晶体成核理论
均匀成核理论资料

6.2 接触角
6.2 成核功临界半径
5. 均匀成核
1. 根据热力学原理,当熔体过冷至熔点温度以下时,就会出现结 晶现象。首先,在熔体中会形成许多大小不等、与固相结构相同的 基元团,这里我们把它们叫做晶胚。这些晶胚再靠凝聚熔体中的溶 质原子而不断长大,形成具有一定临界大小的晶核,继而发育成完 整的晶体。整个结晶过程就是形成晶核和晶核不断长大的过程 2. 所谓成核就是指新相在旧相中开始形成时,并非在亚稳系统的全部体 积内同时发生,而是在旧相中的某些位置产生小范围的新相,在新相和 旧相之间有比较清晰的界面将它们分开。这种在旧相中诞生小体积新相 的现象就是成核。一次成核是指系统中不含有结晶物质时的成核。如果 成核是自发产生的,而不是靠外来的质点或基底的诱发,这样的成核就 是均匀成核。相反,如果成核是靠外来的质点或基底的诱发而产生的, 这样的成核就叫做非均匀成核。有时,晶核可以在系统中已经存在的晶 体附近产生,这种在有晶体存在的条大一个单位面积所需要作的功,以s表示之。如果作 用于液体表面上单位长度周界上一个力,其方向是沿周界的内法线并与界面相 切,这样向外拉,于是就增大液体表面而作了功,此力将使液体表面积周界拉 长增加,这个力是用来抵消表面单位长度上的收缩力大小, 这个力我们称之为 表面张力,液体的表面能和表面张力的数值与纲是相同的。以后涉及表面能时 往往就用表面张力来代替。
5.1 晶核的临界半径及成核功
∆G :体积自由能; ∆Gs:界面自由能; ∆GE: 固态形变能
V
由式可见,形成临界晶核时的自由能变化为正值,形成临界晶核时,所释放的 体积自由能只能补偿表面自由能增高的三分之二,还有三分之一的表面自由能 必须从能量起伏中提供,如图所示。这一结论与晶核形状无关。因此,也称为 成核功,这部分能量就是过冷熔体或过饱和溶液开始成核的主要障碍,过冷熔 体或过饱和溶液迟迟不能成核的主要原因也正在于此.
3.晶体理论简述

α =β =γ = 900 α =β =γ ≠ 900 α =β =γ = 900 α =β = 900, γ = 1200 α =β =γ = 900 α =γ = 900, β ≠ 900 α ≠ β ≠ γ ≠ 900
晶体实例 NaCl Al2O3 SnO2 AgI HgCl2 KClO3 CuSO4· 5H2O
(1)热缺陷 )
定义: 定义 热缺陷是指由热起伏的原因所产生的 空位或间隙质点(原子或离子)。 空位或间隙质点(原子或离子)。 类型: 类型 弗仑克尔缺陷和肖特基缺陷 热缺陷浓度与温度的关系: 温度升高时, 热缺陷浓度与温度的关系 温度升高时,热 缺陷浓度增加
(a)弗仑克尔缺陷的形成 ) 空位与间隙质点成对出现) (空位与间隙质点成对出现)
(4)
体缺陷
体 缺 陷: 由点缺陷或面缺陷造成在 完整的晶格中可能存在着空洞或夹杂有包 裹物等,使晶体内部的空间晶格结构整体 裹物等 使晶体内部的空间晶格结构整体 上出现了一定形式的缺陷。 上出现了一定形式的缺陷。
2、按缺陷产生的原因分类
1. 热缺陷 2. 杂质缺陷 3. 非化学计量缺陷 4. 其它原因,如电荷缺陷,辐照缺陷等 其它原因,如电荷缺陷,
(1)点缺陷:晶格结点粒子发生局部 点缺陷: 错乱的现象。 错乱的现象。 按引起点缺陷的粒子不同,可分为: 按引起点缺陷的粒子不同,可分为: 错位粒子、间隙粒子、替位粒子和空位。 错位粒子、间隙粒子、替位粒子和空位。 点缺陷与材料的电学性质、光学性质、 点缺陷与材料的电学性质、光学性质、 材料的高温动力学过程等有关。 材料的高温动力学过程等有关。
(b)单质中的肖特基缺陷的形成 ) 只有空位) (只有空位)
热缺陷产生示意图
(2)杂质缺陷 )
成核与晶体生长动力学理论推导

成核与晶体生长动力学理论推导成核与晶体生长是固态相变中的基本过程,涉及到物质的从液相到晶体相的转变。
