价键理论、晶体场理论讲解
价键理论和晶体场理论

67.524 ×10-20 35.250 ×10-20 强 3d6 t2g6 eg0 0 0 低自旋 内轨型 d2sp3
八面体场中电子在t 八面体场中电子在 2g和eg轨道中的分布
只 有 一 种 排 列 1 d4 2 d5 3 d6 2 d7 1 d1 d2 d3 d8 d9
高 自 旋
4
5
4
3
低 自 旋
+ [Cr (H2O)6]3+ [Cr (H2O)6]2+ [CrCl6]3-
[MoCl6]319200
∆o /cm-1
17600
14000
13600
配位体的影响: ● 配位体的影响:光谱化学序列 (ectrochemical series) [Co(H2O)6]3+ [CoF6]3[Co(NH3)6]3+ [Co(CN)6]313000 18600 22900 34000 ∆o /cm-1 各种配体对同一M产生的晶体场分裂能的值由小到大的顺序 产生的晶体场分裂能的值由小到大的顺序: 各种配体对同一 产生的晶体场分裂能的值由小到大的顺序 I-<Br-<Cl-,SCN-<F-<OH-<C2O42<H2O<NCS-<edta<NH3<en<bipy <phen<SO32-<NO2<CO, CN初步看作是配位原子电负性的排列: 初步看作是配位原子电负性的排列: 卤素 < 氧 < 氮 < 碳 电负性
直 线 形
平面 三角形
正四 面体
平面 正方形
三角 双锥 形四方 锥形(2) 配 Nhomakorabea物的磁性
配合物磁性的测定是判断配合物结构的一个重要手段. 配合物磁性的测定是判断配合物结构的一个重要手段 物质在磁场中表现出来的性质. 磁 性:物质在磁场中表现出来的性质 顺磁性: 顺磁性:被磁场吸引 n > 0 , µ > 0,如O2, NO, NO2. , 反磁性: 反磁性:被磁场排斥 n =0 , µ = 0. 铁磁性:被磁场强烈吸引 铁磁性:被磁场强烈吸引. 例:Fe,Co,Ni. , , 磁 矩: µ=[n(n+2)]1/2 (B.M.)玻尔磁子 玻尔磁子. 玻尔磁子
配位化学第三章

实例:
[Ti(H2O)6]3+ K3[Mn(CN)6] K3[Fe(CN)6]
Ti3+: 3d1 Mn3+: 3d4 Fe3+: 3d5
µ=1.73 n =1 µ=3.18 n =2 µ=2.40 n =1
配位化学第三章
配合物的空间构型与中心离子的 杂化类型、配位数的关系
配位数 2
4
6
杂化
类型 sp
CN-的成键π2pz 轨道肩并肩重叠形成离域π键。
CN
NC
CN
Ni2+
配位化学第三章
NC
3.1.2 价键理论的应用
(1)解释了配合物的空间构型 (2)说明配合物的磁性 (3)比较同类配合物的稳定性
配位化学第三章
举例说明:
1. 已知[Ag(NH3)2]+的μm=0,用VB法说明其空
间结构。
4d
5s
5p
Ag+ [Kr]
4d
5p
[Ag(NH3)2]+
NH3 NH3 sp杂化 所以[Ag(NH3)2]+的空间构型为直线型。
配位化学第三章
2. [BeX4]2-的空间构型为四面体。为什么?
