第二章 价键理论、晶体场理论
第二章 晶体场理论

3d6 4d6 5d6 3d7 3d8 3d9
108 189 231 240 70 203 249 290 263
186 270
230 339
340 455
233 344 412
204
93 73 85 126
101 108 151
110 116 164
102 101 136
1 金属离子的电荷和电子构型
平面正方形场: dx2-y2 dxy
dz2 x y dxz, dyz D4h场 x y
不同晶体场中的相对大小示意图
E = 12.28 Dq
d
x y2
2
2-2 晶体场分裂能和光谱化学序列
分裂能: 中心离子的d轨道的简并能级因 配位场的影响而分裂成的最高能量d轨道与最 低能量d轨道之间的能量差。 分裂能的大小与配合物的几何构型密切 相关, 分裂能值的大小还与一系列其它因素有 关。 ①金属离子的电荷和电子构型; ②金属离子d轨道的主量子数; ③配体的本性.
2 金属离子的主量子数
在同一副族不同过渡系列金属的对应配合物 中,Δ值随着d轨道主量子数的增大而增加。 第四周期过渡元素3dn到第五周期过渡元素 Δ约增加40~50%,由第五周期过渡元素 4dn到第六周期5dn,Δ约增加20~25%。这是因 为随主量子数的增加,d轨道在空间伸展的范围 增大,受配体的作用更强烈。 4dn,
E = 1.78 Dq d E = 0 Dq
d E = 6 Dq E = 2.28 Dq = 10 Dq d E = -4 Dq E = -4..28 Dq
d
z
2
能 量
= 4.45 Dq d E = -2.67 Dq
d xy
s = 17.42Dq
价键理论、晶体场理论讲解

第四章配合物的化学键理论目标:解释性质,如配位数、几何结构、磁学性质、光谱、热力学稳定性、动力学反应性等。
三种理论:①价键理论(Valence bonding theory VBT)②晶体场理论(Crystal field theory CFT)③分子轨道理论(Molecular orbital theory MOT)第一节价键理论由L. C. Pauling提出要点:①配体的孤对电子可以进入中心原子的空轨道;②中心原子用于成键的轨道是杂化轨道(用于说明构型)。
一、轨道杂化(Hybrid orbital)及对配合物构型的解释能量相差不大的原子轨道可通过线性组合构成相同数目的杂化轨道。
对构型的解释(依据电子云最大重叠原理:杂化轨道极大值应指向配体)指向实例sp 3、sd 3杂化 四面体顶点 Ni(CO)4COCOOCCOsp 2、sd 2、dp 2、d 3杂化 三角形顶点 [AgCl 3]2-Cl ClClAgdsp 2、d 2p 2 杂化 正方形顶点 [PtCl 4]2-ClClClClPtd 2sp 3杂化 八面体顶点 [Fe(CN)6]4-CNNCFeNCCNsp杂化直线型[AgCl2]-二、AB n型分子的杂化轨道1、原子轨道的变换性质考虑原子轨道波函数,在AB n分子所属点群的各种对称操作下的变换性质。
O.+xf = x(p x) = ?类型轨道多项式sp x xp p y yp z zd xy xyd xz xzd d yz yzd x2-y2x2-y2d z22z2-x2-y2(简记为z2)*s轨道总是按全对称表示变换的。
2、如何判定原子轨道波函数的对称类型例:[HgI 3]− (D 3h 群)平面三角形III HgD 3hE 2C 33σv 11111-12-10z(x, y)x 2+(x 2(x3C 2σh 2S 3A 1'A 2'E'A 1"A 2"11111-12-101111-1-111-1-1-112-1-21E"A1′:d z2、sE′:(p x、p y )、(d x2-y2、d xy)A2″:p zE″:(d xz、d yz)3、轨道杂化方案步骤:A、以一组杂化轨道集合作为分子所属点群表示的基,写出群的表示。
价键理论和晶体场理论

67.524 ×10-20 35.250 ×10-20 强 3d6 t2g6 eg0 0 0 低自旋 内轨型 d2sp3
