解答】解:分成四种情况:①4cm,6cm,8cm;②4cm,6cm,10cm;③6cm,8cm,10cm;④4cm,8cm,10cm,∵5+6=11,∴②不能够成三角形,故只能画出3个三角形.故答案为:3.12.(3分)如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC= 35 度./-/-/-//-/-/-/【解答】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=∠ABC,∠OCE=∠ACE,∴(∠BAC+∠ABC)=∠BOC+∠ABC,∴∠BOC=∠A,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.13.(3分)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 45 度.【解答】解:∵AD⊥BC于D,BE⊥AC于 E ∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45./-/-/-//-/-/-/14.(3分)分解因式:(2a+b)2﹣(a+2b)2= 3(a+b)(a﹣b).【解答】解:(2a+b)2﹣(a+2b)2 =(2a+b+a+2b)(2a+b﹣a﹣2b) =(3a+3b)(a﹣b) =3(a+b)(a﹣b).故答案为:3(a+b)(a﹣b).15.(3分)若代数式与的值相等,则x= 4 .【解答】解:根据题意得: =,去分母得:6x=4(x+2),移项合并同类项得:2x=8,解得:x=4.故答案为:4.16.(3分)如图,OB平分∠MON,A为OB的中点,AE⊥ON于点E,AE=3,D为OM上一点,BC∥OM交DA于点C,则CD的最小值为 6 .【解答】解:由题意可得,当CD⊥OM时,CD取最小值,∵OB平分∠MON,AE⊥ON于点E,CD⊥OM,∴AD=AE=3,∵BC∥OM,∴∠DOA=∠B,/-/-/-//-/-/-/∵A为OB的中点,∴AB=AO,在△ADO与△ABC中,∴△ADO≌△ABC(SAS),∴AC=AD=3,∴CD=AC+AD=3+3=6,故答案为:6.三、解答题(共9小题,共72分) 17.(4分)分解因式:2x2﹣8.【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).18.(4分)解方程:+1=.【解答】解;方程两边都乘以x﹣2得:x﹣3+x﹣2=﹣3,解得:x=1,检验,把x=1代入x﹣2≠0,所以x=1是原方程的解,即原方程的解为x=1.19.(8分)计算:(1)(﹣2a2b)2•(ab)3(2)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)【解答】解:(1)原式=4a4b2•a3b3=a7b5;(2)原式=2x2+x﹣2x﹣1﹣2x2﹣4x+10x+20 =5x+19./-/-/-//-/-/-/20.(8分)先化简,再求值:(﹣)÷(﹣1),其中x=2.【解答】解:当x=2时,∴原式=(+)÷=×==21.(8分)如图,平面直角坐标系中,△AOB的顶点均在边长为1的正方形在顶点上.(1)求△AOB的面积;(2)若点B关于y轴的对称点为C,点A关于x轴的对称点为D,求四边形ABCD的面积.【解答】解:(1)△AOB的面积=3×3﹣×3×1﹣×3×2﹣×2×1 =9﹣1.5﹣3﹣1 =3.5.故△AOB的面积是3.5;(2)如图,由题意得C(﹣1,3),D(3,﹣2),四边形ABCD的面积=5×4﹣×5×4﹣×2×1 =20﹣10﹣1 =9.故四边形ABCD的面积是9./-/-/-//-/-/-/22.(3分)已知:如图,C是AB上一点,点D、E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.连接DE,交AB于点F,猜想△BEF的形状,并给予证明.