新疆乌鲁木齐市2017-2018学年七年级上学期期末考试数学试题(解析版)

合集下载

乌鲁木齐市七年级上学期期末数学试题及答案

乌鲁木齐市七年级上学期期末数学试题及答案

乌鲁木齐市七年级上学期期末数学试题及答案一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.4 =( ) A .1B .2C .3D .43.若34(0)x y y =≠,则( ) A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 4.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30B .45︒C .60︒D .75︒5.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 7.方程3x +2=8的解是( ) A .3B .103C .2D .128.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( ) A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -9.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×210.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =11.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 12.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠213.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+14.下列计算正确的是( ) A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=115.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟二、填空题16.一个角的余角等于这个角的13,这个角的度数为________. 17.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.18.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 19.把53°24′用度表示为_____.20.若523m x y +与2n x y 的和仍为单项式,则n m =__________.21.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.22.若a 、b 是互为倒数,则2ab ﹣5=_____. 23.若∠1=35°21′,则∠1的余角是__.24.五边形从某一个顶点出发可以引_____条对角线. 25.数字9 600 000用科学记数法表示为 .26.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 27.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____. 28.比较大小:﹣8_____﹣9(填“>”、“=”或“<“). 29.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.30.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.34.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.35.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

乌鲁木齐市七年级上学期期末数学试题及答案

乌鲁木齐市七年级上学期期末数学试题及答案

乌鲁木齐市七年级上学期期末数学试题及答案一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( )A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟D .36011分钟 3.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3 B .π,2 C .1,4 D .1,34.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30 C .32 D .34 5.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个6.方程3x ﹣1=0的解是( )A .x =﹣3B .x =3C .x =﹣13D .x =137.如果a ﹣3b =2,那么2a ﹣6b 的值是( )A .4B .﹣4C .1D .﹣18.当x=3,y=2时,代数式23x y -的值是( ) A .43 B .2C .0D .3 9.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )2 10.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=yC .若x y m m =,则x y =D .若x y =,则x y m m= 11.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( )A .2或2.5B .2或10C .2.5D .212.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.15.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.16.把53°24′用度表示为_____.17.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.18.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________ 19.分解因式: 22xy xy +=_ ___________20.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.21.如图,若12l l //,1x ∠=︒,则2∠=______.22.16的算术平方根是.23.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x为_____.24.已知一个角的补角是它余角的3倍,则这个角的度数为_____.三、解答题25.教材中的探究:如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A、B两点表示的数分别为,;(2)请你参照上面的方法,把长为5,宽为1的长方形进行裁剪,拼成一个正方形.①在图3中画出裁剪线,并在图4位置画出所拼正方形的示意图.②在数轴上分别标出表示数5以及5﹣3的点,(图中标出必要线段长)A B C D四点如图所示,请按要求画图.26.已知,,,(1)画直线AB;(2)若所画直线AB表示一条河流,点,C D分别表示河流两旁的两块稻田,要在河岸边某一位置开渠引水灌溉稻田,请在河流AB上确定点P,使得在点P处开渠到两块稻田,C D的距离之和最短,并说明理由.27.计算:|﹣2|+(﹣1)2019+19×(﹣3)228.保护环境人人有责,垃圾分类从我做起.某市环保部门为了解垃圾分类的实施情况,抽样调查了部分居民小区一段时间内的生活垃圾分类,对数据进行整理后绘制了如下两幅统计图(其中A表示可回收垃圾,B表示厨余垃圾,C表示有害垃圾,D表示其它垃圾)根据图表解答下列问题(1)这段时间内产生的厨余垃圾有多少吨?(2)在扇形统计图中,A部分所占的百分比是多少?C部分所对应的圆心角度数是多少?(3)其它垃圾的数量是有害垃圾数量的多少倍?条形统计图中表现出的直观情况与此相符吗?为什么?29.计算:(1)﹣7﹣2÷(﹣12)+3;(2)(﹣34)×49+(﹣16)30.先化简,再求值:﹣3(a2﹣2b)+5(3b+a2),其中a=﹣2,13b=-.四、压轴题31.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。

2017-2018学年第一学期期末测试七年级数学试题及答案

2017-2018学年第一学期期末测试七年级数学试题及答案

2017—2018学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分为120分。

考试用时100分钟。

考试结束后,只上交答题卡。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。

3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列算式:(1) (2)--;(2) 2- ;(3) 3(2)-;(4) 2(2)-. 其中运算结果为正数的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n (C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A ) 4 (B ) 3 (C ) 2 (D ) 1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+ (B )ab 2 (C )ab ba + (D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)(第11题图)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为 . 14.若xm-1y 3与2xyn的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -= . 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20, 那么10+2x 的值应为 . 17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+-- (2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2. 21.(每小题分5分,本小题满分10分)解方程:53-(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB 是直角,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线. (1)当∠AOC =40°,求出∠MON 的大小,并写出解答过程理由; (2)当∠AOC =50°,求出∠MON 的大小,并写出解答过程理由; (3)当锐角∠AOC=α时,求出∠MON 的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADCBCBDCDCD二、填空题(本大题6个小题,每小题4分,共24分)(第24题图)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算: 解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+ ………………………………………………2分 =13(0.57.5)(64)44--++ ………………………………………………4分 =3. ………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分=[﹣15+8]×(﹣8)÷7………………………………………………2分=﹣7×(﹣8)÷7………………………………………………………3分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值: 解:(1)原式, ………………………3分当时,原式; ………………………5分(2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程: 解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分 去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分 移项,得215-49+=+x x . …………4分 合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分 根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分 答:这个角的度数为60°. …………8分 23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+ ………………………………………5分 解方程,得4300360x x -=- ………………………………………7分240x = ………………………………………9分答:甲地和乙地相距240公里. ……………………………10分 24.(本小题满分12分) 解:(1)∠AOC =40°时,∠MON =∠MOC -∠CON ………………………………………1分 =12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分=45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。