成核是指由溶液中的原子或分子聚集形成小晶核的过程,而晶体生长是指晶核沉淀后,沿着特定晶格方向逐渐增长形成大晶体的过程。
对于成核与晶体生长动力学的研究,可以帮助我们理解和控制晶体的形态与尺寸,在材料科学、地质学、生物学和化学等领域都具有重要的应用价值。
成核理论是研究成核过程的理论模型,其中最经典的理论是由沃尔福(Volmer)和韦伯(Weber)于1926年提出的沃尔福韦伯(Volmer-Weber)成核理论。
该理论认为,成核过程是一个两步反应,首先是原子或分子在溶液中聚集形成临界尺寸的核,然后通过核的扩张与生长而形成大晶体。
成核的速率决定于原子或分子在溶液中跨过能垒形成核的速率,即形成临界尺寸核的速率。
而晶体生长速率与成核速率成反比,因为生长速率取决于晶体表面的扩散过程。
在沃尔福韦伯成核理论的基础上,进一步发展了凯尔策(Kashchiev)成核理论。
凯尔策成核理论考虑了聚集形成临界尺寸核的自由能变化,通过计算原子或分子在溶液中的自由能变化,可以得到形成核的稳定性和临界尺寸。
该理论引入了过饱和度的概念,过饱和度是溶液中溶质浓度与平衡浓度之比,它反映了溶液中存在多余的溶质。
过饱和度越高,成核速率越快,晶体生长越快。
另一个重要的理论是傅立叶(Fick)理论和奥斯特瓦尔德(Ostwald)熔体理论。
傅立叶理论基于质量守恒和扩散的出发点,通过考虑溶质浓度梯度驱动晶体生长。
奥斯特瓦尔德熔体理论则认为熔体中先形成少数的最稳定晶相,随着时间的推移会发生相变形成最稳定的晶相。
这两个理论共同揭示了晶体生长的动力学过程。
可以通过碳酸钙晶体的生长过程来进一步了解成核与晶体生长的动力学过程。
例如,在洞穴中形成钟乳石,需要溶解的碳酸钙在溶液中被饱和,并通过成核与晶体生长形成钟乳石。
实验证明,成核速率与温度、溶液组分、溶液饱和度等因素有关。
第六章晶体生长简介

2.由气相转变为固相(凝华) 体系需要有足够低的蒸气压。例:火山口
附近形成的自然硫。 3.固相再结晶为固相
(1). 同质多像转变 例:α石英-β石英 (2). 原矿物的颗粒加大 例:再结晶的方解 石 (3). 固溶体分解 例:钾钠长石(条纹长石) (4). 变晶 如变质矿物 (5). 非晶质转变 例:火山玻璃转变成石英
结晶物质,使之处于饱和状态,再通过降 温或蒸发水分使晶体从溶液中生长出来。 例CuS04.5H20 5.高温溶液生长
在高温熔液(约300℃以上)中,将晶 体的原成分熔解于某一助熔剂中,以形成 均匀的饱和熔液,晶体是在过饱和熔液中 生长,因此也叫助熔剂法或盐熔法。例萤 石加入到铁矿石中。
右图为一格子构造的切面,AB、 CD、BC为3个晶面的迹线,相应 的面网密度是AB>CD>BC,质 点优先堆积图(a)1的位置,次之 是2,最后是3的位置。显然,晶面 BC将优先生长,CD次之,而AB 则落在最后。
• 均匀成核-是指晶核从均匀的单相熔体中产 生的几率处处是相同的成核过程。
• 非均匀成核-是指借助于表面、界面、微粒 裂纹,器壁以及各种催化位置等而形成晶 核的过程,这些部位成核率高于其他部位。 实际成核都是非均匀成核。
• 晶核成型后,在一定的过冷度和过饱和条 件下,晶体会逐渐长大。
三 晶体生长模型
1.层生长理论模型
科塞尔(Kossel 1927)首先提出、后经斯 特兰斯基(Stranski)加以发展的晶体的层生长 理论亦称为科塞尔-经斯特兰斯基理论。
该理论认为晶体表面具有三面凹角的K面, 是最有利的生长位置;具有二面凹角S面次之;最 不利的生长位置是A。
由此可以得出以 下结论:晶体在理想 情况下生长时,质点 优先沿三面凹角位生 长一条行列,而后在 二面凹角处生长另一 行列,在长满一层面 网后,质点则在光滑 表面A位形成一个二 维核,提供新的三面 凹角和二面凹角,再 开始生长第二层面网.