【解答】解:△BEF为等腰三角形,理由如下:连CE,∵AD∥BE,∴∠A=∠B,在△ADC和△BCE中,,∴△ADC≌△CBE,∴∠DCF=∠BEC,CD=CE,∵CD=CE,∴∠CDF=∠CED,又∠BFE=∠CDF+∠DCF,∠BEF=∠BEC+∠CED,∴∠BFE=∠BEF,∴BF=BE,即△BEF为等腰三角形.23.(10分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A/-/-/-//-/-/-/型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和B型车共60辆,要使这批车获利不少于33000元,A型车至多进多少辆?A,B两种型号车的进货和销售价格如表:A型车 B型车进货价格(元)11001400 销售价格(元)今年的销售价格2000【解答】解:(1)设去年售价为a,销售量为b,则今年售价为(a﹣400),销售量为b,依据题意可得,解得a=2000元,b=25辆∴今年A型车每辆售价为1600元.(2)设购进A型车x辆,则购进B型车60﹣x辆,依题意可得 500x+600(60﹣x)≧33000,解得x≤30,∴A型车至多购进30辆.24.(10分)在△ABC中,∠BAC=90°,AB=AC,∠ABC=∠ACB=45°,在△ABC 外侧作∠ACM,使得∠ACM=∠ABC,点D是射线CB上的动点,过点D作直线CM 的垂线,垂足为E,交直线AC于F.(1)当点D与点B重合时,如图1所示,线段DF与EC的数量关系是 DF=2EC ;(2)当点D运动到CB延长线上某一点时,线段DF和EC是否保持上述数量关系?请在图2中画出图形,并说明理由.【解答】解:(1)如图1,DF=2EC,理由是:延长BA、CM交于点N,/-/-/-//-/-/-/∵∠BAC=∠BEC=90°,∠AFB=∠EFC,∴∠ABE=∠ACM=∠ABC,∴BE平分∠ABC,∵BE⊥CN,∴BC=BN,∴E是CN的中点,∴NC=2CE,∵AB=AC,∠BAC=∠CAN=90°,∴△BAF≌△CAN,∴BF=CN,∴BF=2EC,即DF=2EC;(2)仍然成立,DF=2EC;理由如下:如图2,作∠PDE=22.5,交CE的延长线于P点,交CA的延长线于N,∵DE⊥PC,∠ECD=67.5,∴∠EDC=22.5°,∴∠PDE=∠EDC,∠NDC=45°,∴∠DPC=67.5°,在△DPE和△DEC中,,∴△DPE≌△DEC(AAS),∴PD=CD,PE=EC,∴PC=2CE,∵∠NDC=45°,∠NCD=45°,∴∠NCD=∠NDC,∠DNC=90°,∴△NDC是等腰直角三角形∴ND=NC且∠DNC=∠PNC,在△DNF和△PNC中,,∴△DNF≌△PNC(ASA),/-/-/-//-/-/-/∴DF=PC,∴DF=2CE.25.(12分)已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM 于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.【解答】(1)①证明:如图1中,/-/-/-//-/-/-/∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK./-/-/-//-/-/-/∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CBF=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4 ∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.。

2021-2022学年湖北省武汉市武昌区初二数学第一学期期末试卷及解析

2021-2022学年湖北省武汉市武昌区初二数学第一学期期末试卷及解析

