最新版初中七年级数学题库 北师大版初一第二学期数学期中试题
北师大版七年级下册数学《期中》考试题(含答案)

北师大版七年级下册数学《期中》考试题(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°4.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3 B .M =﹣1,N =3 C .M =2,N =4 D .M =1,N =47.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°10.如果,长方形ABCD 中有6个形状、大小相同的小长方形,且3EF =,12CD =,则图中阴影部分的面积为( ).A .108B .72C .60D .48二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.如图,阴影部分的面积用整式表示为_________.5.若25.36=5.036,253.6=15.906,则253600=__________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.若关于x、y的二元一次方程组2133x y mx y-=+⎧⎨+=⎩的解满足x+y>0,求m的取值范围.3.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?5.6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB 型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m= ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?6.已知2辆A型车和1辆B型车载满货物一次可运货10吨.用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:(1)1辆A型车和1辆B型车载满货物一次分别可运货物多少吨?(2)请帮助物流公司设计租车方案(3)若A型车每辆车租金每次100元,B型车每辆车租金每次120元.请选出最省钱的租车方案,并求出最少的租车费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、A4、B5、D6、B7、A8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、ab3、724、x2+3x+65、503.66、54°三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x2、m>﹣23、24°.4、(1)略(2)成立5、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.6、(1)1辆A型车载满货物每次可运货物3吨,1辆B型车载满货物一次可运货物4吨;(2) 有三种租车方案:方案一,租用A型车9辆,B型车1辆,方案二,租用A型车5辆,B型车4辆,方案三,租用A型车1辆,B型车7辆.(3)选择方案三最省钱,最少的租车费为940元.。
北师大版七年级数学第二学期期中测试题(含答案)

北师大版七年级数学第二学期期中测试题(含答案)一、选择题(共10小题,3*10=30)1.当前,雾霾严重,治理雾霾方法之一是将已生产的PM2.5吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是( )A.雾霾程度 B.PM2.5C.雾霾 D.城市中心区立体绿化面积2.下列关系式中,正确的是( )A.(a+b)2=a2-2ab+b2B.(a-b)2=a2-b2C.(a+b)2=a2+b2D.(a+b)(a-b)=a2-b23.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是( )A.17° B.34° C.56° D.68°4.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF等于( )A.60° B.120°C.150° D.180°5.在烧开水时,水温达到100 ℃就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间t(min)和温度T(℃)的数据.t(min) 0 2 4 6 8 10 12 14 …T(℃) 30 44 58 72 86 100 100 100 …在水烧开之前(即t<10),温度T与时间t的关系式及因变量分别为( )A.T=7t+30,T B.T=14t+30,tC.T=14t-16,t D.T=30t-14,T6. 如图,立定跳远比赛时,小明从点A起跳落在沙坑内点P处.若AP=2.3米,则这次小明跳远成绩( )A.大于2.3米 B.等于2.3米C.小于2.3米 D.不能确定7.园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的关系的图象如图,则休息后园林队每小时绿化面积为( )A.40平方米 B.50平方米C.80平方米 D.100平方米8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于( )A.132° B.134°C.136° D.138°9.一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶和玻璃杯的形状都是圆柱体,桶口的半径是杯口半径的2倍,如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是( )10.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑自行车时间t(h)之间的关系如图所示,给出下列说法:①他们都骑行了20 km;②乙在途中停留了0.5 h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有( )A.1个 B.2个C.3个 D.4个二.