Be2+
1s
2s
2p
[BeX4]2-
1s
X- X- X- X-
sp3杂化
在[BeX4]2- 中,由于Be2+采取sp3杂化,所以 [BeX4]2-的 空间构型是正四面体。
dsp2
sp3 sp3d2或d2sp3
型空 间 构
直线形 平面正方形
四面体
八面体
举例:Ag(NH3)2 Ni(C)N24 NiCl24
配位化学讲义 第四章(1) 价键理论、晶体场理论

配位化学讲义第四章(1)价键理论、晶体场理论第三章配合物的化学键理论目标:解释性质,如配位数、几何结构、磁学性质、光谱、热力学稳定性、动力学反应性等。
三种理论:①价键理论、②晶体场理论、③分子轨道理论第一节价键理论(Valencebond theory)由L.Pauling提出要点:①配体的孤对电子可以进入中心原子的空轨道;②中心原子用于成键的轨道是杂化轨道(用于说明构型)。
一、轨道杂化及对配合物构型的解释能量相差不大的原子轨道可通过线性组合构成相同数目的杂化轨道。
对构型的解释(依据电子云最大重叠原理:杂化轨道极大值应指向配体)指向实例sp3、sd3杂化四面体顶点Ni(CO)4sp2、sd2、dp2、d3杂化三角形顶点[AgCl3]2-dsp2、d2p2 杂化正方形顶点[PtCl4]2-d2sp3杂化八面体顶点[Fe(CN)6]4-sp杂化直线型[AgCl2]-二、AB n型分子的杂化轨道1、原子轨道的变换性质考虑原子轨道波函数,在AB n分子所属点群的各种对称操作下的变换性质。
类型轨道多项式sp x xp p y yp z zd xy xyd xz xzd d yz yzd x2-y2x2-y2d z22z2-x2-y2(简记为z2)*s轨道总是按全对称表示变换的。
例:[HgI3]- (D3h群)平面三角形A1′:d z2、sE′:(p x、p y )、(d x2-y2、d xy)A 2″:p zE″:(d xz、d yz)2、σ轨道杂化方案1)四面体分子AB4(Td)[CoCl4]2-以四个杂化轨道的集合作为分子点群(Td)表示的基,确定该表示的特征标:r1r4r2r3恒等操作,χ(E)=4 C3操作,χ(C3)=1对C2、S4和σd用同样方法处理,得T d E 8C3 3C2 6S46σdΓ 4 1 00 2约化:T d E 8C3 3C2 6S4 6σdA1 1 1 1 11A2 1 1 1 -1 - 1E 2 -1 2 00 (z2, x2-y2)T1 3 0 -1 1 -1T2 3 0 -1 -11 (xy,xz,yz) (x,y,z)a(A1)=1/24(1×4+8×1×1+3×1×0+6×1×0+6×1×2)=1a(A2)=1/24 [1×4+8×1×1+3×1×0+6×(-1)×0+6×(-1)×2]=0a(E)=1/24 [2×4+8×(-1)×1+3×2×0+6×0×0+6×0×2]=0a(T1)=1/24 [3×4+8×0×1+3×(-1)×0+6×1×0+6×(-1)×2]=0a(T2)=1/24 [3×4+8×0×1+3×(-1)×0+6×(-1)×0+6×1×2]=1约化结果Γ=A1+T2由特征标表:A1T2s(p x、p y、p z)(d xy、d xz、d yz)可有两种组合:sp3(s、p x、p y、p z)、sd3(s、d xy、d xz、d yz)* 以一组杂化轨道为基的表示的特征标的简化计算规则:①不变(1)②改变符号(-1)③与其他函数变换(0)2)再以[CdCI5]3-三角双锥(D3h)为例:41325D3h E 2C33C2σh2S3 3σvΓ 5 2 13 0 3约化结果:Γ= 2A1′+A2〞+E′A1′A2〞E′s p z (p x、p y)d z2(d xy、d x2-y2)两种可能的组合:(s、d z2、p z 、p x、p y)( s、d z2、p z、d xy、d x2-y2)3)[HgI3]- ( D3h)123D3h E 2C3 3C2σh2S33σvΓ 3 0 13 0 1约化得:Γ=A1′+E′A1′E′s (p x、p y)d z2(d xy、d