工业结晶-第四章-成核与成长

原料准备
根据结晶需求,选择合适的原 料,并进行预处理,如干燥、 粉碎等。
成核
通过控制温度、压力、搅拌等 条件,促使溶质分子在溶液中 形成晶核。
分离与干燥
将晶体从母液中分离出来,并 进行干燥处理。
结晶设备与操作
结晶器
用于溶液的制备和结晶过程的进行, 根据需要可选择不同的类型,如搅 拌结晶器、冷却结晶器等。
案例分析
以某药物生产为例,通过工业结 晶技术实现药物的纯化与分离,
提高药物质量和产量。
技术优势
工业结晶技术具有高效、节能、 环保等优点,能够满足不同领域
的需求。
THANKS
感谢观看
工业结晶-第四章-成核与 成长
• 成核理论 • 成长理论 • 成核与成长的关系 • 工业结晶技术
01
成核理论
成核定义
成核是指晶体生长的起始点,即晶体在液相中形 成晶核的过程。
成核过程需要克服能量障碍,因为新晶核的形成 需要打破液相的稳定性。
成核的发生通常需要一定的过饱和度,即溶质浓 度超过其溶解度。
03
成核与成长的关系
成核与晶体生长的相互作用
成核是晶体生长的起始阶段, 为晶体生长提供必要的结构基 础。
成核过程中产生的晶核数量、 大小和分布对晶体生长的速率 和晶体形态有重要影响。
晶体生长过程中,晶核可以作 为生长的起点,促使晶体不断 向外延伸和发展。
成核与晶体生长的调控
通过控制成核条件,如温度、压 力、浓度等,可以调控晶体生长
成核类型
01
02
03
初级成核
在纯净的溶液中自发形成 晶核的过程。
二级成核
在固体表面上形成晶核的 过程,通常发生在容器壁 或杂质颗粒表面。
chap8晶体生长简介

三、晶体生长实验方法
水热法—高温高压生长(高压釜):晶体原料溶在高温 水热法 高温高压生长(高压釜):晶体原料溶在高温 高温高压生长 ): 高压水溶液(溶剂) 高压水溶液(溶剂)中; 提拉法—高温常压生长 没有溶剂, 高温常压生长: 提拉法 高温常压生长:没有溶剂,也没有助熔剂 ; 低温溶液生长------低温常压水溶液生长:即常见的从溶 低温常压水溶液生长: 低温溶液生长 低温常压水溶液生长 液中结晶出来; 液中结晶出来; 高温熔液生长-------高温常压在助熔剂生长:没有溶剂, 高温熔液生长 高温常压在助熔剂生长:没有溶剂, 高温常压在助熔剂生长 晶体原料熔在另外一种成分的物质中, 但有助熔剂 (晶体原料熔在另外一种成分的物质中,但 无水)。 无水)。 总之,是设计出一些方法让晶体生长得完好。每个晶体所适 总之,是设计出一些方法让晶体生长得完好。 合的方法不同。 合的方法不同。
二、晶体生长模型
一旦晶核形成后,就形成了晶-液界面, 一旦晶核形成后,就形成了晶-液界面,在界面上就要进 行生长,即组成晶体的原子、 行生长,即组成晶体的原子、离子要按照晶体结构的排列方 式堆积起来形成晶体。 式堆积起来形成晶体。
ቤተ መጻሕፍቲ ባይዱ
1.层生长理论模型(科塞尔理论模型) 层生长理论模型(科塞尔理论模型)
第八章 晶体生长简介
一、成核
成核是一个相变过程, 成核是一个相变过程 , 即在母液相中形成固相小晶 这一相变过程中体系自由能的变化为: 芽,这一相变过程中体系自由能的变化为: G=Gv+Gs 式中△ 为新相形成时体自由能的变化, 式中△Gv为新相形成时体自由能的变化,且△Gv< 0, △GS为新相形成时新相与旧相界面的表面能,且 为新相形成时新相与旧相界面的表面能, △GS>0。 。 也就是说,晶核的形成, 也就是说,晶核的形成,一方面由于体系从液相转 变为内能更小的晶体相而使体系自由能下降, 变为内能更小的晶体相而使体系自由能下降,另一 固界面而使体系自由能升高。 方面又由于增加了液 - 固界面而使体系自由能升高。