填空题(共8小题,3*8=24)11.计算(a2)3÷a2的结果是_______.12. 用剪刀剪东西时,剪刀张开的角度如图所示,若∠1=25°,则∠2= 度.13.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__ __.14.如图,某人记录了某地一月份某天一段时间的温度随时间变化的情况.根据图象可知,在这段时间内温度最高是________℃,________________的温度是0 ℃.15.如图,直线a∥b,直线l与直线a相交于点P,与直线b相交于点Q,PM⊥l于点P,若∠1=50°,则∠2=___________.16.已知3a=5,3b=4,则32a -b等于________.17.如图,一轮船从离A 港10千米的P 地出发向B 港匀速行驶,30分钟后离A 港26千米(未到达B 港).设x 小时后,轮船离A 港y 千米(未到达B 港),则y 与x 之间的关系式为_________________.18.某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务.收割亩数S 与天数t 之间的关系图象如图所示,那么乙收割机参与收割的天数是________天.三.解答题(7小题,共66分) 19.(8分) 计算:(1)4a 2x 2·⎝ ⎛⎭⎪⎫-25a 4x 3y 3÷⎝ ⎛⎭⎪⎫-12a 5xy 2;(2)(x -3)(2x +1)-3(2x -1)2;20.(8分) 如图,已知EF ∥BD ,∠1=∠2,试说明∠C =∠ADG.21.(8分) 如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知)∠2=∠DGF()∴∠1=∠DGF∴BD∥CE()∴∠3+∠C=180°()又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F().22.(10分) 如图,∠1=∠2.∠GFA=55°,∠ACB=75°,AQ平分∠FAC,AH∥BD,求∠HAQ 的度数.23.(10分) 如图,某市有一块长为(3a+b)m,宽为(2a+b)m的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积24.(10分) 如图,直线AB,CD相交于点O,∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系,并说明理由;(2)若∠AOC∶∠AOD=1∶5,求∠EOF的度数.25.(12分) 如图,这是甲骑自行车与乙骑摩托车分别从A,B两地向C地(A,B,C地在同一直线上)行驶过程中离B地的距离与行驶时间的关系图,请你根据图象回答下列问题:(1)A,B两地哪个距C地近?近多少?(2)甲、乙两人谁出发时间早?早多长时间?(3)甲、乙两人在途中行驶的平均速度分别为多少?参考答案1-5DDDAA 6-10CBBCB11.a 412.25 13.70° 14.2;12时和18时 15.40° 16.254 17. y =32x +10 18.419.解:(1)原式=-85a 6x 5y 3÷⎝ ⎛⎭⎪⎫-12a 5xy 2=165ax 4y ;(2)原式=2x 2-5x -3-3(4x 2-4x +1)=2x 2-5x -3-12x 2+12x -3=-10x 2+7x -6; 20. 解:由EF ∥BD 得∠1=∠CBD ,又∠1=∠2,∴∠2=∠CBD ,∴BC ∥DG ,∴∠C =∠ADG 21. 对顶角相等;同位角相等,两直线平行;两直线平行,同旁内角互补;DF ∥AC ;内错角相等22. 解:因为∠1=∠2,所以GE ∥AH. 又因为AH ∥BD ,所以GE ∥BD ,所以∠GFA =∠FAH =55°,∠ACB =∠CAH =75°,所以∠FAC =55°+75°=130°.因为AQ 平分∠FAC ,所以∠CAQ =12∠CAF =65°,所以∠HAQ =∠CAH -∠CAQ =75°-65°=10°.23. 解:S绿化=(2a +b)(3a +b)-(a +b)2=(5a 2+3ab)m 2.当a =3,b =2时,原式=63.所以当a =3,b =2时的绿化面积为63平方米24. 解:(1)OF 与OD 的位置关系:互相垂直,理由:∵OF 平分∠AOE ,∴∠AOF =∠FOE ,∵∠DOE =∠BOD ,∴∠AOF +∠BOD =∠FOE +∠DOE =12×180°=90°,∴OF 与OD 的位置关系:互相垂直(2)∵∠AOC ∶∠AOD =1∶5,∴∠AOC =16×180°=30°,∴∠BOD =∠EOD =30°,∴∠AOE=120°,∴∠EOF =12∠AOE =60°25.解:(1)A 地距C 地近,近20 km.(2)甲出发时间早,早2 h.(3)甲:(80-20)÷6=10(km/h),乙:80÷(4-2)=40(km/h).答:甲的平均速度为10 km/h,乙的平均速度为40 km/h.。
北师大版七年级第二学期期中测试数学试卷-带参考答案

北师大版七年级第二学期期中测试数学试卷-带参考答案一、选择题(每题3分,共30分 ) 1.下列各式不是方程的是( )A .x 2+x =0B .x +y =0C.1x +xD .x =02.若a >b >0,则下列不等式一定成立的是( )A .a -1<b -1B .-a >-bC .a +b >2bD .|a |<|b |3.解一元一次方程12(x +1)=-13x 时,去分母正确的是( )A .3(x +1)=2xB .3(x +1)=xC .x +1=2xD .3(x +1)=-2x4.一个不等式的解集在数轴上表示如图,则这个不等式可以是( )(第4题)A .x +3>0B .x -3<0C .2x ≥6D .3-x <05.利用代入法解方程组⎩⎨⎧y =2x +1①,x -y =-1②,将①代入②得( )A .x -2x +1=-1B .x +2x -1=-1C .x -2x -1=-1D .x +2x +1=-16.