x2-y2)可能的组合有:(s、p x、p y)、(s、d xy、d x2-y2)、(d z2、p x、p y)、(d z2、d xy、d x2-y2)4)平面AB4型分子(D4h)例:[PtCl4]2-C2′C2″D4h E 2C4(C41,C43) C2(C42) 2C2′2C2″i 2S4σh 2σv2σdΓ 4 0 0 20 0 0 4 2 0约化得:Γ=A1g+B1g+E uA1g B1g E us d x2-y2(p x、p y)d z2两种类型:dsp2(d x2-y2、s、p x、p y)、d2p2(d z2、d x2-y2、p x、p y)5)八面体AB6(O h) 例:[Fe(H2O)6]3+O h E 8C3 6C26C4 3C2i 6S4′8S6 3σh 6σdΓ 6 0 0 2 2 0 0 0 4 2约化得:Γ=A1g+E g+T1u A1g E gT1us (d z2、d x2-y2) (p x、p y、p z)只有唯一的d2sp3杂化(d z2、d x2-y2、s、p x、p y、p z)3、π成键杂化方案在AB n分子中,原子A上要有2n个π型杂化轨道和在B原子上的2n个π原子轨道成键。
配合物的价键理论

sp sp2 sp3 d2sp2 d2sp3
直线型 三角形 正四面体 四方锥
正八面体 [Fe(CN)6]4-
一定程度上解释了配合物的磁学性 质
顺磁性的[Ni(H2O)6]2+:
•• •• •• •• •• ••Fra bibliotek3d4s
4p
4d
sp3d2杂化,外轨型
3、 价键理论的缺点
i. 不能预测配合物的高、低自旋状态
称为光谱化学序列 说明: (1)即配位场强的顺序,几乎和中心离子无关。 说明: )即配位场强的顺序,几乎和中心离子无关。 (2)强场配位体:∆o大 )强场配位体: 者 弱场配位体: 弱场配位体:∆o小者
值随中心离子而改变。 ②当配位体固定时, △o值随中心离子而改变。 当配位体固定时, A、中央离子电荷愈高,△o值愈大。 、中央离子电荷愈高, 值愈大。 例如
个配体需要6个杂化轨道 解:6个配体需要 个杂化轨道 d2sp3或 sp3d2 个配体需要 或
Mn2+ 3d5:
µ实测表明有1个单电子:
有2个内层空d轨道,采取d2sp3杂化; 八面体,内轨型,较稳定
2、价键理论的优点 很好地解释了配合物的空间构型和配位数
配位数 2 3 4 5 6 杂化轨道 空间构型 举例 [Ag(CN)2][CuCl3]2[MnCl4]2NiBr3(PR3)
⑴定义 d电子从未分裂的d轨道进入分裂的d轨道所产生的总能量下降 值,称为晶体场稳定化能,并用CFSE表示。 dz2, d(x2-y2) eg 10Dq
6Dq
Es
自由离子d轨道 球形场
4Dq
dxz,dxy,dyz
t2g
d轨道在Oh场中轨道能级的分裂图
量子力学指出:
第12章晶体场部分

Co2+ d7
eg 弱场
△o
t2g
△O<P 高自旋
排布式: t2g5 eg2 dε5 dγ2
△´o
eg 强场△O t2g >P低
自旋
排布式: t2g6 eg1
dε6 dγ1
d8、d9、d10构型的离子
d电子排布只有一种方式
d8 如Ni2+
d9 如Cu2+ d10 如Zn2+ Cu+
△t =
4 9
△o
△s = 17.2 Dq
4. d 轨道能级分裂后的电子排布
电子在分裂后轨道上的分布遵循
—能量最低原理和洪特规则
d1-d3构型的离子
如 Ti 3+
电子分布在d轨道
eg
Ti 3d24s2 E
Ti3+ 3d1
球形场中 (未分裂)
t2g
八面体场
Ti 3+的d电子能级分裂前后的排布
d1-d3构型的离子
Fe3+ d5
[FeF6]3F-是弱场 高自旋
eg △o
g
分布式: t2g3 eg2 dε3 dγ2
[Fe(CN)6]3CN-是强场 低自旋
eg △´o
t2g
t2g5 eg0 dε5 dγ0
Co3+ Fe2+ d6
eg △o
t2g
排布式: t2g4 eg2 dε4 dγ2 eg
△´o t2g
△´o
eg △´o
t2g
eg t2g △´o