2017-2018学年度七年级数学上册期末测试题及答案

2017-2018学年度七年级数学上册期末测试题及答案

2017-2018学年度七年级上学期期末数学试卷(考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.)1.2-等于( )A .-2B .12- C .2 D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与15.下列各组单项式中,为同类项的是( )A .a 3与a 2B .12a 2与2a 2C .2xy 与2xD .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( )A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( )A .70°B .90°C .105°D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( )A .69°B .111°C .141°D .159°ABCD 第8题图第9题图10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( )A .(1+50%)x×80%=x -28B .(1+50%)x×80%=x +28C .(1+50%x)×80%=x -28D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( )A .32428-=x xB .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________.16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500000用科学记数法表示应为_________________平方千米.18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5.20.根据图中提供的信息,可知一个杯子的价格是________元.6 2 22 4 2 0 4 8 8 4 44 6……共43元共94元三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .22.(本小题满分6分) 一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分)先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为 ;(2)写出第二次移动结果这个点在数轴上表示的数为 ;(3)写出第五次移动后这个点在数轴上表示的数为 ;(4)写出第n 次移动结果这个点在数轴上表示的数为 ;(5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.26.(本小题满分8分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE求:∠COE的度数.27.(本小题满分8分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为元.A E DB F C数学试题参考答案一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B .二、填空题(每题3分,共24分)13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8. 三、解答题(共60分)21.解:原式= -1-14×(2-9)…3分 =-1+ 47…5分 =43…6分 22.解:设这个角的度数为x . ………1分由题意得: 30)90(21=--x x …3分 解得:x =80……5分 答:这个角的度数是80° ………6分23.解:原式 =1212212+--+-x x x ……3分 =12--x …4分 把x =21代入原式: 原式=12--x =1)21(2--…5分 =45- 7分 24.解:6)12()15(2=--+x x . …2分 612210=+-+x x .……4分8x =3. ……6分 83=x .……7分 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ………1分(2)第二次移动后这个点在数轴上表示的数是4; …………2分(3)第五次移动后这个点在数轴上表示的数是7; ……………3分(4)第n 次移动后这个点在数轴上表示的数是n +2; …………5分(5)54. ………………………………7分26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°,…2分 ∵∠BOD =∠COD -∠BOC =90°-45°=45°, ……4分∠BOD =3∠DOE ∴∠DOE =15, ……7分∴∠COE =∠COD -∠DOE =90°-15°=75° ………8分27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . ………1分∵点E 、点F 分别为AB 、CD 的中点,∴AE =12AB =1.5x cm ,CF =12CD =2x cm .……3分∴EF=AC-AE-CF=2.5x cm.……4分∵EF=10cm,∴2.5x=10,解得:x=4.……6分∴AB=12c,CD=16cm.……………8分28.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元. ……1分由题意得:30x+45(x+4)=1755 ……3分解得:x=21 则x+4=25. ………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………5分(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105-y)支. …6分根据题意,得21y+25(105-y)=2447.…7分解之得:y=44.5 (不符合题意) .…8分所以王老师肯定搞错了.…9分(3)2或6. …………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。