关于x 的方程3x +5=0与3x =1-3m 的解相同,则m 等于( )A .-2B .2C .-43D.437.在等式y =kx +b 中,当x =1时,y =-2;当x =-1时,y =-4.则2k +b 的值为( ) A .1B .-1C .-2D .-38.8个一样大小的小长方形恰好可以拼成一个大的长方形,如图甲所示,若拼成如图乙所示的正方形,中间还留下一个洞,恰好是边长为2厘米的小正方形.设一个小长方形的长为x 厘米,宽为y 厘米,则所列二元一次方程组正确的是( )(第8题)A.⎩⎨⎧3x =5y 2y =x +2B.⎩⎨⎧5x =3y 2x =y +2C.⎩⎨⎧3x =5y 2x =y +2D.⎩⎨⎧5x =3y 2y =x +29.甲、乙两车从A 地出发到B 地,甲比乙早行驶1 h ,比乙晚到2 h ,甲全程用时6 h ,则从乙出发到甲、乙两车相遇用时( ) A .1 hB .1.5 hC .2 hD .2.5 h10.已知关于x 的不等式组⎩⎨⎧x -a ≥2,2-3x >-7的整数解有5个,则a 的取值范围是( )A .-5≤a ≤-4B .-5<a ≤-4C .-5<a <-4D .-5≤a <-4二、填空题(每题3分,共15分)11.x 的平方与y 的平方的和一定是非负数,用不等式表示为________. 12.若(m +1)x |m |>2是关于x 的一元一次不等式,则m =______.13.若x ,y 满足二元一次方程组⎩⎨⎧x +2y =3,2x +y =3,则x 与y 的关系是________(写出一种关系即可).14.若方程x +y =3,x -y =1和x +2my =0有公共解,则m 的值为________. 15.已知5只碗摞起来的高度是13 cm ,9只碗摞起来的高度是20 cm ,若一摞碗的高度不超过30 cm ,最多能摞______只碗. 三、解答题(共75分)16.(8分)(1)解方程:x +2x +16=1-2x -13;(2)解方程组:⎩⎨⎧8x +5y =2,①4x -3y =-10.②第 3 页 共 9 页17.(9分)阅读下面解题过程,再解题.已知a >b ,试比较-2 024a +1与-2 024b +1的大小. 解:因为a >b ①所以-2 024a >-2 024b ② 故-2 024a +1>-2 024b +1③.(1)上述解题过程中,从第________步开始出现错误; (2)错误的原因是什么? (3)请写出正确的解题过程.18.(8分)解下列不等式(组): (1)3(4x +2)>4(2x -1);(2)⎩⎪⎨⎪⎧3x +6≥5(x -2),①x -52-4x -33<1.②19.(9分)某食品厂元宵节前要生产一批元宵礼袋,每袋中装4颗大元宵和8颗小元宵.生产一颗大元宵要用肉馅15 g,一颗小元宵要用肉馅10 g.现共有肉馅2 100 kg.(1)假设肉馅全部用完,生产两种元宵应各用多少肉馅,才能使生产出的元宵刚好配套装袋?(2)最多能生产多少袋元宵?20.(9分)一个两位数,个位上的数字与十位上的数字之和为6,把这个两位数加上18后,比十位数字大56,请利用二元一次方程组求这个两位数.21.(10分)如图,直线l上有A,B两点,AB=18 cm,O是线段AB上的一点,OA=2OB.(1)OA=________cm,OB=________cm.(2)若动点P,Q分别从点A,B同时出发,向右运动,点P的速度为2 cm/s,点Q的速度为1 cm/s.设运动时间为t s.当t为何值时,2OP-OQ=3 cm?(第21题)22.(10分)读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.某校为提高学生的阅读品味,现决定购买获得茅盾文学奖的甲,乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元;购买3本甲种书和2本乙种书共需165元.(1)求甲,乙两种书的单价分别为多少元;(2)若学校决定购买以上两种书的总费用不超过3 200元,那么该校最多可以购买甲种书多少本?23.(12分)阅读材料:第 5 页共9 页我们把关于x ,y 的两个二元一次方程x +ky =b 与kx +y =b (k ≠1)叫做互为共轭二元一次方程,像x +4y =5与4x +y =5这样的方程是互为共轭二元一次方程;像二元一次方程组⎩⎨⎧x +4y =5,4x +y =5这样由互为共轭二元一次方程组成的方程组叫做共轭二元一次方程组.(1)若关于x ,y 的方程组⎩⎨⎧x +2y =b +2,()1-a x +y =3为共轭二元一次方程组,则a =________,b =________.(2)解共轭二元一次方程组:⎩⎨⎧x +4y =5①,4x +y =5②.解:①+②,得x +y =2③.①-③,得y =1.②-③,得x =1. 所以⎩⎨⎧x =1,y =1是方程组的解.仿照上面方程组的解法解方程组:⎩⎨⎧y -3x =6①,x -3y =6②;(3)发现:若共轭二元一次方程组⎩⎨⎧x +ky =b ,kx +y =b 的解是⎩⎨⎧x =m ,y =n ,则m ,n 之间的数量关系是________.第 7 页 共 9 页答案一、1.C 2.C 3.D 4.B 5.C 6.B 7.B 8.A 9.A 10.B二、11.x 2+y 2≥012.1 易错点睛:易忽略x 的系数不为0而致错. 13.x +y =2(答案不唯一)14.-1 点拨:根据题意,得⎩⎨⎧x +y =3,x -y =1,解得⎩⎨⎧x =2,y =1.将⎩⎨⎧x =2,y =1代入x +2my =0,解得m =-1. 15.14 点拨:设一只碗的高度是x cm ,每摞起来一只碗增加y cm ,则⎩⎨⎧x +(5-1)y =13,x +(9-1)y =20,解得⎩⎪⎨⎪⎧x =6,y =74.设能摞m 只碗,所以6+74(m -1)≤30,m ≤1457,所以最多能摞14只碗.三、16.解:(1)去分母,得6x +(2x +1)=6-2(2x -1) 去括号,得6x +2x +1=6-4x +2 移项,得6x +2x +4x =6+2-1 合并同类项,得12x =7 系数化为1,得x =712.