八面体场中电子在t 八面体场中电子在 2g和eg轨道中的分布
只 有 一 种 排 列 1 d4 2 d5 3 d6 2 d7 1 d1 d2 d3 d8 d9
高 自 旋
4
5
4
3
低 自 旋
+ [Cr (H2O)6]3+ [Cr (H2O)6]2+ [CrCl6]3-
[MoCl6]319200
∆o /cm-1
17600
14000
13600
配位体的影响: ● 配位体的影响:光谱化学序列 (ectrochemical series) [Co(H2O)6]3+ [CoF6]3[Co(NH3)6]3+ [Co(CN)6]313000 18600 22900 34000 ∆o /cm-1 各种配体对同一M产生的晶体场分裂能的值由小到大的顺序 产生的晶体场分裂能的值由小到大的顺序: 各种配体对同一 产生的晶体场分裂能的值由小到大的顺序 I-<Br-<Cl-,SCN-<F-<OH-<C2O42<H2O<NCS-<edta<NH3<en<bipy <phen<SO32-<NO2<CO, CN初步看作是配位原子电负性的排列: 初步看作是配位原子电负性的排列: 卤素 < 氧 < 氮 < 碳 电负性
直 线 形
平面 三角形
正四 面体
平面 正方形
三角 双锥 形四方 锥形(2) 配 Nhomakorabea物的磁性
配合物磁性的测定是判断配合物结构的一个重要手段. 配合物磁性的测定是判断配合物结构的一个重要手段 物质在磁场中表现出来的性质. 磁 性:物质在磁场中表现出来的性质 顺磁性: 顺磁性:被磁场吸引 n > 0 , µ > 0,如O2, NO, NO2. , 反磁性: 反磁性:被磁场排斥 n =0 , µ = 0. 铁磁性:被磁场强烈吸引 铁磁性:被磁场强烈吸引. 例:Fe,Co,Ni. , , 磁 矩: µ=[n(n+2)]1/2 (B.M.)玻尔磁子 玻尔磁子. 玻尔磁子
配合物的化学键理论

dxy
dyz
2/5Δt
dxz
t2
3/5Δt
Δt=(4/9)Δ0 e
dx2-y2
dz2
由于正四面体场中的e轨道和t轨道都 不象正八面体场中那样直接指向配体,所 以它们受到配体的排斥作用没有在正八面 体场中受到的排斥作用大。 根据计算,在配体及中心离子都相同,并 且配体与中心离子的距离和八面体相等的 条件下:
e 0.58e e - 3 3 1.26 r r r
2
2
2
当n=6, q=2时, 配离子的生成能为:
2e 1.66e e - 6 6 2.04 r r r
2
2
2
表2-1 配离子生成能(-e2/r) q n 1 2 3 4(四面体) 4(平面正方形) 5 6 7 8 1 1.00 1.50 1.25 0.32 0.16 2 2.00 3.50 4.26 4.32 4.16 3.10 2.04 3 3.00 5.50 7.26 8.32 8.16 8.10 8.04 6.02 4.24 4 4.00 7.50 10.26 12.32 12.Байду номын сангаас6 13.10 14.04 13.02 12.24
eg t2g eg
t2g
1. 成对能(P)
定义:当一个轨道中已有一个电子时,它对第二个 电子的引入有其排斥作用。因此需要一定的能量克 服这种排斥才能引入第二个电子与之成对,所需要 的能量称为成对能。 2.高自旋配合物和低自旋配合物
当Δ<P时,Δ较小为 弱场配体,形成高 自旋配合物。 当Δ>P时,Δ较大为 强场配体,形成低 自旋配合物。
dxy轨道其 极大值方 向与x轴和 y轴成45°, 故其能量 低于dx2-y2 轨道
第二章 晶体场理论

3 配体的性质
将一些常见配体按光谱实验测得的分裂能从 小到大次序排列起来,就得到光谱化学序列。 I-Br-Cl-SCN-F-~(NH2)2CO~OH-~ONOHCOO-C2O42-H2OCH2(COO)22- NCSNH2CH2COO-EDTApy~NH3 NH2C2H4NH2~(NH2CH2CH2)2N-SO32-dipy phen NO2-H-CH3-CN-CO 以配位原子分类: I Br Cl S F O N 离子半径(pm) 216 195 181 184 136 132 170