人教版初中数学七年级上册期末试题(2017-2018学年新疆乌鲁木齐市

人教版初中数学七年级上册期末试题(2017-2018学年新疆乌鲁木齐市

2017-2018学年新疆乌鲁木齐市七年级(上)期末数学试卷一、选择题(共8小题,每题3分,共24分)1.(3分)下列四个数中,正整数是()A.﹣2B.﹣1C.0D.12.(3分)我国是世界上严重缺水的国家之一,目前我国年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500这个数用科学记数法表示为()A.2.75×104B.2.75×105C.2.8×104D.27.5×103 3.(3分)下列运算结果为正数的是()A.﹣22B.(﹣2)2C.﹣23D.(﹣2)34.(3分)将“富强、民主、文明”六个字分别写在一个正方体的六个面上,正方体的平面展开图如图所示,那么在这个正方体中,和“强”相对的字是()A.文B.明C.民D.主5.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b6.(3分)某车间有22名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母20个或螺栓12个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.20x=12(22﹣x)B.12x=20(22﹣x)C.2×12x=20(22﹣x)D.20x=2×12(22﹣x)7.(3分)将一根长为12cm的铁丝围成一个长与宽之比为2:1的长方形,则此长方形的面积为()A.2cm2B.4.5cm2C.8cm2D.32cm28.(3分)若x是2的相反数,|y|=4,且x+y<0,则x﹣y=()A.﹣6B.6C.﹣2D.2二、填空题(共6小题,每题3分,共18分)9.(3分)如果把“收入500元”记作+500元,那么“支出100元”记作.10.(3分)木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点画出一条墨线,这是根据数学原理.11.(3分)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是.12.(3分)如图,点O在直线AB上,射线OC平分∠DOB,若∠COB=35°,则∠AOD =°.13.(3分)若单项式3ax2y n+1与﹣2ax m y4是同类项,则m﹣n=.14.(3分)如图,将一副直角三角板如图放置,若∠AOD=18°,则∠BOC的度数为.三、计算下列各题(本大题共2小题,每题6分,共12分)15.(6分)计算:﹣8+|32÷(﹣2)3|﹣(﹣42)×5.16.(6分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.四、解下列方程(本题共2小题,每题6分,共12分)17.(6分)解方程:4﹣5x=3x.18.(6分)解方程:﹣3x=﹣3.五、列方程解应用题(本题共2小题,每题8分,共16分)19.(8分)一架在无风情况下航速为696km/h的飞机,逆风飞行一条航线用了3h,顺风飞行这条航线用了2.8h.求:(1)风速;(2)这条航线的长度.20.(8分)某商店卖出一套衣服,亏损了8元,其中裤子是按60元卖出的,盈利了25%;上衣亏损了25%.求:(1)这套衣服中裤子的进价是多少元?(2)这套衣服中上衣是按多少元卖出的?六、解答下列各题(本题共3小题,每题6分,共18分)21.(6分)作图题:如图,已知平面上四点A,B,C,D.(1)画直线AD;(2)画射线BC,与直线AD相交于O;(3)连结AC,BD相交于点F.22.(6分)如图,已知线段AD=6cm,线段AC=BD=4cm,E,F分别是线段AB,CD的中点,求EF的长度.23.(6分)已知∠AOB=80°,∠BOC=20°,OD平分∠AOC,求∠AOD的度数.2017-2018学年新疆乌鲁木齐市七年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每题3分,共24分)1.(3分)下列四个数中,正整数是()A.﹣2B.﹣1C.0D.1【分析】正整数是指既是正数还是整数,由此即可判定求解.【解答】解:A、﹣2是负整数,故选项错误;B、﹣1是负整数,故选项错误;C、0是非正整数,故选项错误;D、1是正整数,故选项正确.故选:D.【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.2.(3分)我国是世界上严重缺水的国家之一,目前我国年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500这个数用科学记数法表示为()A.2.75×104B.2.75×105C.2.8×104D.27.5×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于27500有5位,所以可以确定n=5﹣1=4.【解答】解:27 500=2.75×104.故选:A.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)下列运算结果为正数的是()A.﹣22B.(﹣2)2C.﹣23D.(﹣2)3【分析】根据乘方的定义逐一计算可得.【解答】解:A、﹣22=﹣4,不符合题意;B、(﹣2)2=4,符合题意;C、﹣23=﹣8,不符合题意;D、(﹣2)3=﹣8,不符合题意;故选:B.【点评】本题主要考查有理数的乘方,解题的关键是熟练掌握有理数乘方的定义和(﹣a)n 与﹣a n的区别.4.(3分)将“富强、民主、文明”六个字分别写在一个正方体的六个面上,正方体的平面展开图如图所示,那么在这个正方体中,和“强”相对的字是()A.文B.明C.民D.主【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“强”与面“文”相对,面“富”与面“主”相对,“民”与面“明”相对.故选:A.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.6.(3分)某车间有22名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母20个或螺栓12个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.20x=12(22﹣x)B.12x=20(22﹣x)C.2×12x=20(22﹣x)D.20x=2×12(22﹣x)【分析】设分配x名工人生产螺栓,则(22﹣x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【解答】解:设分配x名工人生产螺栓,则(22﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母20个或螺栓12个,∴可得2×12x=20(22﹣x).故选:C.【点评】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.7.(3分)将一根长为12cm的铁丝围成一个长与宽之比为2:1的长方形,则此长方形的面积为()A.2cm2B.4.5cm2C.8cm2D.32cm2【分析】设宽为xcm,则长为2xcm,根据周长公式求得该长方形的长与宽,结合长方形的面积公式解答.【解答】解:∵用长12cm的铁丝围成长与宽之比为2:1的长方形,∴设宽为xcm,则长为2xcm,故2(2x+x)=12,解得:x=2,则长为4cm,宽为2cm,故长方形面积为:4×2=8cm2,故选:C.【点评】此题主要考查了一元一次方程的应用,根据题意得出正确的等量关系是解题关键.8.(3分)若x是2的相反数,|y|=4,且x+y<0,则x﹣y=()A.﹣6B.6C.﹣2D.2【分析】根据相反数定义得出x的值,利用绝对值性质及有理数加法运算法则得出y的值,继而可得x﹣y的值.【解答】解:∵x是2的相反数,∴x=﹣2,又∵|y|=4,∴y=4或y=﹣4,由x+y<0得y=﹣4,则x﹣y=﹣2﹣(﹣4)=﹣2+4=2,故选:D.【点评】本题主要考查有理数的加减法运算,解题的关键是熟练掌握相反数的定义、绝对值的性质及有理数的加减法的运算法则.