(2)①-②×2,得11y =22,解得y =2 把y =2代入①,得8x +10=2,解得x =-1 故方程组的解为⎩⎨⎧x =-1,y =2.17.解:(1)②(2)错误的原因是不等式的两边都乘以-2 024,不等号的方向没有改变. (3)因为a >b ,所以-2 024a <-2 024b 所以-2 024a +1<-2 024b +1. 18.解:(1)3(4x +2)>4(2x -1)12x +6>8x -4,12x -8x >-4-6,4x >-10. x >-2.5.(2)解不等式①,得x ≤8,解不等式②,得x >-3 所以不等式组的解集是-3<x ≤8.19.解:(1)设生产大元宵要用肉馅x kg ,根据题意,得8×1 000x15=4×1 000(2 100-x )10.解得x =900.所以小元宵要用肉馅2 100-900=1 200(kg).答:大元宵和小元宵分别用900 kg ,1 200 kg 肉馅,才能使生产出的元宵刚好配套装袋.(2)设能生产m 袋元宵,根据题意,得(4×15+8×10)m ≤2 100×1 000,解得m ≤15 000 所以m 可取的最大值为15 000. 答:最多能生产15 000袋元宵.20.解:设这个两位数的十位数字为x ,个位数字为y 依题意得⎩⎨⎧x +y =6,10x +y +18=x +56.解得⎩⎨⎧x =4,y =2.答:这个两位数为42. 21.解:(1)12;6(2)当点P 在点O 左侧时,2OP -OQ =3 cm 即2(12-2t )-(6+t )=3,解得t =3. 当点P 在点O 右侧时,2OP -OQ =3 cm 即2(2t -12)-(6+t )=3,解得t =11. 所以当t 为3或11时,2OP -OQ =3 cm.22.解:(1)设甲种书的单价是x 元,乙种书的单价是y 元,根据题意,得⎩⎨⎧2x +y =100,3x +2y =165,解得⎩⎨⎧x =35,y =30.答:甲种书的单价是35元,乙种书的单价是30元.(2)设该校购买甲种书m 本,则购买乙种书(100-m )本,根据题意,得35m +30(100-m )≤3 200第 9 页 共 9 页 解得m ≤40,所以m 的最大值为40. 答:该校最多可以购买甲种书40本. 23.解:(1)-1;1(2)①+②,得-x -y =6③.①+③,得-4x =12,所以x =-3.②+③,得-4y =12 所以y =-3,所以方程组的解为⎩⎨⎧x =-3,y =-3.(3)m =n。
新北师大版七年级数学下册期中试卷及答案

第4题图北师大版七年级数学下册期中检测试卷一、精心选一选.(每小题给出的4个选项中只有一个符合题意,请将答案填入答案卡里) 1.如图,a ∥b ,∠1=60°,则∠2= A .120° B .30°C .70°D .60°2.如图,△ABC 中,∠A =30°,∠B =40°,则∠ACD =A .30°B .40°C .70°D .110°3.如图,OA ⊥AB 于点A ,点O 到直线AB 的距离是 A .线段OA B .线段OA 的长度 C .线段OB 的长度 D .线段AB 的长度 4.如图,下列各坐标对应点正好在图中直线l 上的是A .(0,2)B .(0,4)C .(1,2)D .(2,0) 5.点A (-3,2)向左平移2个单位长度后得到的点的坐标为A .(-3,0)B .(-1,0)C .(-1,2)D .(-5,2)6.下图中,∠1和∠2是同位角的是A .B .C .D .7、点P 的坐标是(3,6)-,则点P 的纵坐标是A.3B.-6C.-3D.6 8、如图,点A 在点O 的A.北偏东60︒方向上B.东偏北30︒方向上C.北偏东30︒方向上D.东北方向上9、在①正三角形、②正五边形、③正六边形中,能够单独镶嵌地面的是( ). A .①②③B .②③C .①②D .①③10、一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它 从原点运动到(0,1),然后接着按图中箭头所示方向运动即: (0,0)(0,1)(1,1)(1,0)→→→→,且每秒移动一个单位,那么第16秒时,质点所在位置的坐标是第10题图第8题图第2题图CBAD第1题图 第3题图1 2ab OA B第16题图A.(4,0)B.(5,0)C.(0,4)D.(0,5)请将正确选项的代号填入下面答案卡相应的位置.(本大题共10个小题,共30分.)二、细心填一填(本大题共5个小题,共15分.请将正确答案填写在相应的位置) 11.如图,直线a 与直线b 相交于点O ,∠1=30°,∠2= °. 12.如图,AD 是△ABC 的中线,且△ABC 的面积为6,则△ABD 的面积是 .13.点M (-2,3)到x 轴的距离是 .14.如图,如果∠ =∠ ,那么ED ∥BC ,根据 . (只需写出一种情况) 15.如图,已知AB ∥CD ,∠E =80°,∠B =30°,则∠C = °.三、专心解一解.(本大题共10小题,其中16~17每小题4分,18~20每小题5分,21~23 每小题6分,24~25小题7分,共55分).温馨提示:请认真读题,冷静思考.解答题应写出文字说明、理由过程或演算步骤. 16、(本题满分4分)说说你的理由:如图,这使一个栅栏不变形,工人在栅栏的背面加钉了一根木条, 这样做的道理是: .17、(本题满分4分)求图中x 的值.18、(本题满分5分)如图,已知//,12AB CD ∠=∠,求证://AE DF .题号 1 2 3 4 5 6 7 8 9 10 选项(1) (2)21 a b第11题图第15题图ACB DED E CBA162354第14题图第12题图D CBA第21题CB A19、(本题满分5分)如图,//AB DE ,70B ∠=︒,CM 平分DCB ∠,求MCD ∠的度数.20、(本题满分5分)一个多边形的内角和比它的外角和多540︒,求这个多边形的边数.21、(本题满分6分)如图,已知单位长度为1的方格中有个△ABC .(1)请画出△ABC 向上平移3格再向右平移2格所得△'''C B A .(2分)(2)请以点A 为坐标原点建立平面直角坐标系(在图中画出),然后写出点B 、点'B 的坐标:B ( , );'B ( , ).(4分)22、(本题满分6分)如图,在△OAB 中,已知 (2,4)A ,(6,2)B ,求△OAB 的面积.第24题图23、(本题满分6分)如图,A 在B 的北偏东30︒方向,C 在A 的东南方向,B 在C 的北偏西80︒方向, 求∠ABC 的度数.24、(本题满分7分)左图描述了A 、B …等11位同学每天课余时间安排; 请仔细观察,并回答以下问题:(1) 的娱乐时间和学习时间是相等的。