6H2O
HS
HS
LS HS
LS HS
根据P和△的相对大小可以对配合物的高、低 自旋进行预言: ①在弱场时, 由于△值较小, 配合物将取高自旋构 型; 相反, 在强场时, 由于△值较大, 配合物将取 低自旋构型。 ②对于四面体配合物, 由于△t=(4/9)△0, 这样小 的△t值, 通常都不能超过成对能值, 所以四面体 配合物通常都是高自旋的。 ③第二、三过渡系金属因△值较大, 故他们几乎 都是低自旋的。 ④由于P(d5)>P(d4)>P(d7)>P(d6), 故在八面体场 中d6离子常为低自旋的 (但Fe(H2O)62+和CoF63-例 外),而d5离子常为高自旋的(CN-的配合物例外)。
d轨道在四面体场中的能级分裂
y
x
dx2-y2
z
y
dz2
z
x
y
dxy
x
y
x
dyz(dxz)
设四个配体只在x、y平面上沿±x和±y 轴方 向趋近于中心原子, 因dx2-y2轨道的极大值正好处 于与配体迎头相撞的位置, 受排斥作用最强, 能级 升高最多。其次是在xy平面上的dxy轨道。而dz2 仅轨道的环形部分在xy平面上, 受配体排斥作用 稍小, 能量稍低, 简并的dxz、dyz的极大值与xy平 面成45°角, 受配体排斥作用最弱, 能量最低。 总之, 5条d轨道在Sq场中分裂为四组, 由高到 低的顺序是: ①dx2-y2, ②dxy, ③dz2, ④dxz和dyz
配位化学2

为什么? ★物质的磁矩于物质中原子或离子的未成对 电子数n有关
m B n(n 2)
[FeF6]3-
(4)sp3(4)d2
3d
4s
4p
4d
[Fe(CN)6
]3-
(3)d2(4)sp3
[Co(CN)6]3-
Co3+ d6电子构型
(3)d2(4)sp3
μ= 4.9B· M μ=0 B· M
3、解释配合物的稳定性
配位原子的电负性很大,对中心原子的结构影 响很小。 Fe3+, d1d1d1d1d1(sp3d2+6F-)12 外轨型配合物
配位原子的电负性很小,对中心原子的结构 影响很大。 Fe3+, d2d2d1(d2sp3+6CN-)12 内轨型配合物
4、电中性原理和反馈π键 ★电中性原理:中心原子的净电荷量越接近于 零,配合物才能越稳定存在。 [Co(NH3)6]3+
五、姜-泰勒效应
在对称的非线性分子中,体系不可能在轨道简并状 态下保持稳定,而必然要发生畸变并使得一个轨道 的能级降低,消除简并性。
对于d9组态的Cu2+
(t2 g ) 6 ( d z 2 ) 2 ( d x2 y 2 )1 (t2 g ) 6 ( d x2 y 2 ) 2 ( d z 2 )1
◆
平面正方形配合物 主要是d8电子构型的过渡金属。
低自旋
d轨道在其他构型配合物中的能级分裂 E = 12.28 Dq
d
x y2
2
能 量
E = 1.78 Dq d
= 4.45 Dq d E = -2.67 Dq
d E = 6 Dq E = 0 Dq = 10 Dq E = 2.28 Dq d xy
价键理论-晶体场-配位化合物

四、 离域π键及反馈π键
以 [Ni(CN)4]2- 为例:
-NC
CN-
Ni
-NC
CN-
dsp2 杂化,用了2个 P轨道,还剩下一个Pz 空轨道 9个原子在同一平面上,可以和CN- 离子充满电子的
π2pz轨道重叠,而形成9原子8电子的离域π键,
因而增强了[Ni(CN)4]2- 的稳定性。
反馈π键: 当配位体给出电子对与中心元素形成σ键时,如果中心元素的某 些d 轨道有孤电子对 ( 如dxy, dyz, dxz ),有的配位体有空的π分子轨道 (如CO 有空的π* 轨道) 或空的p或d轨道,而二者的对称性又合适时,则中心元素的孤 对d电子也可以反过来给予配位体形成“反馈π键”。
5
或
d4s 正方锥型 VO(AcAc)2
d2sp3
6
或
正八面体 Co(NH3)63+
sp3d2
实例
3d
4s 4p
dsp3
3d
4s 4p
d4s
3d
4s 4p
d2sp3