二、填空题(共6小题,每题3分,共18分)9.(3分)如果把“收入500元”记作+500元,那么“支出100元”记作﹣100元.【分析】根据正数和负数表示相反意义的量,收入记为正,可得支出的表示方法.【解答】解:规定收入为正,支出为负.收入500元记作+500元,那么支出100元应记作﹣100元,故答案为:﹣100元.【点评】本题考查了正数和负数,解题时注意:相反意义的量用正数和负数表示.10.(3分)木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点画出一条墨线,这是根据数学原理两点确定一条直线.【分析】根据直线公理:经过两点有且只有一条直线,解题.【解答】解:两点确定一条直线.【点评】此题比较简单,但从中可以看出,数学来源于生活,又用于生活.11.(3分)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是7.【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)12.(3分)如图,点O在直线AB上,射线OC平分∠DOB,若∠COB=35°,则∠AOD =110°.【分析】首先根据角平分线定义可得∠BOD=2∠BOC=70°,再根据邻补角的性质可得∠AOD的度数.【解答】解:∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵∠COB=35°,∴∠DOB=70°,∴∠AOD=180°﹣70°=110°,故答案是:110.【点评】此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.13.(3分)若单项式3ax2y n+1与﹣2ax m y4是同类项,则m﹣n=﹣1.【分析】根据同类项定义可得m=2,n+1=4,解出m、n的值,进而可得m﹣n的值.【解答】解:由题意得:m=2,n+1=4,解得:m=2,n=3,则m﹣n=﹣1.故答案为:﹣1.【点评】此题主要考查了同类项,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.14.(3分)如图,将一副直角三角板如图放置,若∠AOD=18°,则∠BOC的度数为162°.【分析】先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.【解答】解:∵∠AOD=18°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣18°=72°,∴∠BOC=∠COA+∠AOD+∠BOD=72°+18°+72°=162°.故答案为:162°.【点评】本题考查了余角的应用,解此题的关键是求出∠COA和∠BOD的度数.三、计算下列各题(本大题共2小题,每题6分,共12分)15.(6分)计算:﹣8+|32÷(﹣2)3|﹣(﹣42)×5.【分析】根据有理数的乘除法和加减法可以解答本题.【解答】解:﹣8+|32÷(﹣2)3|﹣(﹣42)×5=﹣8+|32÷(﹣8)|﹣(﹣16)×5=﹣8+4+80=76.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.(6分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【分析】将代数式去括号,合并同类项,从而将整式化为最简形式,然后把x、y的值代入即可.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2;当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.【点评】本题主要考查了整式的加减运算.整式的加减运算实际上就是去括号、合并同类项.四、解下列方程(本题共2小题,每题6分,共12分)17.(6分)解方程:4﹣5x=3x.【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:方程4﹣5x=3x,移项合并得:8x=4,解得:x=.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.18.(6分)解方程:﹣3x=﹣3.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2(1﹣2x)﹣18x=3(x﹣1)﹣18,去括号得:2﹣4x﹣18x=3x﹣3﹣18,移项合并得:25x=23,解得:x=.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.五、列方程解应用题(本题共2小题,每题8分,共16分)19.(8分)一架在无风情况下航速为696km/h的飞机,逆风飞行一条航线用了3h,顺风飞行这条航线用了2.8h.求:(1)风速;(2)这条航线的长度.【分析】(1)设风速是x千米/时,根据顺风速度×顺风时间=逆风速度×逆风时间,列出方程求出x的值即可.(2)由“航程=速度×时间”进行计算.【解答】解:(1)设风速为xkm/h,根据题意得:3(696﹣x)=2.8(696+x)解得:x=24,所以风速为24km/h;(2)航线的长度为3×(696﹣24)=2016km,答:这条航线的长度为2016km.【点评】此题考查了一元一次方程的应用,用到的知识点是顺风速度=无风时的速度+风速,逆风速度=无风时的速度﹣风速,关键是根据顺风飞行的路程等于逆风飞行的路程列出方程.20.(8分)某商店卖出一套衣服,亏损了8元,其中裤子是按60元卖出的,盈利了25%;上衣亏损了25%.求:(1)这套衣服中裤子的进价是多少元?(2)这套衣服中上衣是按多少元卖出的?【分析】(1)设裤子的进价为x元,根据题意列出方程,求出方程的解即可得到结果;(2)设上衣的售价为y元,根据题意列出方程,求出方程的解即可得到结果.【解答】解:(1)设裤子的进价为x元,根据题意得:x+0.25x=60,解得:x=48,答:这套衣服中裤子的进价是48元;(2)设上衣的售价为y元,根据题意可得:48+=60+y+8,解得:y=60,答:上衣是按60元卖出的.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.六、解答下列各题(本题共3小题,每题6分,共18分)21.(6分)作图题:如图,已知平面上四点A,B,C,D.(1)画直线AD;(2)画射线BC,与直线AD相交于O;(3)连结AC,BD相交于点F.【分析】根据直线和射线、线段的概念作图即可.【解答】解:(1)(2)(3)如图所示:【点评】本题考查了直线、射线、线段,主要是对文字语言转化为几何语言的能力的训练,是基础题.22.(6分)如图,已知线段AD=6cm,线段AC=BD=4cm,E,F分别是线段AB,CD的中点,求EF的长度.【分析】根据题意和图形可以求得线段EB、BC、CF的长,从而可以得到线段EF的长.【解答】解:∵E,F分别是线段AB,CD的中点,∴AB=2EB=2AE,CD=2CF=FD,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,∴AC+2CF=6,解得,CF=1,同理可得:EB=1,∴BC=2,∴EF=EB+BC+CF=1+2+1=4.【点评】本题考查两点间的距离,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(6分)已知∠AOB=80°,∠BOC=20°,OD平分∠AOC,求∠AOD的度数.【分析】利用角的和差关系计算.根据题意可得此题要分两种情况,一种是OC在∠AOB 内部,另一种是OC∠AOB外部.【解答】解:分两种情况进行讨论:①如图1,射线OC在∠AOB的内部.∵∠AOC=∠AOB﹣∠BOC,∠AOB=80°,∠BOC=20°,∴∠AOC=80°﹣20°=60°.又∵OD平分∠AOC,∴∠AOD=∠AOC=30°;②如图2,射线OC在∠AOB的外部.∵∠AOC=∠AOB+∠BOC,∠AOB=80°,∠BOC=20°,∴∠AOC=80°+20°=100°.又∵OD平分∠AOC,∴∠AOD=∠AOC=50°.综上所述,∠AOD=30°或50°.【点评】本题考查了角的计算,角平分线的定义.要根据射线OC的位置不同,分类讨论,分别求出∠AOD的度数.。