eg t2g
弱场
未成对
t2g eg 电子数
强场
未成对
配位化合物的价键理论 配合物的晶体场理论

.配位化合物的价键理论配合物的晶体场理论一.配合物的构型与中心的杂化方式二中心杂化轨道的形成1. ns np nd 杂化1 个 4s 空轨道,3 个 4p 空轨道和2 个 4d 空轨道形成 sp3d2杂化轨道,正八面体分布。
6 个F-的 6 对孤对电子配入sp3d2空轨道中,形成正八面体构型的配合单元。
例 2 Ni(CO)4的成键情况在配体 CO 的作用下,Ni 的价层电子重排成 3d104s0形成 sp3杂化轨道,正四面体分布,4 个CO 配体与 sp3杂化轨道成配键,形成的 Ni(CO)4构型为正四面体。
例 1 和例 2 的相同点是,配体的孤对电子配入中心的外层空轨道, 即 ns np nd 杂化轨道, 形成的配合物称外轨型配合物. 所成的键称为电价配键. 电价配键不是很强.例 1 和例 2 的不同点是,CO 配体使中心的价电子发生重排,这样的配体称为强配体。
常见的强配体有 CO、 CN-、NO2-等;例1 中 F-不能使中心的价电子重排,称为弱配体。
常见的弱配体有 F-、Cl-、H2O 等。
而 NH3等则为中等强度配体。
对于不同的中心,相同的配体其强度也是不同的。
2. (n-1) d ns np 杂化例 3 讨论的成键情况形成 d2sp3杂化,使用 2 个 3d 轨道, 1 个 4s 轨道,3个4p 轨道。
用的内层 d 轨道。
形成的配离子为正八面体构型。
空出 1 个内层 d 轨道,形成 dsp2杂化轨道,呈正方形分布。
故构型为正方形。
例 3 和例 4 中,杂化轨道均用到了 ( n - 1 ) d 内层轨道,配体的孤对电子进入内层,能量低,称为内轨配合物,较外轨配合物稳定。
所成的配位键称为共价配键。
三价键理论中的能量问题内轨配合物稳定,说明其键能 E内大,大于外轨的 E外,那么怎样解释有时要形成外轨配合物呢?其能量因素如何?上面的例题中我们看到,形成内轨配合物时发生电子重排,使原来平行自旋的 d 电子进入成对状态,违反洪特规则,能量升高。
第一节 晶体场理论

△ (b)
Eb=E0+(E0+P)=2E0+P
若△〉P,则(b)稳定 强场时低自旋排布稳定
对于 d 组态也类似,这个结论得到了络合物磁性 测定的证实。现列于表3-1.3中。
表 组态 d4 离子 Cr2+ Mn3+ Mn2+ Fe3+ Fe2+ d6 d7 Co3+ Co2+
2 E t2 1.78Dq 5 t 3 E e 2.67 Dq 5 t
如下面的d轨道能级分裂图
t2
2 t 5
3 t 5
4 4 t 9 0 9 10Dq
Es
自由离子d 轨道
球形场
八面体场
e
Td场中d轨道能级的分裂图
可见
在四面体场中,d轨道分裂结果是:相对Es而言,
例如
(FeF6)3-, [Ni(NH3)6]2+
•Fe3+ d5 n=5 • Ni2+ d8
n=2
中心离子的d电子结构与自由离子相同,可见电 价络合物中,自旋平行的电子达到可允许的最 大值,称为高自旋络合物,这可用实践性测量 证明。
复
习
共价配键
共价配键中央离子以空的杂化轨道接受配体的孤对电子时形
yL
d
x
L
xz
d
yz
d
z
和 d x 2 y 2 轨道 : 电子云极大值正好与配位体迎头相撞
因此
受到较大的推斥,使轨道能量升高较多 另三个d 轨道的电子云极大值正好 插在配位体之间,受到推斥力较小。
但是
总之,由于八面体配位物的作用,使中央d轨道分裂成两组: 一组:d(x2-y2)
配合物中的化学键理论

3-
3-
3、 外轨型配合物和内轨型配合物 外轨型配合物: ①、外轨型配合物:
A、定义:指形成配合物时,中心离子全部采用 定义:指形成配合物时, 外层空轨道( nd)进行杂化, 外层空轨道(ns, np, nd)进行杂化,并与配体结 合而形成的配合物。 合而形成的配合物。
B、特点: 特点:
a 、 中心离子仅采用外层空轨道 ( ns, np, nd) 中心离子仅采用外层空轨道( nd) 进行杂化成键。 进行杂化成键。 b、杂化类型为:sp3和sp3d2杂化。 杂化类型为: 杂化。 c、配合物有较多的未成对电子。 配合物有较多的未成对电子。