2021-2022学年湖北省武汉市武昌区初二数学第一学期期末试卷一、选择题(每小题3分,共30分)1.(3分)北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是()A.B.C.D.2.(3分)若代数式在实数范围内有意义,则实数x的取值范围是()A.x=0 B.x≠﹣1 C.x=1 D.x≠13.(3分)一种微粒的半径是0.00002米,数0.00002用科学记数法表示为()A.2×10﹣5B.0.2×10﹣4C.2×10﹣3D.2×1054.(3分)下列运算正确的是()A.x2•x3=x6B.(2x)3=6x3C.(﹣x2)3=﹣x6D.2xy2+3yx2=5xy25.(3分)如图,点E、H、G、N共线,∠E=∠N,添加一个条件,不能判断△EFG≌△NMH的是()A.EH=NG B.∠F=∠M C.FG=MH D.FG∥HM6.(3分)÷计算结果为()A.B.C.D.7.(3分)将下列多项式分解因式,结果中不含有因式(x+2)的是()A.x2+2x B.x2﹣4C.(x﹣2)2+8(x﹣2)+16 D.x3+3x2﹣4x8.(3分)在等腰△ABC中,AB=AC=,BC=3,点D在边BC上.若△ABD是直角三角形,则AD的长度是()A.B.或1 C.或D.1或9.(3分)在平面直角坐标系中,已知点A(﹣1,1),B(﹣3,2),点C在坐标轴上,则满足条件的点C 的个数是()A.4个B.5个C.7个D.8个10.(3分)如图,△ABC中,点D在BC上,∠BAC=∠ADC=60°,AE⊥BC于E,AE、CF相交于点G.DC =m,AF=n()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)若分式的值为0,则x的值是.12.(3分)已知一个n边形的内角和等于1980°,则n=.13.(3分)若(x+6)(x+8)=x2+mx+48,则m=.14.(3分)如图,在△ABC中,AB的垂直平分线交BC于M,连接AM、AN,若∠MAN=10°°.15.(3分)已知x﹣3y=1,x3﹣3x2y﹣7xy+9y2=﹣3,则xy的值是.16.(3分)如图,在△ABC中,∠ACB=2α,∠CAD=30°﹣α,∠BAD=30°.(用含α的式子表示)三、解答题(共8小题,共72分)17.(8分)(1)计算:(a﹣1)(a+2);(2)因式分解:4xy2﹣4xy+x.18.(8分)解分式方程:(1);(2).19.(8分)已知AB=AC,∠B=∠C,求证:BD=CE.20.(8分)先化简,再求值:(2a﹣)÷,其中a=2.21.(8分)如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣1).(1)若△ABO与△A1B1O关于y轴的对称,则A1、B1的坐标分别是;(2)请仅用无刻度直尺作图,保留作图痕迹,不写作法.①在图1中,找一格点P,使得∠APO=45°;②在图2中,作出△ABO的高AQ.22.(10分)为了健全武汉市的公园服务覆盖网络,2021年武汉市新建了一批口袋公园(规模很小的城市开放空间).在某一区域2020年已有口袋公园面积120万平方米,人均口袋公园面积比2020年增加了2平方米,人口增加了10%(1)求2020年该区域人口为多少万人?(2)每个口袋公园面积平均为5万平方米,预计2022年该区域人口比2021年再增加10%,为了达到人均口袋公园面积比2021年再增加1平方米的目标23.(10分)如图1,在△ABC中,BE平分∠ABC,BE与CF交于点D.(1)若∠BAC=74°,则∠BDC=;(2)如图2,∠BAC=90°,作MD⊥BE交AB于点M;(3)如图3,∠BAC=60°,∠ABC=80°,点M在直线BC上,连接MG,将线段GM绕点G逆时针旋转90°得GN,NG=MG,当DN最短时,直接写出∠MGC的度数.24.(12分)在平面直角坐标系中,点A在x轴的负半轴上,点B在y轴的正半轴上(1)如图1,OA=OB,AF平分∠BAC交BC于F,请直接写出EF与EC的数量关系为;(2)如图2,AF平分∠BAC交BC于F,若AF=2OB;(3)如图3,OA=OB,点G在BO的垂直平分线上,连接GH,试探究OG与GH的数量和位置关系.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A.