七年级上册乌鲁木齐数学期末试卷测试卷(含答案解析)

七年级上册乌鲁木齐数学期末试卷测试卷(含答案解析)

七年级上册乌鲁木齐数学期末试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),线段AB平移后对应的线段为CD,点C在x轴的负半轴上,B、C两点之间的距离为8.(1)求点D的坐标;(2)如图(1),求△ACD的面积;(3)如图(2),∠OAB与∠OCD的角平分线相交于点M,探求∠AMC的度数并证明你的结论.【答案】(1)解:∵B(3,0),∴OB=3,∵BC=8,∴OC=5,∴C(﹣5,0),∵AB∥CD,AB=CD,∴D(﹣2,﹣4)(2)解:如图(1),连接OD,∴S△ACD=S△ACO+S△DCO﹣S△AOD=﹣=16(3)解:∠M=45°,理由是:如图(2),连接AC,∵AB∥CD,∴∠DCB=∠ABO,∵∠AOB=90°,∴∠OAB+∠ABO=90°,∴∠OAB+∠DCB=90°,∵∠OAB与∠OCD的角平分线相交于点M,∴∠MCB=,∠OAM=,∴∠MCB+∠OAM==45°,△ACO中,∠AOC=∠ACO+∠OAC=90°,△ACM中,∠M+∠ACM+∠CAM=180°,∴∠M+∠MCB+∠ACO+∠OAC+∠OAM=180°,∴∠M=180°﹣90°﹣45°=45°.【解析】【分析】(1)利用B的坐标,可得OB=3,从而求出OC=5,利用平移的性质了求出点D的坐标.(2)如图(1),连接OD,由S△ACD=S△ACO+S△DCO+S△AOD,利用三角形的面积公式计算即得.(3)连接AC,利用平行线的性质及直角三角形两锐角互余可得∠OAB+∠DCB=90°,利用角平分线的定义可得∠MCB+∠OAM==45°,根据三角形的内角和等于180°,即可求出∠M的度数.3.如图,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE,BE交于点E,∠CBN=120°.(1)若∠ADQ=110°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示)【答案】(1)解:如图1中,延长DE交MN于H.∵∠ADQ=110°,ED平分∠ADP,∴∠PDH= ∠PDA=35°,∵PQ∥MN,∴∠EHB=∠PDH=35°,∵∠CBN=120°,EB平分∠ABC,∴∠EBH= ∠ABC=30°,∴∠BED=∠EHB+∠EBH=65°(2)解:有3种情形,如图2中,当点E在直线MN与直线PQ之间时.延长DE交MN 于H.∵PQ∥MN,∴∠QDH=∠DHA= n,∴∠BED=∠EHB+∠EBH=180°﹣( n)°+30°=210°﹣( n)°,当点E在直线MN的下方时,如图3中,设DE交MN于H.∵∠HBA=∠ABP=30°,∠ADH=∠CDH=( n)°,又∵∠DHB=∠HBE+∠HEB,∴∠BED=( n)°﹣30°,当点E在PQ上方时,如图4中,设PQ交BE于H.同法可得∠BED=30°﹣( n)°.综上所述,∠BED=210°﹣( n)°或( n)°﹣30°或30°﹣( n)°【解析】【分析】(1)延长DE交MN于H.利用平行线的性质和角平分线的定义可得∠BED=∠EHB+∠EBH,即可解决问题;(2)分3种情形讨论:点E在直线MN与直线PQ之间,点E在直线MN的下方,点E 在PQ上方,再根据平行线的性质可解决问题.4.已知,,OB、OM、ON是内的射线.(1)如图,若OM平分,ON平分,,则 ________ ;(2)如图,若OM平分,ON平分,求的度数;(3)如图,OC是内的射线,若,OM平分,ON平分,当射线OB在内时,求的度数.【答案】(1)60(2)解:,,,平分,OM平分,,,;(3)解:设,则,平分,ON平分,,,【解析】【解答】,,,平分,,故答案为:60;【分析】(1)由题意和角的构成知∠BOD=∠AOD-∠AOB,再根据角平分线的定义得∠BON=∠BOD可求解;(2)由角的构成可求得∠BOD的度数,再根据角平分线的定义得∠BOM=∠AOB,∠BON=∠BOD,则∠MON=∠BOM+∠BON可求解;(3)设∠AOB=x,由角的构成得∠BOD=∠AOD-∠AOB=160°-x,由角平分线的定义得∠COM=∠AOC,∠BON=∠BOD,由角的构成得∠MON=∠COM+∠BON-∠BOC可求解. 5.如图,,,,把绕O点以每秒的速度顺时针方向旋转,同时绕O点以每秒的速度逆时针方向旋转设旋转后的两个角分别记为、,旋转时间为t秒 .(1)当秒时, ________ ;(2)若射线与重合时,求t的值;(3)若射线恰好平分时,求t的值;(4)在整个旋转过程中,有________秒小于或等于?直接写出结论【答案】(1)(2)解:当射线与重合时,得方程解得故旋转时间为10秒时,射线与重合.(3)解:当射线恰好平分时,即、两个角重合部分为得方程即 ,故时间t为秒时,射线恰好平分(4)【解析】【解答】解:(1)由题意知,当时,故答案为 .( 4 )当时,分与重合前与与重合后两个时刻,即① 与重合前,,则得② 与重合后,,则得在旋转过程中,当时,,即故整个旋转过程中,有秒小于或等于 .【分析】(1)根据题意可知,代入t的值即可求解;(2)该情况相当于行程问题中的相遇问题,射线与重合时,与旋转的角度之和等于,得方程,解方程即可;③ ,当射线恰好平分时,也就是两个角旋转重合部分为,所以得方程,解方程即可;(4)求两个临界点的时间差即可,即时的时间t,与重合前,与重合后,两个时间差之内,小于或等于 .6.如图 1,射线 OC在∠AOB的内部,图中共有 3个角:∠AOB、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线 OC是∠AOB的奇妙线.(1)一个角的角平分线________这个角的奇妙线.(填是或不是);(2)如图 2,若∠MPN=60°,射线 PQ绕点 P从 PN位置开始,以每秒 10°的速度逆时针旋转,当∠QPN首次等于 180°时停止旋转,设旋转的时间为 t(s).①当 t为何值时,射线 PM是∠QPN 的奇妙线?②若射线 PM 同时绕点 P以每秒 5°的速度逆时针旋转,并与 PQ同时停止旋转.请求出当射线 PQ是∠MPN的奇妙线时 t的值.【答案】(1)是(2)解:①∠MPN=60,∠QPM=10t-60,∠QPN=10t(最大角),当∠MPN=2∠QPM时,60=2(10t-60),解得t=9;当∠QPN=2∠MPN时,10t =2×60,解得t=12;当∠QPM=2∠MPN时,10t-60=2×60,解得t=18;综上,当t的值是9或12或18时,射线 PM是∠QPN 的奇妙线.②∠QPN=10t,∠QPM=60-10t+5t=60-5t,∠MPN=60+5t(最大角),当∠QPM=2∠QPN时, 60-5t =2×10t ,解得t= ;当∠MPN=2∠QPN时,60+5t =2×10t,解得t=4;当∠QPN=2∠QPM时,10t =2×(60-5t),解得t=6;综上,当射线 PQ是∠MPN的奇妙线时 t的值为或4或6.故答案为:(1)是;(2) ①当t的值是9或12或18时,射线PM是∠QPN 的奇妙线;②当射线 PQ是∠MPN的奇妙线时 t的值为或4或6.【解析】【分析】(1)根据奇妙线定义即可求解;(2)①分3种情况,根据奇妙线定义列方程求解即可;②分3种情况,根据奇妙线定义列方程求解即可.7.(探索新知)如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=________;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC________DB;(3)(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)图2中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【答案】(1)3π+3(2)=(3)解:由题意可知,C点表示的数是π+1,M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,x+πx=π+1,解得x=1,∴MN=π+1-1-1=π-1(4)解:设点D表示的数为x,如图3,若CD=πOD,则π+1-x=πx,解得x=1;如图4,若OD=πCD,则x=π(π+1-x),解得x=π;如图5,若OC=πCD,则π+1=π(x-π-1),解得x=π+ +2;如图6,若CD=πOC,则x-(π+1)=π(π+1),解得x=π2+2π+1;综上,D点所表示的数是1、π、π+ +2、π2+2π+1【解析】【解答】(1)解:∵AC=3,BC=πAC,∴BC=3π,∴AB=AC+BC=3π+3( 2 )解:∵点D、C都是线段AB的圆周率点且不重合,∴BC=πAC,AD=πBD,∴设AC=x,BD=y,则BC=πx,AD=πy,∵AB=AC+BC=AD+BD,∴x+πx=y+πy,∴x=y∴AC=BD【分析】(1)根据线段之间的关系代入解答即可;(2)根据线段的大小比较即可;(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=x,根据长度的等量关系列出方程求得x,进一步得到线段MN的长度.8.点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC=2:1,将一直角的顶点放在点O处,∠MON=90°.(1)如图1,当∠MON的一边OM与射线OB重合时,则∠NOC=________;(2)将∠MON绕点O逆时针运动至图2时,若∠MOC=15°,则∠BOM=________;∠AON=________.(3)在上述∠MON从图1运动到图3的位置过程中,当∠MON的边OM所在直线恰好平分∠AOC时,求此时∠NOC是多少度?【答案】(1)150°(2)45°;135°(3)解:由(1)可知:∠AOC=120°,∠BOC=60°,∵OM平分∠AOC,∴∠COM= ∠AOC=60°,∵∠MON=90°,∴∠NOC=∠MON-∠COM=90°-60°=30°.【解析】【解答】(1)∵∠AOC:∠BOC=2:1,∠AOC+∠BOC=180°,∴∠AOC=180°× =120°,∠BOC=180°× =60°,∵∠MON=90°,∴∠NOC=∠BOC+∠MON=90°+60°=150°.故答案为:150°( 2 )由(1)可知:∠BOC=60°,∵∠MOC=15°,∴∠BOM=∠BOC-∠MOC=60°-15°=45°,∵∠MON=90°,∴∠BON=90°-∠BOM=45°,∴∠AON=180°-∠AON=135°,故答案为:45°,135°【分析】(1)由∠AOC:∠BOC=2:1,根据平角的定义可求出∠AOC、∠BOC的度数,根据角的和差关系即可求出∠NOC的度数;(2)根据∠BOC和∠MOC的度数可求出∠BOM 的度数,根据角的和差关系即可求出∠BOM的度数,根据∠MON=90°可求出∠NOB的度数,根据平角的定义即可求出∠AON的度数;(3)利用角平分线的定义可求出∠MOC的度数,进而可求出∠NOC的度数.9.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=________度.(直接写出结果)(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?为什么?【答案】(1)解:如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=∠AOB+∠BOC=90°+60°=150°,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°,∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°;(2)35(3)解:如图3,∵∠AOB=α,∠BOC=β,∴∠AOC=∠AOB+∠BOC=α+β,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,∴∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α.【解析】【解答】解:(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=65°,∠NOC=∠BOC=30°,∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35.【分析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(3)表示出∠AOC度数,表示出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可.10.如图,将一长方形纸片沿着折叠,已知,,交于点,过点作,交线段于点 .(1)判断与是否相等,并说明理由.(2)①判断是否平分,并说明理由.②若,求的度数.【答案】(1)解:∵DF∥CE,∴∠CGA=∠DFG,∵GH∥EF,∴∠AGH=∠GFE,∴∠CGA+∠AGH=∠DFG+∠GFE,即∠CGH=∠DFE;(2)解:① GH平分∠AGE,证明:∵HG∥FE,∴∠AGH=∠GFE,∠HGE=∠GEF,∵AF∥BE,∴∠GFE+∠BEF=180°,由折叠的特点知,∠BEF+∠GEF=180°,∴∠GFE=∠GEF,∴∠AGH=∠HGE,即GH平分∠AGE;②∵DF∥CE,∴∠AGC=∠DFA=52°,∴∠AGE=180°-∠AGC=180°-52°=128°,∴∠HGE=∠AGE=×128°=64°.【解析】【分析】(1)由∵DF∥CE,两直线平行同位角相等,得∠CGA=∠DFG,由GH∥EF,两直线平行同位角相等,得∠AGH=∠GFE,因此根据等式的性质得∠CGA+∠AGH=∠DFG+∠GFE,即∠CGH=∠DFE;(2)①由于HG∥FE,分别由两直线平行同位角相等和内错角相等,得∠AGH=∠GFE,∠HGE=∠GEF,再由AF∥BE,同旁内角互补得∠GFE+∠BEF=180°,结合折叠的特点,得∠BEF+∠GEF=180°,因此得到:∠GFE=∠GEF,最后等量代换得∠AGH=∠HGE,即GH平分∠AGE;②由于DF∥CE,两直线平行同位角相等,求得∠AGC=∠DFA=52°,则利用邻补角的性质定理求得∠AGE的度数,从而由∠HGE=∠AGE求得结果。