三、 外轨型配合物和内轨型配合物(高自旋型配合物和低自 旋型配合物)
电子排布遵循三个原则:能量最低原理、保里不相容原理和洪特规则( 最多轨道原则),即在等价轨道中,自旋单电子数要最大,状态最稳定。
第三章 配合物的 化学键理论
配合物的定义
❖ 1 配合物的特点: 中心离子(或原子)有空的价电子轨道
❖
❖
配体分子或离子含有孤对电子或π键电子
❖
配合物形成体与配体可形成具有一定空间
构型和一定特性的复杂(化学质点)离子或分子。
❖ 配合物是由可以给出孤对电子或多个不定域电子的一定 数目的离子或分子(统称配体)和具有接受孤对电子或多个 不定域电子的空轨道的原子或离子(统称中心原子),按一 定的组成和空间构型所形成的化合物。
配位化学讲义 第四章(1) 价键理论、晶体场理论

配位化学讲义第四章(1)价键理论、晶体场理论第三章配合物的化学键理论目标:解释性质,如配位数、几何结构、磁学性质、光谱、热力学稳定性、动力学反应性等。
三种理论:①价键理论、②晶体场理论、③分子轨道理论第一节价键理论(Valencebond theory)由L.Pauling提出要点:①配体的孤对电子可以进入中心原子的空轨道;②中心原子用于成键的轨道是杂化轨道(用于说明构型)。
一、轨道杂化及对配合物构型的解释能量相差不大的原子轨道可通过线性组合构成相同数目的杂化轨道。
对构型的解释(依据电子云最大重叠原理:杂化轨道极大值应指向配体)指向实例sp3、sd3杂化四面体顶点Ni(CO)4sp2、sd2、dp2、d3杂化三角形顶点[AgCl3]2-dsp2、d2p2 杂化正方形顶点[PtCl4]2-d2sp3杂化八面体顶点[Fe(CN)6]4-sp杂化直线型[AgCl2]-二、AB n型分子的杂化轨道1、原子轨道的变换性质考虑原子轨道波函数,在AB n分子所属点群的各种对称操作下的变换性质。
类型轨道多项式sp x xp p y yp z zd xy xyd xz xzd d yz yzd x2-y2x2-y2d z22z2-x2-y2(简记为z2)*s轨道总是按全对称表示变换的。
例:[HgI3]- (D3h群)平面三角形A1′:d z2、sE′:(p x、p y )、(d x2-y2、d xy)A 2″:p zE″:(d xz、d yz)2、σ轨道杂化方案1)四面体分子AB4(Td)[CoCl4]2-以四个杂化轨道的集合作为分子点群(Td)表示的基,确定该表示的特征标:r1r4r2r3恒等操作,χ(E)=4 C3操作,χ(C3)=1对C2、S4和σd用同样方法处理,得T d E 8C3 3C2 6S46σdΓ 4 1 00 2约化:T d E 8C3 3C2 6S4 6σdA1 1 1 1 11A2 1 1 1 -1 - 1E 2 -1 2 00 (z2, x2-y2)T1 3 0 -1 1 -1T2 3 0 -1 -11 (xy,xz,yz) (x,y,z)a(A1)=1/24(1×4+8×1×1+3×1×0+6×1×0+6×1×2)=1a(A2)=1/24 [1×4+8×1×1+3×1×0+6×(-1)×0+6×(-1)×2]=0a(E)=1/24 [2×4+8×(-1)×1+3×2×0+6×0×0+6×0×2]=0a(T1)=1/24 [3×4+8×0×1+3×(-1)×0+6×1×0+6×(-1)×2]=0a(T2)=1/24 [3×4+8×0×1+3×(-1)×0+6×(-1)×0+6×1×2]=1约化结果Γ=A1+T2由特征标表:A1T2s(p x、p y、p z)(d xy、d xz、d yz)可有两种组合:sp3(s、p x、p y、p z)、sd3(s、d xy、d xz、d yz)* 以一组杂化轨道为基的表示的特征标的简化计算规则:①不变(1)②改变符号(-1)③与其他函数变换(0)2)再以[CdCI5]3-三角双锥(D3h)为例:41325D3h E 2C33C2σh2S3 3σvΓ 5 2 13 0 3约化结果:Γ= 2A1′+A2〞+E′A1′A2〞E′s p z (p x、p y)d z2(d xy、d x2-y2)两种可能的组合:(s、d