北师大版七年级数学下册期中试题内含答案

七年级数学第二学期期中试题(一)一、 选择题(每小题3分,共30分) 二、填空题(每小题3分,共30分)11、等腰三角形的三边长分别为:x+1、 2x+3 、9 ,则x = 12、一个角的补角是它的余角的4倍,则这个角是_________度。
13、若x 2+mx +25是完全平方式,则m=___________。
14、已知 9))((2-=+-x a x a x , 那么 a = 。
15、若12,2m n a a =-=-,则=-n m a 3216、已知:如图1,∠EAD=∠DCF ,要得到AB//CD ,则需要的条件 。
(填一个..你认为正确的条件即可) 图117、若()223310a b ++-=,则ab =__________.18、在△ABC 中,∠A=800,∠ABC 与∠ACB 的平分线义交于点O , 则∠BOC=_______度。
19、观察:22225251644161533914224131==+⨯==+⨯==+⨯==+⨯你发现了什么规律?根据你发现的规律,请你用含一个字母的等式将上面各式呈现的规律表示出来。
。
20、现在规定两种新的运算“﹡”和“◎”:a ﹡b=22b a +;a ◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .三、解答题(21题12分,22、23、26各8分,24、25、各12分,共60分) 21、计算题 (1) ()()1201211 3.143π-⎛⎫-+--- ⎪⎝⎭(2)化简求值:)2)(2(2))(2()2(2y x y x y x y x y x +--+--+,其中21=x ,2-=y22、作图题(不写做法,保留作图痕迹)已知:∠α。
请你用直尺和圆规画一个∠BAC ,使∠BAC=∠α。
23、已知:如图,AB ∥CD ,∠A = ∠D ,试说明 AC ∥DE 成立的理由。
最新版北师大版初一数学下册期中测试卷及答案

最新版北师大版初一数学下册期中测试卷及答案七年级下数学期中测试卷一、选择题(每小题3分,共30分)1、下列计算正确的是()A、a+b=2aB、a÷a=aC、a×a=a²2、下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A、5.1.3B、2.3.4C、3.3.7D、2.4.23、如果两个不相等的角互为补角,那么这两个角()A、都是锐角B、都是钝角C、一个锐角,一个钝角D、以上答案都不对4、用科学计数法表示0.xxxxxxx的结果正确的是()A、9.1×10^-5B、9.1×10^-4C、9.×10^-5D、9.07×10^-55、如图,已知:∠1=∠2,那么下列结论正确的是()A.∠C=∠DB.AD∥BCC.AB∥CDD.∠3=∠46、下列各式中不能用平方差公式计算的是()A、(x-y)(-x+y)B、(-x+y)(-x-y)C、(-x-y)(x-y)D、(x+y)(-x+y)7、给出下列说法:1)两条直线被第三条直线所截,同位角相等;2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;3)相等的两个角是对顶角;4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离;其中正确的有()A、个B、1个C、2个D、3个8、下列哪个数是有理数()A、-√2B、πC、0.5D、e9、一定在△ABC内部的线段是()A.任意三角形的一条中线、二条角平分线、三条高B.钝角三角形的三条高、三条中线、一条角平分线C.锐角三角形的三条高、三条角平分线、三条中线D.直角三角形的三条高、三条角平分线、三条中线10、等腰三角形的一边长为5cm,另一边长为6cm,那么它的周长为()A.16cmB.17cmC.16cm,17cmD.11cm二、填空题(每小题3分,共30分)11、计算:1002×998=998,00012、若4a+ka+9是一个完全平方式,则k=713、(-xy)^2/524=xy^2/26214、一个角与它的补角之差是20º,则这个角的大小是70º15、如图1,∠EAD=∠DCF,要得到AB//CD,则需要的条件:∠EAD+∠DCF=180º16、已知XXX∥ECD,CEFF分别交BCF12D图1AB、CDC F于E、F,EG平分∠BEF,且∠1=72°,求∠2的度数。
最新北师大版七年级第二学期数学期中测试题及答案。3

七年级第二学期期中考试数学试题(3)一、精心选一选.(本大题共10个小题,每小题3分,共30分) 1.下列运算正确的是( )A .a 5+a 5 =a 10B .a 6×a 4=a 24C .a 0÷a -1=aD .(a 2)3=a 5 2.下列关系式中,正确..的是( ) A.(a -b)2=a 2-b 2 B.(a +b)(a -b)=a 2-b 2 C.(a +b)2=a 2+b 2 D.(a +b)2=a 2+ab +b 2 3. 下列各式的计算中不正确的个数是( ) ①100÷10﹣1=10; ②(﹣2a+3)(2a ﹣3)=4a 2﹣9; ③(a ﹣b)2=a 2﹣b 2; ④3a 2b ﹣3ab 2=ab . A .4 B .3 C .2 D .14.如果一个角的补角是130°,那么这个角的余角的度数是( ) A. 20° B. 40°C . 70°D .130°5.正常人的体温一般在C 037左右,但一天中的不同时刻不尽相同,如图1反映了一天24小时内小红的体温变化情况,下列说法错误的是( ) A.清晨5时体温最低 B.下午5时体温最高C.这一天小红体温T C 0的范围是36.5≤T≤37.5D.