4d
d2sp3
返回6 返回6
26
16
④、成键过程: 成键过程:
17
[Ag(NH3)2]+的形成过程 Ag+的价电子构型为 解:Ag+的价电子构型为 4d10 5s0
5p 5s 4d
↑↓ ↑↓ ↑↓ ↑↓ ↑↓
SP杂化 杂化 5p
4d
↑↓ ↑↓ ↑↓ ↑↓ ↑↓
sp
:NH3 :NH3
↑↓ ↑↓ ↑↓
5p
2NH3
↑↓ ↑↓
4d
↑↓ ↑↓
3
2、 配离子的空间构型 ①、配位数为2的配离子 配位数为2 中心离子sp杂化 空间构型为直线型。 杂化, 中心离子sp杂化,空间构型为直线型。 [Ag(CN)2]-等。 如 例: 配位数为4 ②、配位数为4的配离子 有两种成键方式 A、以sp3杂化轨道成键 : 中心离子sp 杂化, 中心离子sp3杂化,配离子的空间构型为 四面体。 正 四面体。 如: [Zn(NH3)4]2+、[HgI4]2-等。 例:
见例5 例:(见例5、例7、)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章配合物的化学键理论目标:解释性质,如配位数、几何结构、磁学性质、光谱、热力学稳定性、动力学反应性等。
三种理论:①价键理论(Valence bonding theory VBT)②晶体场理论(Crystal field theory CFT)③分子轨道理论(Molecular orbital theory MOT)第一节价键理论由L. C. Pauling提出要点:①配体的孤对电子可以进入中心原子的空轨道;②中心原子用于成键的轨道是杂化轨道(用于说明构型)。
一、轨道杂化(Hybrid orbital)及对配合物构型的解释能量相差不大的原子轨道可通过线性组合构成相同数目的杂化轨道。
对构型的解释(依据电子云最大重叠原理:杂化轨道极大值应指向配体)指向实例sp 3、sd 3杂化 四面体顶点 Ni(CO)4COCOOCCOsp 2、sd 2、dp 2、d 3杂化 三角形顶点[AgCl 3]2-Cl ClClAgdsp 2、d 2p 2 杂化 正方形顶点[PtCl 4]2-ClClClClPtd 2sp 3杂化 八面体顶点[Fe(CN)6]4-CNNCFeNCCNsp杂化直线型[AgCl2]-二、AB n型分子的杂化轨道1、原子轨道的变换性质考虑原子轨道波函数,在AB n分子所属点群的各种对称操作下的变换性质。
O.+xf = x(p x) = ?类型轨道多项式sp x xp p y yp z zd xy xyd xz xzd d yz yzd x2-y2x2-y2d z22z2-x2-y2(简记为z2)*s轨道总是按全对称表示变换的。
2、如何判定原子轨道波函数的对称类型例:[HgI3]−(D3h群)平面三角形III HgD 3hE 2C 33σv 11111-12-10z(x, y)x 2+(x2(x3C 2σh 2S 3A 1'A 2'E'A 1"A 2"11111-12-101111-1-111-1-1-112-1-21E"A 1′:d z 2、sE ′: (p x 、p y )、(d x 2-y 2、d xy ) A 2″: p z E ″: (d xz 、d yz )3、轨道杂化方案步骤:A、以一组杂化轨道集合作为分子所属点群表示的基,写出群的表示。
B、将上述表示约化为不可约表示。
C、在点群的特征标表中查出与上述不可约表示对应的原子轨道。
D、确定原子轨道的正确组合。