z2、p z 、p x、p y)( s、d z2、p z、d xy、d x2-y2)3)[HgI3]- ( D3h)123D3h E 2C3 3C2σh2S33σvΓ 3 0 13 0 1约化得:Γ=A1′+E′A1′E′s (p x、p y)d z2(d xy、d x2-y2)可能的组合有:(s、p x、p y)、(s、d xy、d x2-y2)、(d z2、p x、p y)、(d z2、d xy、d x2-y2)4)平面AB4型分子(D4h)例:[PtCl4]2-C2′C2″D4h E 2C4(C41,C43) C2(C42) 2C2′2C2″i 2S4σh 2σv2σdΓ 4 0 0 20 0 0 4 2 0约化得:Γ=A1g+B1g+E uA1g B1g E us d x2-y2(p x、p y)d z2两种类型:dsp2(d x2-y2、s、p x、p y)、d2p2(d z2、d x2-y2、p x、p y)5)八面体AB6(O h) 例:[Fe(H2O)6]3+O h E 8C3 6C26C4 3C2i 6S4′8S6 3σh 6σdΓ 6 0 0 2 2 0 0 0 4 2约化得:Γ=A1g+E g+T1u A1g E gT1us (d z2、d x2-y2) (p x、p y、p z)只有唯一的d2sp3杂化(d z2、d x2-y2、s、p x、p y、p z)3、π成键杂化方案在AB n分子中,原子A上要有2n个π型杂化轨道和在B原子上的2n个π原子轨道成键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章配合物的化学键理论内容:研究中心原子和配体之间结合力的本性。
目标:解释性质,如配位数、几何结构、磁学性质、光谱、热力学稳定性、动力学反应性等。
三种理论:①价键理论、②晶体场理论、③分子轨道理论第一节价键理论(Valence bond theory)由L.Pauling提出一、理论要点:①配体的孤对电子可以进入中心原子的空轨道;中心原子总是用空轨道杂化,然后用杂化轨道接收配体提供的孤对电子。
②中心原子用于成键的轨道是杂化轨道(用于说明构型)。
中心原子的价层电子结构与配体的种类和数目共同决定杂化类型。
③杂化类型决定配合物的空间构型,磁距和相对稳定性。
二、轨道杂化及对配合物构型的解释能量相差不大的原子轨道可通过线性组合构成相同数目的杂化轨道。
对构型的解释(依据电子云最大重叠原理:杂化轨道极大值应指向配体)指向实例sp3、sd3杂化四面体顶点Ni(CO)4sp2、sd2、dp2、d3杂化三角形顶点[AgCl3]2-dsp2、d2p2 杂化正方形顶点[PtCl4]2-d2sp3杂化八面体顶点[ Fe(CN)6]4-sp杂化直线型[AgCl2]-三、内轨型和外轨型若要形成ML6型配合物(L为单齿配体),则需要6个空杂化轨道接收6个L提供的孤电子对,满足该条件的杂化类型有d2sp3和sp3 d2。
尽管这两种杂化都导致八面体型配合物,但前者是次外层(n-1)d轨道,而后者是最外层nd轨道,因此与这两种杂化相应的配合物分别称内轨型和外轨型配合物。
中心原子的价层电子数和配体的性质都是影响配合物内轨型和外轨型的因素。
当d电子数≤3时,该层空d轨道≥2,总是生成内轨型配合物。
当中心原子价层d电子数为7~10时,即使强制d轨道中的电子配对,所能得到的该层空d轨道数也小于2,因此只能用最外层d轨道参与杂化,总是生成外轨型配合物。
当中心原子价层d电子数为4~6时,对于配位能力较强的配体,即配位原子电负性较小,容易给出孤电子对,对中心原子价层d电子排布影响较大,强制d电子配对,空出2个价层d轨道参与d2sp3杂化,生成内轨型配合物.若配体的配位能力较弱,即配位原子电负性较大,则不易给出孤电子对,对中心原子价层d电子排布影响较小,只能用最外层d轨道参与杂化,生成外轨型配合物。
类似地,对于ML4型配合物,(L 为单齿配体)当中心原子价层d电子数为5~8时,若配体较强,则dsp2杂化,生成内轨型平面四方形配合物。
例如[Ni(CN)4]2-。