乌鲁木齐市七年级上学期数学期末考试试卷

乌鲁木齐市七年级上学期数学期末考试试卷

乌鲁木齐市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,在单位长度为1的数轴上,点A、B表示的两个数互为相反数,那么点A表示的数是()A . 2B . -2C . 3D . -32. (2分)(2020·海曙模拟) 如图所示,点M表示的数是()A . 2.5B . ﹣1.5C . ﹣2.5D . 1.53. (2分)(2019·大连) 2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A .B .C .D .4. (2分)一个两位数,个位上的数字是a,十位上的数字是b,用代数式表示这个两位数是()A . aB . baC . 10a+bD . 10b+a5. (2分)(2020·石家庄模拟) 计算:﹣a2+2a2=()A . a2B . ﹣a2C . 2a2D . 06. (2分)有一道解方程的题: “□”处在印刷时被油墨盖住了,查阅后面的答案得知这个方程的解是那么“□”处应该是()A .B .C .D .7. (2分)在△ABE和△BCD中,AB=BE=EA,BC=CD=DB,且两个三角形在线段AC同侧,则下列式子中错误的是()A . △ABD≌△EBCB . △NBC≌△MBDC . △ABM≌△EBND . △ABE≌△BCD8. (2分)如图,在△ABC中,已知∠ABC和∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为()A . 9B . 8C . 7D . 69. (2分)(2020·莘县模拟) 的绝对值是()A .B .C . 2D . -210. (2分)我们把大于1的正整数m的三次幂按一定规则“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,……,若m3按此规则“分裂”后,其中有一个奇数是313,则m的值是()A . 20B . 19C . 18D . 17二、填空题 (共8题;共8分)11. (1分) (2019七上·北流期中) 如果向左走表示为,那么向右走表示为________ .12. (1分) (2020七上·浦北期末) 单项式的系数是________,次数是________.13. (1分) (2019八上·温州期末) “a的2倍与b的和是正数”用不等式表示为________.14. (1分)为了解201 3届本科生的就业状况,去年3月,某网站对2013届本科生的签约状况进行了网络调查.截止3月底,参与网络调查的18000人中,只有6420人已与用人单位签约在这个网络调查中,样本容量是________.15. (1分)请将下列各数:,0,﹣1.5,﹣,2 按从小到大排列为:________.16. (1分) (2018七上·北仑期末) 数轴上从左到右依次有三点,三点表示的数分别为,,,其中为整数,且满足,则 ________.17. (1分)如图,在▱ABCD中,∠C=40°,过点D作CB的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为________.18. (1分) (2019七上·镇海期末) 若与是同类项,则 ________, ________;合并以后的结果是________.三、解答题 (共8题;共72分)19. (5分) (2019七上·剑河期中) 计算:(1)(2).(3).20. (5分) (2019七上·盐津月考) 解方程(1)(2)21. (5分)若|x﹣3|+|y﹣5|=0,求x+y的值.22. (16分) (2020八上·遂宁期末) 为了解市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“ .非常了解”、“ .了解”、“ .基本了解”、“ .不太了解”四个等级进行统计,并将统计结果绘制成如下两幅不完整的统计图(图1,图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为________人,图2中, ________;(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,求“ .基本了解”所在扇形的圆心角度数;(4)据统计,2018年该市约有市民500万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“ .不太了解”的市民约有多少万人?23. (6分) (2019八上·涵江月考) 如图在△ABC中,∠ACB=90°,AC=BC,AE是BC的中线,过点C作CF⊥AE 于F,过B作BD⊥CB交CF的延长线于点D.(1)求证.AE=CD;(2)若BD=5㎝,求AC的长.24. (10分)某餐厅中1张长方形的桌子可坐 6人,按下图方式将桌子拼在一起.(1)填下表:桌子数12345…n人数68________________________…________(2)若餐厅有72张这样的长方形桌子,按照上图方式每8张拼成1张大桌子,则72张桌子可拼成9张大桌子,共可坐________人.(3)若将餐厅中的若干张桌子拼成一张大桌子,恰好坐下200人,则餐厅共有桌子 ________张.25. (10分) (2020七下·甘南期中) 问题情景:如图1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过点P作PE//AB,∴∠PAB+∠APE=180°.∵∠PAB=130°,∴∠APE=50°∵AB//CD,PE//AB,∴PE//CD,∴∠PCD+∠CPE=180°.∵∠PCD=120°,∴∠CPE=60°∴∠APC=∠APE+∠CPE=110°.问题迁移:如果AB与CD平行关系不变,动点P在直线AB、CD所夹区域内部运动时,∠PAB,∠PCD的度数会跟着发生变化.(1)如图3,当动点P运动到直线AC右侧时,请写出∠PAB,∠PCD和∠APC之间的数量关系?并说明理由.(2)如图4,AQ,CQ分别平分∠PAB,∠PCD,请直接写出∠AQC和∠APC的数量关系________.(3)如图5,点P在直线AC的左侧时,AQ,CQ仍然平分∠PAB,∠PCD,请直接写出∠AQC和角∠APC的数量关系________26. (15分) (2019七上·黄埔期末) 数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共72分)19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。