晶体材料制备原理与技术:第6章 相变与结晶成核

均匀成核
一次成核
成核
非均匀成核
二次成核
特点:(以区别于不稳分解)
★需要克服一定的位垒; ★需要达到一定的临界尺寸;
★生长过程中新相的化学组成始终不变。
§3 结晶相变的基本条件
ⅰ) 热力学条件
等温等压条件下,物质系统总是自发地从自由能较 高的状态向自由能较低的状态转变。
G H TS
可逆过程:
dS d CP dT
*相变动力学
研究相变的发生和发展、相变速度和停止 过程以及影响它们的因素。
在母相中产生新相的晶胚,在一定温度下, 晶胚以一定速率长大,一直到受阻或自由能 条件变为不利。由于新相形成晶胚时体自由 能减少,而表面自由能增加,矛盾统一的结 果是新相的晶胚必须具有或超过一定临界尺 寸才是稳定的。临界晶核继续长大才能导致 体系的自由能下降。
单元系统相变过程图
例:
过冷状态-亚稳态
有一位英国结晶学家,把过冷却的水杨酸苯酯液 体放置了18年之久而未结晶。非常遗憾的是,当他 要把这一珍品出示给听课的学生时,刚把它拿到讲 台上,仅仅一点轻微振动,便全部结成了晶体。虽 然大家有点失望,但却明白了一个道理:过冷态是 一种亚稳态。
处于过冷态的任何熔体,哪怕引入一点微小的晶 粒、灰尘或发生振动,就会失去平衡,向稳定态转 化。
TC
T
临界晶核半径、结构起伏尺寸与 过冷度的关系
结构起伏的
尺寸 ra 也与过
冷度有关,它 随过冷度的增 大而增大。TC 为形成临界晶 核所必须的最 小过冷度,称 为临界过冷度。
对均匀成核可作如下描述:
ⅰ) 过冷是必须的,但要使结晶过程得以进 行,还必须超过某一临界值 ;
ⅱ) 界面能是在过冷熔体中形成临界晶核
晶体生长第五章 成核(晶体生长热力学)

第五章 成核(晶体生长热力学)系统处于平衡态——系统吉布斯自由能最小单元复相系统平衡态——系统中诸相的克分子吉布斯自由能相等多元复相系统平衡态——任一组元在共存的诸相中化学势相等 亚稳态(亚稳相) ——新相能否出现,如何出现(相变动力学要回答的第一问题)——新相成核新相自发长大——系统吉布斯自由能降低,驱动力与生长速度的关系(相变动力学回答的第二个问题)亚稳相向新相转变:1. 新、旧相结构差异微小,变化程度小、空间大,转变在空间上连续,时间不连续。
2. 变化程度大、空间变化小,转变在空间不连续,时间方面连续。
系统中出现新相机率相等——均匀成核 系统中某些区域优先出现新相——非均匀成核§1. 相变驱动力过饱和溶液、过冷熔体均属亚稳相。
驱动力所作之功: G X fA ∆-=∆VGf ∆∆-= 单位体积晶体引起系统吉布斯自由能的降低(负号表示降低)单原子体积为Ωs ,吉布斯自由能降低Δg,则:s g f Ω∆-= 有时Δg 也称相变驱动力饱和比==0/p p α 饱和比==0/C C α饱和度=-=1ασ对汽相生长:s s s kT kT p p kT f Ω≈Ω=Ω=//ln /)/ln(0000σα溶液生长:s s s kTkT C C kT f Ω≈Ω=Ω=σαln )/ln(0熔体生长: ms T Tl f Ω∆=l=£0/N 0 单原子熔化潜热§2. 亚稳态系统吉布斯自由能存在几个最小值,最小的极小值为稳定态。