若配体较弱,则sp3杂化,生成外轨型四面体型配合物,例如[Ni(NH3)4]2+。
四、用价键理论说明或判断配合物的性质1)配合物磁性与配合物中成单电子数的关系理论分析表明:配合物的分子磁矩μ与配合物中未成对电子数n 有关。
如:对某些配合物:µ=[n(n+2)]1/2 B.M.1B.M. = 9.27×10-21erg·G-12)实验发现:同种金属离子的不同配合物有时具有不同的磁矩。
如:K4[Fe(CN)6] µ=0.00 B.M.FeSO4.7H2Oµ=4.90 B.M.这表明,这两种配合物中成单电子数不同。
3) 价键理论的解释(内、外轨型配合物)内轨型配合物,如:K4[Fe(CN)6 ]自由Fe2+( d 6 ):重排为:[Fe(CN)6]4-配合物利用内层的(n-1)d轨道形成杂化成键轨道,因此称为内轨型配合物。
成单电子数较自由Fe2+下降。
外轨型配合物:如[Fe (H2O)6]2+利用nd轨道杂化成键,称为外轨型配合物。
习题:根据实验测得有效磁矩,判断下列各配离子是低自旋还是高自旋,是内轨型还是外轨型,中心离子杂化类型,配离子的空间构型。
(1) [Fe(en)3]2+ 5.5 B.M(2) [Co(SCN)4]2- 4.3 B.M(3) [Mn(CN)6]4- 1.8 B.M(4) [FeF6]3- 5.9 B.M(5) [Ni(CN)4]2-0 B.M(6) [Ni(NH3)4]2+ 3.2 B.M五、价键理论的成功与不足1)成功简单明了,容易理解,能说明配位数、空间构型、磁性、稳定性等。
2)不足①不能解释d能级的分裂。
②在形成配键时,3d和4d轨道的利用有任意性。
③不能解释配合物的电子光谱。
④不能解释和预测磁性的细节。
⑤定量程度差,只是一种近似的定性理论。
而无法解释配合物的吸收光谱。
⑥无法说明Cu2+平面正方形内轨型配合物的稳定性如[Cu(NH3)4]2+:据此,4p电子很容易失去,但事实上Cu2+不易被氧化练习:实验测得下列化合物中,⑶、⑷是高自旋物质。
试根据价键理论绘出这些配离子的杂化轨道图,它们是内轨型,还是外轨型配合物:⑴[Ag(NH3)2]+⑵[Zn(NH3)4]2+⑶[CoF6]3–⑷[MnF6]4–⑸[Mn(CN)6]4−解:⑴Ag+ 的价层电子构型为4d10,所以[Ag(NH3)2]+ 配离子中,中心原子Ag+ 只能采取sp杂化,形成外轨型配合物。
[Ag(NH3)2]+ 配离子中Ag+ 的价层电子排布为4dsp 5p[Ag(NH3)2]+⑵Zn2+ 的价层电子构型为3d10,所以[Zn(NH3)4]2+ 配离子中,中心原子Zn2+ 只能采取sp3杂化,形成外轨型配合物。
[Zn(NH3)4]2+ 配离子中Zn2+ 的价层电子排布为3dsp3[Zn(NH3)4]2+⑶ Co3+ 的价层电子构型为3d6。
中心原子的这种价层d电子构型既可形成外轨、高自旋的配合物,又可形成内轨、低自旋的配合物。
究竟形成哪种类型的配合物,这取决于配体的性质。
实验测得[CoF6]3−配离子为高自旋的,所以中心原子Co3+ 采取sp3d2杂化,形成外轨型的的配合物:3dsp3d2 4d[CoF6]3−⑷Mn2+ 的价层电子构型为3d5。
同样这种价层d电子构型的中心原子,视配体的不同可以形成不同类型的配合物。
实验测得[MnF6]4−配离子为高自旋的,所以中心原子Co3+ 采取sp2d2杂化,形成外轨型的的配合物:3dsp3d2 4d[MnF6]4−⑸Mn2+的价层电子构型为3d5,而且CN−为强场配体,所以[Mn(CN)6]4−配离子中,中心原子Mn2+ 只能采取d2sp3杂化,形成内轨型配合物:3dd2sp3[Mn(CN)6]4−第二节晶体场理论(Crystal field theory)一、概述由Bethe和Van Vleck提出这一理论在静电理论的基础上把中心离子和配位体看成是点电荷或偶极子,配合物的成键由等带正电荷的中心离子和带负电荷的配体之间静电吸引形成,配体间相互排斥,配位体电子对中心离子最外层电子(特别是过渡金属元素离子的d电子)有排斥作用.1.基本要点:①在配合物中,中心离子M处于带电的配位体L形成的静电场,二者完全靠静电作用结合在一起;②晶体场对M的d电子产生排斥作用,使M的d电子轨道发生能级分裂;③分裂类型与化合物的空间构型有关;④晶体场相同,L不同,分裂程度也不同.* 配位场理论:若不是单纯的采用静电模型,而是允许金属离子与配体间存在某种共价键,则这种经过修改的晶体场理论称为配位场理论。