乌鲁木齐市七年级上学期期末数学试题及答案

乌鲁木齐市七年级上学期期末数学试题及答案

乌鲁木齐市七年级上学期期末数学试题及答案一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( ) A .1 B .2C .3D .43.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )A .49B .59C .77D .1394.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=- D .()2121826x x ⨯=- 5.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )A .10-B .10C .5-D .56.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .380 7.计算32a a ⋅的结果是( )A .5a ;B .4a ;C .6a ;D .8a . 8.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m A .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯9.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =1310.单项式﹣6ab 的系数与次数分别为( ) A .6,1B .﹣6,1C .6,2D .﹣6,211.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°12.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A .①②④B .①②③C .②③④D .①③④二、填空题13.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 14.把53°30′用度表示为_____.15.=38A ∠︒,则A ∠的补角的度数为______.16.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 17.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.18.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 19.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____. 20.|﹣12|=_____. 21.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.22.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.23.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.24.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ; (2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.27.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题:(1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值. 28.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.29.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.30.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017~2018学年第一学期期末考试卷七年级数学一、选择题(共8小题,每题3分,共24分)1. 下列四个数中,正整数是()A. B. C. D.【答案】D【解析】试题分析:-2、-1是负整数;0是整数,既不是正整数,也不是负整数;1是正整数.故选D.2. 我国是世界上严重缺水的国家,目前每年可利用的淡水资源总量为亿立方米,人均占有淡水量居世界第位,因此我们要节约用水,其中用科学记数法表示为()A. B. C. D.【答案】B【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于27500有5位,所以可以确定n=5-1=4.所以27 500=2.75×104.故选B.点睛:此题考查科学记数法表示较大的数的方法,准确确定a与n的值是关键.3. 下列运算结果为正数的是()A. B. C. D.【答案】B【解析】试题分析:A、-22=-4,结果为负数;B、(-2)2=4,结果为正数;C、-23=-8,结果为负数;D、(-2)3=-8,结果为负数.故选B.4. 将“富强、民主、文明”六个字分别写在一个正方体的六个面上,正方体的平面展开图如图所示,那么在这个正方体中,和“强”相对的字是()A. 文B. 明C. 民D. 主【答案】A【解析】试题分析:这是一个正方体的平面展开图,共有六个面,其中面“强”与面“文”相对,面“富”与面“主”相对,“民”与面“明”相对.故选A.点睛:本题考查了正方体展开图中相对面的找法,在正方体的展开图中,若几个面在一条直线上,则每隔一个面的两个面是相对面,若不在一条直线上,则在同一直线两侧的两个面是相对面.5. 如图,将边长为的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长的小正方形后,再将剩下的三块拼成一块矩形,则此矩形较长边的长为()A. B. C. D.【答案】A【解析】解:依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.6. 某车间有名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母个或螺栓个,若分配名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A. B.C. D.【答案】C【解析】试题分析:分配x名工人生产螺栓,则分配(22-x)名工人生产螺母,则共生产螺栓12x个,螺母20(22-x)个,一个螺栓套两个螺母,即螺母的数量是螺栓数量的2倍,故2×12x=20(22-x).故选C.点睛:本题主要考查了一元一次方程的实际应用—产品配套问题,根据实际题意找出产品配套的数量关系是解决此题的关键.7. 将一根长为的铁丝围成一个长与宽之比为的长方形,则此长方形的面积为()A. B. C. D.【答案】C【解析】试题分析:设长方形的长为2x cm,宽为x cm,根据题意得:2(2x+x)=12,解得x=2,2x=4,即长方形的长为4cm,宽为2cm,所以长方形的面积为4×2=8(cm2).故选C.8. 若是的相反数,,且,则()A. B. C. D.【答案】D【解析】试题分析:因为x是2的相反数,所以x=-2,因为|y|=4,所以y=±4,又因为x+y<0,所以x=-2,y=-4,所以x-y=(-2)-(-4)=2.故选D.二、填空题(共6小题,每题3分,共18分)9. 如果“收入元”记作“元”,那么“支出元”记作__元.【答案】-100【解析】试题分析:因为“收入500元”记作“+500元”,即“收入”用正数表示,所以“收入”的相反意义“支出”用负数表示,所以“支出100元”记作-100元,故答案为-100.点睛:本题考查了用正负数表示具有相反意义的量,若规定的一个意义的量用正数表示,则它的相反意义用负数表示.10. 木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是根据数学原理__.【答案】两点确定一条直线【解析】在锯木料时,一般先在木板上画出两点,然后过这两点弹出一条墨线,这是因为过两点有且只有一条直线。