不是轴对称图形;B.不是轴对称图形;C.不是轴对称图形;D.是轴对称图形.故选:D.2.【解答】解:由题意得:1+x≠0,解得:x≠﹣4,故选:B.3.【解答】解:数0.00002用科学记数法表示为2×10﹣2.故选:A.4.【解答】解:A、x2•x3=x3,故A不符合题意;B、(2x)3=5x3,故B不符合题意;C、(﹣x2)4=﹣x6,故C符合题意;D、2xy3+3yx2=5xy2+3yx4,故D不符合题意;故选:C.5.【解答】解:在△EFG与△NMH中,已知,EF=NM,A.由EH=NG可得EG=NH,根据SAS可证△EFG≌△NMH;B.添加条件∠F=∠M,故本选项不符合题意;C.添加条件FG=MH,故本选项符合题意;D.由FG∥HM可得∠EGF=∠NHM,根据AAS可证△EFG≌△NMH;故选:C.6.【解答】解:原式=•x(x﹣2)=.故选:B.7.【解答】解:A.原式=x(x+2);B.原式=(x+2)(x﹣6);C.原式=(x﹣2+4)4=(x+2)2,故此选项不符合题意;D.原式=x(x5+3x﹣4)=x(x+7)(x﹣1),故此选项符合题意;故选:D.8.【解答】解:∵△ABD是直角三角形,∴①当∠ADB=90°,即AD⊥BC时,∵AB=AC=,BC=3,∴BD=BC=,∴AD===;②当∠BAD′=90°,即AD′⊥AB时,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴AD′=BD′,∵AB8+AD′2=BD′2,∴5+AD′2=4AD′5,∴AD′=1,综上所述,AD的长度是,故选:B.9.【解答】解:如图,由题意可知:以AC、AB为腰的三角形有3个;以AC、BC为腰的三角形有2个;以BC、AB为腰的三角形有5个.则点C的个数是7.故选:C.10.【解答】解:∵∠ACB=75°,∠BAC=60°,∴∠ABC=180°﹣∠ACB﹣∠BAC=45°∵∠ADC=60°,∴∠ADB=120°,∴∠DAC=∠ADB﹣∠ACB=120°﹣75°=45°,又∵CF⊥AD,∴∠AFC=∠CFD=90°,∠ACF=∠DAC=45°,∴AF=CF,∵CF⊥AD,AE⊥BC,∴∠CDF+∠DCF=∠CGE+∠DCF=90°,∴∠CDF=∠CGE,又∵∠CGE=∠AGF,∴∠AGF=∠CDF,∵在△AFG和△CFD中,∠AFC=∠AED,∠AGF=∠CDF,∴△AFG≌△CFD(AAS),∴CF=AF=n,在Rt△CFD中,∠CFD=90°,∴DF=CD=m,∴FG=DF=m,∴CG=CF﹣FG=n﹣m,在Rt△CGE中,∠AEC=90°,∴EG=CG=.故选:A.二、填空题(每小题3分,共18分)11.【解答】解:∵分式的值为8,∴,解得:x=2.故答案为:3.12.【解答】解:设这个多边形的边数为n,则(n﹣2)•180°=1980°,解得n=13.故答案为:13.13.【解答】解:∵(x+6)(x+8)=x8+14x+48,∴m=14,故答案为:14.14.【解答】解:∵AB的垂直平分线交BC于M,∴∠BAM=∠B,∵AC的垂直平分线交BC于N,∴∠CAN=∠C,∵∠BAN=∠BAM﹣∠NAM=∠B﹣10°,∴∠CAM=∠C﹣10°,∴∠BAC=∠CAM+∠BAN+∠MAN=∠B﹣10°+10°+∠C﹣10°=180°﹣∠BAC+10°,∴∠BAC=95°,故答案为:95.15.【解答】解:∵x﹣3y=1,∴x3﹣6xy+9y7=1,∴x3﹣2x2y﹣7xy+3y2=﹣3,∴x6(x﹣3y)﹣6xy+4y2﹣xy=﹣3,∴x3﹣6xy+9y5﹣xy=﹣3,∴1﹣xy=﹣2,∴xy=4.16.