其他较大的极小值为亚稳态。
亚稳态在一定限度内是稳定的。
亚稳态总要过渡到稳定态 亚稳态→稳定态存在能量势垒 §3. 均匀成核1. 晶核形成能和临界尺寸sf sr g rr G γππ23434)(+∆⋅Ω=∆或sfi A g i i G γ⋅+∆⋅=∆)()(3/2)(i i A ⋅=η η形状因子i 个原子,体积为V(i)=i Ωs立方体,边长a , 则V=a 3, 面积为A=6a 2=6V 2/33/23/26)(i i A s⋅Ω=∴ s i i V Ω=)(因此,立方体: 3/26sΩ=η; 球体:3/23/1)36(sΩ=πη旋转椭球体:3/22/1222/1222/122223/13/1)])/1(1)/1(1ln()/1(2[)43(sr y r y r y r y r y Ω---+⋅-+=πη普通表达式:sfr i g i i G ⋅⋅+∆⋅=∆3/2)(ηr<r* 自动消失(胚团) r>r* 自发长大(核)r(i)Δ对ΔG(i)求极值:gr r s sf ∆Ω=2* 或:3]32[*gr i sf ∆=η对球形晶核:33332*gr i ssf∆Ω⋅=π将r*或i*代入Δg 表示式,可得:2322*3/163/*4g r r i G sfs sf ∆Ω=⋅=∆ππ2333/2*27/43/*gr i r G sfsf ∆==∆ηη晶核形成能为界面能的1/3. 2. 界面结构对ΔG(i)的影响 粗糙界面生长: 连续生长光滑界面生长:不连续生长,核长大i 增加ΔG(i)变化不连续 3. 复核起伏和成核率 单相起伏: 单纯密度起伏复相起伏: 产生胚团的起伏(亚稳相、平衡相) 单位体积内胚团数为:]/)(exp[)(kT r G n r n ∆-≈ ]/)(exp[)(kT i G n i n ∆-≈]/ex p[)(kT G n r n **∆-≈]/ex p[)(kT G n i n **∆-≈成核率: 单位时间内能发展成为宏观晶体的晶核数(I)]/ex p[*kT G Bn I ∆-=B:核晶捕获流体中原子或分子的机率iΔG*= 0.7l sf自由能与胚团原子数的关系ΔΔG*= 0r(i)胚 团 分 布 规 律n (r )或n (i )对汽相生长:2*2/14)2(rmkT P B ππ⋅=-]]/[ln 316exp[]/ln 2(4)2(203332202/1p p T k r p p kT mkT nP I s s Ω-Ω⋅=∴-πγππ熔体生长: v 0为熔体原子的振动频率]/ex p[0kT q v B ∆-=])(316exp[)exp(222320T kTl T r kT qnv I m s ∆Ω-⋅∆-=π §4. 非均匀成核 1. 平衬底上球冠成核sfsccf r r r Cos m -==θ23)1)(2(3m m r V s -+=π)1(22m r A sf -=π )1(22m r A sc-=π)()(cf sc sc sc sf sf ssr A r A r A g V r G ⋅-⋅+⋅+∆⋅Ω=∆ 当)(sc sc sf sf cf scr A r A r A ⋅+⋅≥⋅时,成核不必克服势垒,可自发进行。