1)四面体分子AB4(Td)[CoCl4]2−以四个杂化轨道的集合作为分子点群(Td)表示的基,确定该表示的特征标:r1r4r2r3T d E 8C3 3C26S46σdΓ?????r 1r 2r 3r 4恒等操作,χ(E)=4000100110r2r300001r4r1r2r3r4r1r 1r 2r 3r 4C 3C 3操作,χ(C 3)=1100100000r2r300101r4r1r3r4r2r1r 1r 2r 3r 4C 2C 2操作,χ(C 2) = 0000011000r2r300101r4r1r1r4r3r2r 1r 2r 3r 4S 4旋转反映操作 χ(S 4) = 0110000000r2r310001r4r1r3r1r2r4r 1r 2r 3r 4反映操作 χ(σd ) = 2000100100r2r300101r4r1r2r4r3r1T d E 8C3 3C26S4 6σdΓ 4 1 0 0 2约化:T d A1 A2 E T1 T2E8C33C26S46 d11111111-1-12-1200330-11-10-1-11(xy, yz,xz)(2z2-x2-y2a(A 2) =a(E) =a(A 1) =a(T 1) =a(T 2) =241241241241241×[3×4+8×0×1+3×(-1)×0+6×(-1)×0+6×1×2]×[3×4+8×0×1+3×(-1)×0+6×1×0+6×(-1)×2×[2×4+8×(-1)×1+3×2×0+6×0×0+6×0×2]×[1×4+8×1×1+3×1×0+6×(-1)×0+6×(-1)×(1×4+8×1×1+3×1×0+6×1×0+6×1×2)=1约化结果Γ=A 1+T 2由特征标表:A 1 T 2s (p x 、p y 、p z )(d xy 、d xz 、d yz)可有两种组合:sp3(s、p x、p y、p z)、sd3(s、d xy、d xz、d yz)* 以一组杂化轨道为基的表示的特征标的简化计算规则:①不变(1)②改变符号(-1)③与其他函数变换(0)2)再以[CdCl5]3−三角双锥(D3h)为例:12345D3h E 2C33C2 σh2S33σvΓ 5 2 1 3 0 3约化结果:Γ= 2A1′+A2〞+E′A1′A2〞E′s p z (p x、p y)d z2(d xy、d x2-y2)两种可能的组合:(s、d z2、p z 、p x、p y)( s、d z2、p z、d xy、d x2-y2)3)[HgI3]− ( D3h)213D3h E 2C3 3C2 σh2S33σvΓ 3 0 1 3 0 1约化得:Γ=A1′+E′A1′E′s (p x、p y)d z2(d xy、d x2-y2)可能的组合有:(s 、p x 、p y )、 (s 、d xy 、d x 2-y 2)、(d z 2、p x 、p y )、 (d z 2、d xy 、d x 2-y 2)4)平面AB 4型分子(D 4h ) 例:[PtCl 4]2−C 2'C 2"r 2r 3r 4r 1D4h E 2C4(C41,C43) C2(C42) 2C2′2C2″i 2S4σh 2σv2σdΓ 4 0 0 2 0 0 0 4 2 0约化得:Γ=A1g+B1g+E uA1g B1g E us d x2-y2(p x、p y)d z2两种类型:dsp2(d x2-y2、s、p x、p y)、d2p2(d z2、d x2-y2、p x、p y)5)八面体AB6(O h) 例:[Fe(H2O)6]3+r1r2r5r3r4r6C3C 4C2O h E 8C3 6C26C4 3C2i 6S4′8S6 3σh 6σdΓ 6 0 0 2 2 0 0 0 4 2约化得:Γ=A1g+E g+T1uA1g E g T1us (d z2、d x2-y2) (p x、p y、p z)只有唯一的d2sp3杂化(d z2、d x2-y2、s、p x、p y、p z)4、对配合物磁性的解释1)配合物磁性与配合物中成单电子数的关系配合物的分子磁矩μ与配合物中未成对电子数n 有关。
如:对某些配合物:µ=[n(n+2)]1/2 B.M.1B.M. = 9.27×10-21erg·G-12)实验发现:K4[Fe(CN)6] µ=0.00 B.M.FeSO4.7H2O µ=5.10 B.M.3) 价键理论的解释(内、外轨型配合物)内轨型配合物,如:K4[Fe(CN)6 ] 自由Fe2+( d 6 ):3d4s4p 重排为:3d4s4p[Fe(CN)6]4−3d4s4pd2sp3外轨型配合物:如[Fe (H2O)6]2+4d 3d4s4psp3d25、价键理论的成功与不足1)成功①杂化轨道配位数、构型②内、外轨型配合物磁性③继承了传统的价键概念(配位共价键),简明易于理解。