【解答】解:如图,延长CB到E,连接DE,∵CD平分∠ACB,∴∠ACD=∠BCD=,在△ADC与△EDC中,,∴△ADC≌△EDC(SAS),∴AD=ED,∠ADC=∠EDC,∵∠CAD=30°﹣α,∠ACD=α,∴∠ADC=180°﹣(30°﹣α)﹣α=150°,∴∠EDC=∠ADC=150°,∴∠EDA=360°﹣150°﹣150°=60°,∵ED=AD,∴△EDA为等边三角形,∴∠EAD=∠AED=60°,∵∠BAD=30°,∴∠EAB=60°﹣30°=30°,∴AB是∠EAD的角平分线,∵AB是ED的垂直平分线,∴BD=BE,∴∠BED=∠BDE,∵∠ACB=6α,∠EAC=∠EAD+∠DAC=60°+30°﹣α=90°﹣α,∴∠AEC=180°﹣2α﹣(90°﹣α)=90°﹣α,∴∠EDC=∠AEC﹣∠AED=90°﹣α﹣60°=30°﹣α,∴∠BED=∠BED=30°﹣α,∴∠DBC=∠BDE+∠BED=(30°﹣α)×2=60°﹣2α,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(60°﹣2α)﹣α=120°+α,故答案为:120°+α.三、解答题(共8小题,共72分)17.【解答】解:原式=a2+2a﹣a﹣3=a2+a﹣2;(2)原式=x(8y2﹣4y+4)=x(2y﹣1)4.18.【解答】解:(1)去分母得:x+2=3x,解得:x=3,检验:把x=1代入得:x(x+2)≠8,∴分式方程的解为x=1;(2)去分母得:3+x(x+2)=x2﹣9,解得:x=﹣3,检验:把x=﹣4代入得:(x+3)(x﹣5)≠0,∴分式方程的解为x=﹣4.19.【解答】解:在△ADC和△AEB中,∴△ADC≌△AEB∴AD=AE,∵AB=AC,∴AB﹣AD=AC﹣AE即:BD=CE.20.【解答】解:原式=÷=•=•=2a(a+8)=2a2+5a,当a=2时,原式=2×72+4×2=8+8=16.21.【解答】解:(1)如图,△A1B1O即为所求,则A8、B1的坐标分别(3,5),﹣1);(2)①如图1在,点P即为所求;②如图4中,线段AQ即为所求.22.【解答】解:(1)设2020年该区域人口为a万人,由题意可得:+2=,解得a=10,经检验,a=10是原分式方程的解,答:2020年该区域人口为10万人;(2)设应新建x个口袋公园,由题意可得:=+1,解得x=5.7,∵x为整数,∴x至少为6,答:至少应新建6个口袋公园.23.【解答】(1)解:∵∠BAC=74°,∴∠ABC+∠ACB=106°,∵BE平分∠ABC,CF平分∠ACB,∴∠DBC=∠ABC∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=53°,∴∠BDC=127°,故答案为:127°;(2)证明:如图2,过点D作DG⊥AB于G,DP⊥BC于P,∵BD平分∠ABC,CD平分∠ACB,DH⊥AC于H,∴DP=DH=DG,∵MD⊥BE,∴∠MDE=∠A=90°,∴∠AMD+∠AED=180°,∵∠AMD+∠DMG=180°,∴∠DMG=∠AED,又∵∠DGA=∠DHE=90°,∴△DMG≌△DEH(AAS),∴DM=DE;(3)如图3,过点G作GQ⊥DC,连接QN,∵∠BAC=60°,∠ABC=80°,∴∠ACB=40°,∴∠BCD=20°,∵将线段GM绕点G逆时针旋转90°得GN,∴MG=GN,∠MGN=90°=∠QGC,∴∠MGC=∠QGC,又∵GQ=GC,MG=GN,∴△MGC≌△NGQ(SAS),∴∠Q=∠MCG=20°,∴点N在直线QN上运动,∴当DN⊥QN时,DN有最小值为DN',此时,∵GM'=GN',∴∠GN'M'=45°,∴∠QGN'=25°,∵∠QGC=∠M'GN'=90°,∴∠M'GC=∠QGN'=25°,∴当DN最短时,∠MGC的度数度数为25°.24.【解答】解:(1)结论:EF=EC.理由:如图1中,设AF交BE于点J.∵AF平分∠BAC,∴∠BAF=∠CAF,∵BE⊥AF,∴∠BAF+∠ABE=90°,∠CAF+∠AEB=90°,∴∠ABE=∠AEB,∴AB=AE,∵A,C关于y轴对称,∴OA=OC,∵OA=OB,∴OA=OB=OC,∴∠OAB=∠OBA=45°,∠OCB=∠OBC=45°,∴∠ABC=90°,在△ABF和△AEF中,,∴△ABF≌△AEF(SAS),∴∠AEF=∠ABF=90°,∴∠CEF=90°,∴∠ECF=∠EFC=45°,∴EF=EC;(2)如图2中,取CF的中点T.