* 记注:晶体场理论和配位场理论只是把注意力集中到配合物总生成能中一个小的方面,即CFSE。
二、d 轨道能级分裂(单电子能级的分裂)1、定义:由于d 轨道空间取向不同,与非球形对称静电场的作用则不相同,引起d 轨道能级发生分裂。
2、正八面体场中d 轨道的分裂1)d 轨道与电场的作用xxyd z 2 d x 2-y 2 d xy d yz d xz2)能级计算:E=Dq2_y2 d (d xy,d yz,, o10自由离子d轨道球形场八面体场e g与t2g能量差,称为分裂能Δo=E eg-E t2g=10Dq (1)能量重心原理:量子化学证明,球形场能级分裂后,5个d轨道总能量应保持不变,即2E eg+3E t2g=5Es。
若取Es为能量零点,则2E eg+3E t2g=0 (2)联合(1)与(2)方程,解得Eeg=6DqE t2g=-4Dq即能级分裂后,e g轨道上升6Dq,t2g轨道能量下降4Dq。
3、正四面体场中d轨道能级的分裂1) d轨道与电场的作用d x2-y2d xy极大值指向面心极大值指向棱的中点2)能级计算:E=10Dq(d xy, d yz, d xz)49tx2-y2, dz2)自由离子球形场四面体场配体相同,中心离子与配体距离相同时,分裂能Δt=4/9Δo即Δt = E t2 - E e = 4/9Δo Dq---------(1)同理,若选Es为能量零点, 则3E t2+2E e=5E s=0---------(2)联立(1)和(2),解出:E t2=1.78Dq, E e=-2.67Dq能级分裂结果;t2轨道能量上升1.78Dq,e轨道能量下降2.67Dq。
4、各种对称性场中d轨道能级分裂后的能量(略)三、d轨道中电子的排布及对配合物磁性的解释1、分裂能与成对能:分裂能:当一个电子由低能的d 轨道进入高能d轨道时所需要的能量(Δ)。
成对能:迫使本来自旋平行分占两个轨道的电子挤到同一轨道,所需的能量(P)。
强场:如果这两种作用中,配体场的作用较大,而电子相互作用较小,这称为强场情况。
Δ>P(强场)弱场:如果这两种作用中,电子相互作用较大,而配体场的影响较小,这称为弱场情况。
Δ<P(弱场)2.d轨道中电子的排布规则:与Δ和P的相对大小有关Δ<P(弱场)时,按高自旋排布;Δ>P(强场)时,按低自旋排布。
3、八面体配合物* 不论强、弱场,d1、d2、d3、d8、d9、d10电子排布相同,无高、低自旋之分。
** d4、d5、d6、d7有高、低自旋之分。
即可解释磁性,如K4[Fe(CN)6] µ=0.00 B.MFeSO4.7H2Oµ=5.10 B.M第一过渡系d4~d7离子的Δo值与P值的比较4、四面体配合物由于相同情况下,Δt=4/9Δo, 因此一般情况下,Δ<P。
即在四面体配合物中,大多为弱场情况,采取高自旋排布。
练习:Cr2+、Cr3+、Mn2+、Fe2+、Fe3+、Co2+、Co3+ 离子在八面体强场和弱场中各有多少单电子,绘图说明之。
解答:四、晶体场稳定化能(CFSE)1、定义:当d电子从未分裂的球形场d轨道Es能级进入分裂的d轨道所产生的总能量下降值, 称为CFSE。
2、CFSE的计算1)八面体场的CFSEE s = 0e g 6Dqt2g -4Dqt2g轨道上进入1个电子能量下降4Dqe g轨道上进入1个电子能量上升6DqCFSE=E S– E晶体场=0- E晶体场例:d6组态金属离子,在弱八面体场中, 电子排布为(t2g)4(e g)2CFSE=0-【4×(-4Dq)+2×6Dq】=4Dq而在强八面体场中, d电子排布为低自旋(t2g)6(e g)0CFSE=0-[6×(-4Dq)+2P]=24Dq -2P* 低自旋时,要注意成对能P。