2)不足①定量程度差,无法解释配合物的吸收光谱②无法说明Cu2+平面正方形内轨型配合物的稳定性如[Cu(NH3)4]2+:Cu2+3d4s4p4d平面正方形构型:dsp23d4s4p第二节晶体场理论(Crystal field theory)一、概述由H. Bethe和J. H. van Vleck提出理论模型:①把配体视为点电荷或偶极子(不考虑其结构);②配体与中心离子间的作用是纯静电相互作用,不形成任何共价键。
二、d轨道能级分裂(单电子能级的分裂)1、定义:由于d轨道空间取向不同,与非球形对称静电场的作用则不相同,引起d轨道能级发生分裂。
2、群论在d轨道能级分裂中的应用静电作用模型:d x2-y2d z2d xyd yz d xz将一组五个d轨道波函数作为配位场所属点群表示的基,并由此决定d轨道能级分裂的方式。
由O h群特征标表:A 1g A 2gT 1g T 2g A 1u A 2u T 1u T 2uE u O hE gE 8C 36C 26S 46σd1111111-1-112-1002330-11-101-1-16C 43C 2i 8S 63σh 111111-111-120-1203310-1-1-10-111111111-1-112-1002330-11-101-1-1-1-1-1-1-1-11-1-11-201-20-3-3-101111-1(xy, yz(2z 2-x 2(x, y, z)(xy 、yz 、xz) → (d xy 、d yz 、d xz ) → t 2g 不可约表示的基(x 2-y 2、z 2) → (d x 2-y 2、d z 2) → e g 不可约表示的基O h T d D4hs a1g a1a1gp t1u t2a2u+e ud e g+t2g e+t2a1g+b1g+b2g+e gf a2u+t1u+t2u a2+t1+t2a2u+b1u+b2u+2eg a1g+e g+t1g+t2g a1+e+t1+t22a1g+a2g+b1g+b2h e u+2t1u+t2u e+t1+2t2a1u+2a2u+b1u+b3、正八面体场中d轨道的分裂1)d轨道与电场的作用d x2-y2 d xy2)能级计算:E s 4Dq6Dq=e g(dx2_y2t2g(d xy, d yz,o10D自由离子球形场八面体场d轨道分裂能Δo=E eg-E t2g=10Dq (1)根据能量重心原理:2E eg+3E t2g=5Es。
若取Es为能量零点,则2E eg+3E t2g=0 (2)联合(1)与(2)方程,解得E eg = 6DqE t2g = -4Dq4、正四面体场中d轨道能级的分裂1) d轨道的分组T d A1 A2 E T1 T2E8C33C26S46 d11111111-1-12-1200330-11-10-1-11(xy, yz,xz)(2z2-x2-y22) d轨道与电场的作用d z2d x2-y2d xy d yz d xz-------- --------- --------------- -------------- -------------- -------------- -------- --------- --------------- -------------- -------------- --------------d x2-y2d xy极大值指向面心极大值指向棱的中点ABCoOACαβαsin α = A C /OAsin β = AB/OAOABβA'A"3a2a2aA'AA"OOA 22a ()+a222==AA"=aa 22a 2ABCa 23a 2OA 22a ()+a222==AA"=2a2AB =a2AC =sin β = AB/OA sin α = A C /OA ==2313==54.7β=α=0.8160.57735.3ooβ> α,这表明d xy与点电荷A 作用比d x2-y2更强。