∵AO=OC,FT=TC,∴OT∥AF,OT=,∵AF=2OB,∴OB=OT,∴∠OBT=∠OTB,∵OA=OC,BO⊥AC,∴BA=BC,∴∠BAC=∠BCA,∠ABO=∠CBO,设∠BAC=∠BCA=8α,∵AF平分∠BAC,∴∠BAF=∠CAF=α,∵OT∥AF,∴∠TOC=∠CAF=α,∴∠OBT=∠OTB=∠TOC+∠TCO=3α,∵∠OBC+∠OCB=90°,∴5α=90°,∴α=18°,∴∠OBC=36°,∴∠ABC=3∠OBC=72°;(3)结论:OG=GH,OG⊥GH.理由:如图3中,连接GB,使得GB=GH′,设AB交DG于点W,连接OW.设∠OGB=m,∠OGH′=n,∵GD垂直平分线段OB,∴GB=GO,∠DGB=∠DGO=m,∵GB=GO=GH′,∴∠GH′O=(180°﹣n)=90°﹣n(180°﹣m﹣n)=90°﹣n,∴∠KH′O=∠GH′O﹣∠GH′B=90°﹣n﹣(90°﹣n)=m,∴∠KH′O=∠KGW,∵∠GKW=∠H′KO,∴∠H′OK=∠GWK,∵DG∥OA,∴∠GWK=∠OAB=45°,∴∠COH′=45°,∵∠COH=45°,∴∠COH=∠COH′,∴点H与点H′重合,∴OG=GH,∴∠GHO=∠GOH=45°,∴∠OGH=90°,∴GH=GO,GH⊥GO.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省武汉市八年级上学期数学期末考试试卷(五四制)
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)圆是中心对称图形,它的对称中心是()
A . 圆周
B . 圆心
C . 半径
D . 直径
2. (2分) (2016七下·五莲期末) 若a>b,则下列各式中正确的是()
A . a﹣<b﹣
B . ﹣4a>﹣4b
C . ﹣2a+1<﹣2b+1
D . a2>b2
3. (2分)如图,数轴上所表示的不等式组的解集是()
A . x≤2
B . -1≤x≤2
C . -1<x≤2
D . x>-1
4. (2分)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()
A . (4,2)
B . (5,2)
C . (6,2)
D . (5,3)
5. (2分)(2017·萧山模拟) 以下说法:
①关于x的方程x+ =c+ 的解是x=c(c≠0);
②方程组的正整数解有2组;
③已知关于x,y的方程组,其中﹣3≤a≤1,当a=1时,方程组的解也是方程x+y=4﹣a的解;
其中正确的有()
A . ②③
B . ①②
C . ①③
D . ①②③
6. (2分) (2018八上·彝良期末) 小朱要到距离家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸的速度比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()
A .
B .
C .
D .
7. (2分) (2018八上·秀洲期中) 如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE 交AD于点F,连结BD交CE于点G,连结BE.下列结论中,正确的结论有()
①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四边形BCDE= BD•CE;⑤BC2+DE2=BE2+CD2 .
A . 1个
B . 2个
C . 3个
D . 4个
8. (2分) (2017八下·徐州期末) 如图,正方形纸片ABCD的边长为4cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是()
A . 4cm
B . 2cm
C . cm
D . 1cm
9. (2分) (2019九上·莲湖期中) 我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.现有一个对角线长分别为6和8的菱形,它的中点四边形的对角线长是()
A . 5
B .