从5时至24时,小红体温一直是升高的6. 如图2,图象(折线OEFPMN )描述了某汽车在行驶过程中 速度与时间的关系,下列说法中错误的是( ) A.第3分时汽车的速度是40千米/时 B.第12分时汽车的速度是0千米/时 C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时 7.下列说法中,正确的是( )A.内错角相等.B.同旁内角互补.C.同角的补角相等.D.相等的角是对顶角. 8. 若 (3a+4b)2=(3a-4b)2+M 成立,则M 为( ) A. 48ab B. 4abC. 12abD. 24ab9. 若两条平行线被第三条直线所截,则一对内错角的平分线互相( ) A.垂直 B.平行 C.重合 D.相交图1图210. 如果9)1(2+--x m x 是一个完全平方式,则m 的取值是( ) A -5 B -4 C -5或7 D 4 二、细心填一填(每小题3分,共计30分) 11.计算()()532a a a -⋅+= 。
北师大版数学七年级下册第二学期期中 达标测试卷(含答案)

第二学期期中达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列图形中,∠1与∠2是同旁内角的是()2.下列计算正确的是()A.(a3)4=a12B.a3·a5=a15C.(x2y)3=x6y D.a6÷a3=a23.如图,直线a,b相交于点O,如果∠1+∠2=100°,那么∠2是() A.50°B.100°C.130°D.150°(第3题) (第4题)(第5题)(第7题)4.如图,下列条件能判定a∥b的是()A.∠2+∠3=180°B.∠1+∠2=180°C.∠1=∠2 D.∠3=∠45.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是()A.惊蛰B.小满C.秋分D.大寒6.已知(a+b)2=40,(a-b)2=60,则a2+b2的值为()A.40 B.50 C.60 D.1007.甲骑自行车从A地到B地,乙骑电动车从B地到A地,两人同时出发,匀速行驶,各自到达终点后停止运动.设甲、乙两人间的距离为s(单位:m),甲行驶的时间为t(单位:min),s与t之间的关系如图所示,则下列结论中不正确的是()A.出发30 min时,甲、乙同时到达终点B.出发15 min时,乙比甲多行驶了3 000 mC.出发10 min时,甲、乙在途中相遇D.乙的速度是甲的速度的两倍8.如图,有两个正方形A,B.现将B放在A的内部得图①,将A,B并列放置后,构造新的正方形得图②.图①和图②中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B如图③摆放,则图③中阴影部分的面积为()(第8题)A.28 B.29 C.30 D.31二、填空题(共5小题,每小题3分,计15分)9.近来,中国芯片技术获得重大突破,7 nm芯片已经量产,已知7 nm=0.000 000 7cm,则0.000 000 7用科学记数法表示为____________.10.已知某地的地面气温是20 ℃,如果每升高1 000 m气温下降6 ℃,则气温t(℃)与高度h(m)的函数关系式为________________.11.已知2x+y-4=0,则4x·2y的值是__________.12.如图,一块含有30°角的直角三角板,两个顶点分别在直尺的一对平行边上,∠α=110°,则∠β=________°.(第12题)(第13题)13.如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设两正3 方形的面积分别为S 1,S 2.若AB =9,两正方形的面积和为51,则图中阴影部分的面积为__________.三、解答题(共13小题,计81分,解答应写出过程) 14.(5分)化简:(1)(-x 2)3÷(-2x 3)·x 3; (2)(-2a 2)(4ab -ab 2+1).15.(5分)计算: (1)-12 024+2 0242-2 025×2 023;(2)(2 023-π)0-|-4|+⎝ ⎛⎭⎪⎫-12-3.16.(5分)先化简,再求值:[(x +y )(3x -y )-(x +2y )2+5y 2]÷2x ,其中x =1,y =-2.17.(5分)已知x+y=6,xy=4,求下列各式的值:(1)(x-3)(y-3);(2)[(2x-y)2-(2x+y)(2x-y)]÷(-2y)-y(x-3).18.(5分)如图,已知∠α.请你用直尺和圆规画一个∠BAC,使得∠BAC=∠α.(要求:保留作图痕迹,不写作法)(第18题)19.(5分)一种大豆的总售价y(元)与所售质量x(千克)之间的关系如下表所示:所售质量x(千克)00.51 1.5总售价y(元)012 3(1)按表中给出的信息,写出y与x的关系式;(2)当售出大豆的质量为20千克时,总售价是多少?20.(5分)如图,已知直线EF⊥MN,垂足为F,且∠1=138°,若AB∥CD,求∠2的度数.(第20题)21.(6分)如图,已知AD是∠BAC的平分线,点E在BC上,点F在CA的延长线上,EF∥DA,且EF交AB于点G.试说明∠AGF=∠F.5(第21题)22.(7分)如图,直线MN分别与直线AC,DG交于点B,F,且∠1=∠2.∠ABF 的平分线BE交直线DG于点E,∠BFG的平分线FC交直线AC于点C.(第22题)(1)试说明BE∥CF;(2)若∠C=35°,求∠BED的度数.23.(7分)如图,直线AB,CD相交于点O,OM⊥AB.(第23题)(1)若∠1=30°,求∠BOD的度数;(2)如果∠1=∠2,那么ON与CD互相垂直吗?请说明理由.24.(8分)如图表示的是李军从家到超市的时间与他离家的距离之间的关系.观察图象并回答下列问题:(1)图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)李军到达超市用了多少时间?(3)李军出发的第20 min到第30 min内可能在做什么?(4)李军从家到超市的平均速度是多少?返回时的平均速度是什么?(第24题)725.