故答案为:过两点有且只有一条直线。

11. 已知是数轴上的三个点,且在的右侧.点表示的数分别是,若,则点表示的数是__.【答案】7..................∴AB=3-1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.12. 如图,点在直线上,射线平分,若,则__度.【答案】110【解析】试题分析:∵射线OC平分∠DOB,∴∠BOD=2∠BOC=70°,∴∠AOD=180°-70°=110°,故答案为:110.点睛:此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.13. 若单项式与是同类项,则___.【答案】-1【解析】试题分析:因为与是同类项,所以m=2,n+1=4,解得:m=2,n=3,所以m-n=2-3=-1.故答案为-1.点睛:本题考查了同类项,同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同.相同字母的指数相同是易混点,因此成了中考的常考点.14. 如图,将一副直角三角板如图放置,若,则__度.【答案】162°【解析】试题分析:∵∠AOD=18°,∠COD=∠AOB=90°,∴∠COA=∠COD-∠AOD=90°-18°=72°,∴∠BOC=∠COA+∠AOB=72°+90°=162°.故答案为:162.点睛:本题考查了余角的应用,解此题的关键是求出∠COA或∠BOD的度数.三、计算下列各题(本大题共2小题,每题6分,共12分)15. 计算:.【答案】76【解析】试题分析:先计算乘方,然后计算除法和乘法,化简绝对值后再进行加减即可.试题解析:解:原式=-8+|32÷(-8)|-(-16)×5=-8+4+80=76.点睛:本题考查了有理数的混合运算,熟记运算顺序和运算法则是解决此题的关键.16. 先化简,再求值:,其中.【答案】3【解析】试题分析:先利用去括号法则和乘法的分配率去括号,然后合并同类项,化简到最简后代入字母的值计算即可.试题解析:解:原式=2x2-2y2-3x2y2-3x2+3x2y2+3y2=-x2+y2,当x=-1,y=2时,原式=-(-1)2+22=3.点睛:本题主要考查了整式的加减运算.整式的加减运算实际上就是去括号、合并同类项.四、解下列方程(本题共2小题,每题6分,共12分)17. 解方程:.【答案】【解析】试题分析:①移项:把未知项移至等号左边,常数项移至等号右边;②合并同类项;③系数化为1:两边同除以未知数的系数.试题解析:解:,移项得:-5x-3x=-4,合并同类项得:-8x=-4,系数化为1得:x=.18. 解方程:.【答案】【解析】试题分析:先方程两边同乘6去掉分母,再去括号,移项,合并在同类项,系数化为1.试题解析:解:,去分母得:2(1-2x)-18x=3(x-1)-18,去括号得:2-4x-18x=3x-3-18,移项并合并得:-25x=-23,系数化为1得:x=.点睛:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1.注意去分母时若分子为多项式,去掉分母后应加上括号,不带分母的项也要乘以最小公倍数.五、列方程解应用题(本题共2小题,每题8分,共16分)19. 一架在无风情况下航速为的飞机,逆风飞行一条航线用了,顺风飞行这条航线用了.求:(1)风速;(2)这条航线的长度.【答案】(1)24;(2)2016【解析】试题分析:设风速为x km/h,则顺风速度为(696+x)km/h,逆风的速度为(696+x)km/h,根据逆风3小时和顺风2.8小时的路程相等列出方程求解即可.试题解析:解:(1)设风速为x km/h,根据题意得:解得:,答:风速为24km/h;(2)航线的长度为3×(696-24)=2016km,答:这条航线的长度为2016km.点睛:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.注意风速、顺风速、无风速、逆风速四者之间的关系.20. 某商店卖出一套衣服,亏损了元,其中裤子是按元卖出的,盈利了;上衣亏损了.求:(1)这套衣服中裤子的进价是多少元?(2)这套衣服中上衣是按多少元卖出的?【答案】60【解析】试题分析:(1)设裤子进价为x元,根据进价×(1+利润率)=售价列出方程求解即可;(2)设上衣售价为y元,则上衣的进价为元,根据裤子和上衣的售价和等于裤子和上衣的进价和减去亏损的8元列出方程求解即可.试题解析:解:(1)设裤子的进价为x元,根据题意得:(1+25%)x=60,解得:x=48.答:这套衣服中裤子的进价是48元;(2)这套衣服中上衣是按y元卖出的,根据题意得:60+y=48+-8,解得:y=60.答:上衣是按60元卖出的.六、解答下列各题(本题共3小题,每题6分,共18分)21. 作图题:如图,已知平面上四点.(1)画直线;(2)画射线,与直线相交于;(3)连结相交于点.【答案】图形见解析【解析】试题分析:(1)过点A和点D画一条直线即可;(2)以B为端点,沿B到C的方向做一条射线,与直线AD相交处标上字母O;(3)做线段AC和线段BD,两条线段的交点处标上字母F.如图所示:点睛:本题考查了直线、射线、线段,主要是对文字语言转化为几何语言的能力的训练,是基础题.22. 如图,已知线段cm,线段cm,分别是线段的中点,求的长度.【答案】4【解析】试题分析:先根据AD=6cm,AC=BD=4cm求出AB和CD的长,然后根据E、F分别是AB、CD 的中点求出AE、DF的长,最后根据EF=AD-AE-DE即可求出EF的长.试题解析:解:∵AD=6cm,AC=BD=4cm,∴AB=AD-BD=6-4=2cm,CD=AD-AC=6-4=2cm,∵E、F分别是AB、CD的中点,∴AE=AB=×2=1cm,DF=CD=×2=1cm,∴EF=AD-AE-DE=6-1-1=4cm.23. 已知,平分,求的度数.【答案】50°或30°【解析】试题分析:根据题意可得此题要分两种情况,一种是OC在∠AOB内部,另一种是OC在∠AOB 外部.画出图形先利用角的和差关系求出∠AOC的度数,再利用角平分线的定义求出∠AOD的度数.试题解析:解:分两种情况进行讨论:①如图1,射线OC在∠AOB的内部.∠AOC=∠AOB-∠BOC=80°-20°=60°.又∵OD平分∠AOC,∴∠AOD=∠AOC=30°;②如图2,射线OC在∠AOB的外部.∵∠AOC=∠AOB+∠BOC=80°+20°=100°.又∵OD平分∠AOC,∴∠AOD=∠AOC=50°.综上所述,∠AOD=30°或50°.点睛:本题考查了角的计算,角平分线的定义.要根据射线OC的位置不同,分类讨论,分别求出∠AOD 的度数.。

相关文档
最新文档