C . 6
D . 10
10. (2分)(2018·潮南模拟) 如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF 为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S 四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是()
A . 1个
B . 2个
C . 3个
D . 4个
二、填空题 (共10题;共11分)
11. (1分) (2015七下·汶上期中) 当x<a<0时,x2________ax(填>,<,=)
12. (1分)某军事行动中,对军队部署的方位,采用代码的方式来表示.例如,北偏东30°方向45km的位置与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1∶00,那么这个地点就用代码010045表示.按这种表示方式,南偏东40°方向78km的位置,可用代码表示为________..
13. (2分) (2016七下·桐城期中) 分解因式9(a+b)2﹣(a﹣b)2=________.
14. (1分)(2012·沈阳) 如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四
边形BEDF的面积为________cm2 .
15. (1分)如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是________.
16. (1分) (2019八上·海安期中) 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3,则线段BD的长为________.
17. (1分)解分式方程检验时,可以直接把根代入最简公分母,看最简公分母是否为________,若为________,则是原分式方程的增根;若最简公分母不为________,则是原分式方程的解.
18. (1分) (2019七下·大通回族土族自治月考) 如图,矩形ABCD中,AB=3,BC=4,则图中四个小矩形的周长之和为________.
19. (1分) (2017八下·高阳期末) 如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是________
20. (1分) (2020九上·长兴期末) 如图,在Rt△ABC中,∠C=90°,AC=8,点D在边BC上,CD=6,BD=10.点P是线段AD上一动点当半径为4的⊙P与△ABC的一边相切时,AP的长为________。

三、解答题 (共8题;共44分)
21. (5分) (2018九上·大冶期末) 解不等式组,把它的解集在数轴上表示出来,并写出这个不等式组的整数解.
22. (10分)解方程:.
23. (5分)(2017·永州) 先化简,再求值:( + )÷ .其中x是0,1,2这三个数中合适的数.
24. (5分) (2016九上·临泽开学考) 如图,平行四边形ABCD中,E、F分别是对角线BD上的两点,且BE=DF,连接AE、AF、CE、CF.四边形AECF是什么样的四边形,说明你的道理.
25. (5分)(1)如图1,在平面直角坐标系中,RT△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD 交x轴于点C,过点D作
DA⊥x轴于A,OA=4,OB=3.
①求点C的坐标;
②若点D在反比例函数y=的图象上,求反比例函数的解析式.
(2)如图2,四边形ABCD的对角线AC、BD相交于O,O是AC的中点,AE=CF,DF∥BE.
①求证:△BOE≌△DOF;
②若OD=AC,判断四边形ABCD是什么特殊四边形?并证明结论.
26. (10分)为提高学校的机房条件,学校决定新购进一批电脑,经了解某电脑公司有甲、乙两种型号的电脑销售.已知甲电脑的售价比乙电脑高1000元,如果购买相同数量的甲、乙两种型号的电脑,甲所需费用为10万元,乙所需费用为8万元.
(1)问甲、乙两种型号的电脑每台售价各多少元?
(2)学校决定购买甲、乙两种型号的电脑共100台,且购买乙型号电脑的台数超过甲型号电脑的台数,但不多于甲型号电脑台数的4倍,则当购买甲、乙两种型号的电脑各多少台时,学校需要的总费用最少?并求出最少的费用.
27. (2分) (2017八下·洪山期中) 如图,正方形ABCD中,点E为边BC的上一动点,作AF⊥DE交DE、DC 分别于P、F点,连PC
(1)
若点E为BC的中点,求证:F点为DC的中点;
(2)
若点E为BC的中点,PE=6,PC=4 ,求PF的长;
(3)
若正方形边长为4,直接写出PC的最小值________.
28. (2分)(2018·吉林模拟) 如图,在△ABC中,AD是BC边上的高,tanB=cos∠DAC.
(1)求证:AC=BD;
(2)若sinC= ,BC=34,直接写出AD的长是________.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7、答案:略
8-1、
9-1、
10-1、
二、填空题 (共10题;共11分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
19-1、
20-1、
三、解答题 (共8题;共44分)
21-1、
22-1、
23-1、
24-1、
26-1、26-2、
27-1、27-2、
27-3、
28-1、
28-2、。

相关文档
最新文档