(8分)已知动点P从点A出发沿图①的边框(边框拐角处都互相垂直)按A→B→C→D→E→F的路径移动,相应的三角形AHP的面积y(cm2)关于移动路程x(cm)的关系图象如图②,若AH=2 cm,根据图象信息回答下列问题:(第25题)(1)图①中AB=________cm;(2)图②中n=________;(3)求三角形AHP面积的最大值.26.(10分)如图①,已知直线CD∥EF,点A,B分别在直线CD,直线EF上,P 为两平行线间的一点.(第26题)(1)猜想∠DAP,∠FBP,∠APB之间有什么数量关系?并说明理由;(2)利用(1)的结论解答:①如图②,AP1,BP1分别平分∠DAP,∠FBP,请你直接写出∠P与∠P1的数量关系,不需要说明理由;②如图③,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=α,求∠AP2B的大小(用含α的代数式表示).9答案一、1.B 2.A 3.A 4.A 5.D 6.B 7.A8.B 点拨:设正方形A ,B 的边长各为a ,b (a >b ),得图①中阴影部分的面积为(a -b )2=a 2-2ab +b 2=1,解得a -b =1或a -b =-1(舍去),图②中阴影部分的面积为(a +b )2-(a 2+b 2)=2ab =12.所以(a +b )2=a 2+2ab +b 2=a 2-2ab +b 2+4ab =(a -b )2+4ab =1+2×12=25,解得a +b =5或a +b =-5(舍去),所以图③中阴影部分的面积为(2a +b )2-(3a 2+2b 2)=a 2+4ab -b 2=(a +b )·(a -b )+2×2ab =5×1+2×12=5+24=29,故选B. 二、9.7×10-7 10.t =-0.006h +20 11.16 12.5013.152 点拨:设AC =m ,CF =n ,因为AB =9,所以m +n =9,又因为S 1+S 2=51,所以m 2+n 2=51,由完全平方公式可得,(m +n )2=m 2+2mn +n 2,所以92=51+2mn ,所以mn =15,所以S 阴影部分=12mn =152,即阴影部分的面积为152. 三、14.解:(1)原式=-x 6÷(-2x 3)·x 3=12x 6-3+3 =12x 6.(2)原式=-2a 2·4ab +2a 2·ab 2-2a 2·1 =-8a 3b +2a 3b 2-2a 2.15.解:(1)原式=-1+2 0242-(2 024+1)(2 024-1)=-1+2 0242-(2 0242-1) =-1+2 0242-2 0242+1 =0.(2)原式=1-4-8 =-11.16.解:[(x +y )(3x -y )-(x +2y )2+5y 2]÷2x=(3x 2+3xy -xy -y 2-x 2-4xy -4y 2+5y 2)÷2x =(2x 2-2xy )÷2x =x -y .当x=1,y=-2时,原式=1-(-2)=3.17.解:(1)(x-3)(y-3)=xy-3x-3y+9=xy-3(x+y)+9=4-3×6+9=-5.(2)[(2x-y)2-(2x+y)(2x-y)]÷(-2y)-y(x-3)=(2x-y)[(2x-y)-(2x+y)]÷(-2y)-xy+3y=(2x-y)(-2y)÷(-2y)-xy+3y=2x-y-xy+3y=2(x+y)-xy=2×6-4=8.18.解:如图所示,∠BAC即为所求.(第18题)19.解:(1)表格中反映的是大豆所售质量x(千克)与总售价y(元)之间的关系,大豆所售质量x(千克)是自变量,总售价y(元)是因变量,y与x之间的关系式为y=2x.(2)由关系式可知,当售出大豆的质量为20千克时,y=2×20=40,所以当售出大豆的质量为20千克时,总售价是40元.20.解:若AB∥CD,则∠BFG=∠DGN,由题知∠1=138°,∠1+∠DGN=180°,所以∠DGN=42°.所以∠BFG=∠DGN=42°.因为EF⊥MN,所以∠2+∠BFG=90°,11所以∠2=90°-∠BFG=90°-42°=48°. 21.解:因为AD是∠BAC的平分线,所以∠BAD=∠CAD,因为EF∥DA,所以∠AGF=∠BAD,∠F=∠CAD,所以∠AGF=∠F.22.解:(1)因为∠1=∠2,∠2=∠BFG,所以∠1=∠BFG,所以AC∥DG,所以∠ABF=∠BFG.因为BE,FC分别为∠ABF,∠BFG的平分线,所以∠EBF=12∠ABF,∠CFB=12∠BFG,所以∠EBF=∠CFB,所以BE∥CF.(2)由题意知,AC∥DG,∠C=35°,所以∠C=∠CFG=35°,又因为BE∥CF,所以∠BEG=∠CFG=35°,故∠BED=180°-∠BEG=145°.23.解:(1)因为OM⊥AB,所以∠AOM=90°,又因为∠1=30°,所以∠AOC=∠AOM-∠1=90°-30°=60°,因为∠BOD=∠AOC,所以∠BOD=60°.(2)ON⊥CD.理由:因为∠1+∠AOC=90°,∠1=∠2,所以∠2+∠AOC=90°,即∠CON=90°,所以ON⊥CD.24.解:(1)图象表示的是李军从家到超市的时间与他离家的距离两个变量之间的关系,时间为自变量,离家的距离为因变量.(2)由图象可知,李军到达超市用了20 min.(3)可能在超市选购商品.(答案不唯一).(4)李军从家到超市的平均速度是90020=45(m/min),返回时的平均速度是90045-30=60(m/min).25.解:(1)3(2)26(3)由图象可得,当0<x≤3时,点P在AB上运动;当3<x≤5时,点P在BC上运动;当5<x≤11时,点P在CD上运动;当11<x≤17时,点P在DE上运动;当17<x≤30时,点P在EF上运动.所以点P在DE上运动时,三角形AHP的面积最大,即12×2×(11-2)=9(cm2).所以△AHP面积的最大值为9 cm2.26.解:(1)∠APB=∠DAP+∠FBP,理由如下:过点P作MP∥CD,如图,(第26题) 所以∠APM=∠DAP,因为CD∥EF,所以MP∥EF,所以∠MPB=∠FBP,所以∠APM+∠MPB=∠DAP+∠FBP.即∠APB=∠DAP+∠FBP.(2)①∠P=2∠P1.②由(1)得∠APB=∠DAP+∠FBP,13同理可得∠AP 2B =∠CAP 2+∠EBP 2, 因为AP 2,BP 2分别平分∠CAP ,∠EBP ,所以∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP , 所以∠AP 2B =12∠CAP +12∠EBP=12(180°-∠DAP )+12(180°-∠FBP )=180°-12(∠DAP +∠FBP ) =180°-12∠APB =180°-12α.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
A
B
2012──2013学年第二学期期中初一数学试题
一、选择题
1、手电筒射出去的光线,给我们的形象是( ) A.直线 B.射线 C.线段 D.折线
2、下列各直线的表示法中,正确的是( )
A .直线A
B .直线AB
C .直线ab
D .直线Ab 3、下列说法正确的是( )
A.画射线OA=3cm;
B.线段AB 和线段BA 不是同一条线段
C.点A 和直线L 的位置关系有两种;
D.三条直线相交有3个交点 4、图中给出的直线、射线、线段,根据各自的性质,能相交的是( )
5、如图,A,B 在直线L 上,下列说法错误的是 ( )
A.线段AB 和线段BA 同一条线段 B.直线AB 和直线BA 同一条直线 C.射线AB 和射线BA 同一条射线 D.图中以点A 为端点的射线有两条。
6、如果点C 在线段AB 上,则下列各中:AC=1
2
AB,AC=CB,AB=2AC,AC+CB=AB,能说明C 是线段AB 中点的有( ) A.1个 B.2个 C.3个 D.4个 7、如图,AB=CD,则AC 与BD 的大小关系是( )
A.AC>BD
B.AC<BD
C.AC=BD
D.不能确定 8、下列说法正确的是( )
A. 两点之间的连线中,直线最短
B.若P 是线段AB 的中点,则AP=BP
C. 若AP=BP, 则P 是线段AB 的中点
D. 两点之间的线段叫做者两点之间的距离
9、如果线段AB=5cm,线段BC=4cm,
那么A,C 两点之间的距离是( )
C
A
D
B
C
B A. 9cm B.1cm C.1cm 或9cm D.以上答案都不对 10、已知∠AOB=3∠BOC,若∠BOC=30°,则∠AO
C 等于( ) A.120° B.120°或60° C.30° D.30°或90°
11、α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么
α∠的另一半落在β∠的( )
A.另一边上
B.内部;
C.外部
D.以上结论都不对 12、已知41=+
a a 则=+221
a
a ( ) A 、12 B 、 14 C 、 8 D 、16
13、若多项式x 2+mx+9是一个完全平方式,则m 的值是( ) A.±3 B.3 C.±6 D.6 14、下列计算结果正确的是( )
A .-2x 2y 3·2xy=-2x 3y 4
B .3x 2y-5xy 2=-2x 2y
C .28x 4y 2÷7x 3y=4xy
D .(-3a-2)(3a-2)=9a 2-4 15、计算(m 2)3m 4等于( )
A .m 9
B .m 10
C .m 12
D .m 24
二、填空题
1、平面上有A 、B 、C 三点,过其中的每两点画直线,最多可以画_____条线段, 最少可以画_______条直线.
2、要把木条固定在墙上至少需要钉___颗钉子,根据是________________.
3、如图,直线上四点A 、B 、C 、D,看图填空:
①AC=______+BC;②CD=AD-_______;③4、已知线段AB=5cm,在线段AB 上截取BC=2cm,则AC=________.
5、如图,BC=4 cm,BD=7 cm , D 是AC 的中点,则AC=
cm , AB= cm
6、钟表上2时15分时,时针与分针的夹角为 。
7、如图,在线段AB 上,C 、D 分别是AM 、MB 的中点,如果AB=a ,用含
a 的式子表示CD 的长为_____________.
8、1.25°= ′= ″ 6000″= ′= °
9、如图,是一副三角板重叠而成的图形,则∠AOD+∠BOC=_____________.
10 、___,__________)2)(2(=---y x x y 11、(y 3)3÷y 5
= .
12、若a 2+b 2=5,ab =2,则(a +b )2= . 13、计算:19922
-1991×1993= 14、若53=x ,43=y ,则y x -23= 15、.
___
,2)(222=++=+-M y xy x M y x 则
三、画图题
1、如图,平面上有三点A 、B 、C . (1)按下列要求画出图形:
①.画直线AB ;②.画射线AC ;③连接BC (2)写出图中有哪几条线段.
(3)指出图中有几条射线,并写出其中能用字母表示的射线(不再添加字母)
2、已知:693273=⋅m m ,求m .
A
B
C
第20题图
B
C D
E
3、如图,在公路l 的两旁有两个工厂A 、B ,要在公路上搭建一个货场让A 、B 两厂使用,要使货场到A 、B 两厂的距离之和最小,问货场应建在什么位置?为什么?
四、解答题
1、如图,OA 丄OB ,OC 丄OD ,OE 为∠BOD 的平分线,∠BOE=17°,求∠AOC 的度数
2、如图已知点C 为AB 上一点,AC =12cm, CB =3
2
AC ,D 、E 分别为AC 、AB 的中点求DE 的长。
A
B
五、计算: 1、122333m m m x x x x x x ---⋅+⋅-⋅⋅ 2、 (-m+n) (-m -n)
3、 2(a 3)2·a 2+(a 2)4 +(-2a 4)2
4、)(]12)1)(1[(2
2ab b a
ab ab -÷+--+
5、先化简再求值()()()737355322
-----a a a ,其中a=-2
6、 计算:22222222129596979899100-⋅⋅⋅⋅⋅+-+-+-
7、想一想按图中所示的方式分割正方形,你能得到什么结论?。