骨髓微环境中SMAD信号传递调控CXCL12的表达

合集下载

CXCL12(SDF-1)/CXCR4信号传导通路及其肿瘤相关性研究进展

CXCL12(SDF-1)/CXCR4信号传导通路及其肿瘤相关性研究进展
有所不 同。
中毒性肝损伤、 失血过多、 全身辐射及化疗相关组织 损伤 。C C 1 X L 2最初 被认 为是 B系祖 细 胞 的生 长 因
子 , 来 研究 证 明 , X L 2是 造 血 干/ 细 胞 动 员 后 C C1 祖 和 归巢 的关 键 因子 , 同时在 组织血 管发 生 、 原蛋 白 胶
在淋巴结、 、 肺 肝及骨髓这些肿瘤常见的转移部位高 表达 引。 1 C C 1/ X R X L2 C C 4信 号 传 导 通 路 C C 1 X L2和 C C 4的结合会启动下游的几个信号通路, XR 产生各 种细胞反应 , 如趋化、 细胞存活增殖、 基因转录等。参 与 C C 4信号 转导 的一些 关 键 信号 通路 见 图 1 , XR j 这些通路是组织相关 的, 在不同细胞类 型间可能会
两类 。炎症 型在 组织炎 症和 损伤 时控制 白细 胞 的募 集 , 自稳 型则 维 持 基 本 “ 家 ( oskeig ” 而 持 hueepn ) 功 能, 如在血 细胞 生成过程 中“ 导航 ” 白细 胞 至淋 巴样 器官 、 骨髓 及胸腺 。 C C 1( X L2 基质 细胞 衍 生 因子 .,D 一) 自稳 1 S F1 是 型 C C类趋 化 因子 , 许 多 组 织 器官 中表 达 , 肝 X 在 如
C C 4作为 G蛋 白偶联受体 ( P R , XR G C ) 其激活 主要 由质膜 内侧偶联 的异源三 聚体 c蛋 白介 导。
此 G蛋 白由 GtG3 o、 I和 3个亚 基组 成 , 根据 Gx亚 c
基序列 的相似性 , 可分成 4个家族 : a 、 a 、 c G s G iGt q 和 G l 。不 同家族通 过 不 同路 径转 导 G C a2 P R信 号 】 a 亚基激活腺苷酸环化酶, G d 。G s 而 o 抑制腺 苷酸环化酶。G q家族可通过磷 酸脂酶 C发挥作 a 用, 后者可水解磷酯酰肌醇二磷酸( I ) PP 生成肌醇 2

造血干细胞与免疫系统的相互作用

造血干细胞与免疫系统的相互作用

造血干细胞与免疫系统的互相作用造血干细胞(hematopoietic stem cell, HSC)是一群数量极少、含有自我更新能力和可生成多个血细胞及免疫细胞的起始细胞,多数以静息状态存在于骨髓中。

当机体受到外界刺激时,HSC 可被快速激活进而增殖分化成下游成熟细胞来维持机体的造血稳态,HSC 的调节失控或病变将会引发多个血液性疾病。

现在,造血干细胞移植(HSCT)被认为是根治某些恶性血液病及遗传性疾病的最佳选择。

传统观念认为,HSC 重要存在于骨髓造血微环境中,特殊的微环境能够保护 HSC 免受机体免疫系统的攻击。

同时,HSC 表面低水平体现 HLA-Ⅰ类分子且几乎不体现 HLA-Ⅱ类分子,被认为含有免疫豁免特性。

然而最新研究表明 HSC 仍然受到免疫调控:①骨髓造血微环境中存在多个免疫细胞能够直接调控 HSC;②HSC 能够通过变化本身免疫抗原的体现来调节其生物学特性和功效;③当机体受到刺激时,HSC 能够通过其表面的受体直接或间接地参加免疫反映。

因此 HSC 也被视为免疫系统中非常重要的参加者,本文我们重要就HSC 与免疫系统之间互相作用的研究进展进行综述。

一、HSC 与免疫微环境成骨细胞、破骨细胞、血窦内皮细胞、间充质干细胞(mesenchymal stem cells, MSC)、CXCL12 丰富的网状细胞(CXCL12-abundant reticular cell, CAR)及部分神经细胞等作为典型的骨髓造血微环境细胞参加 HSC 的调控。

在 HSC 龛中还存在免疫细胞,对 HSC 的维持也含有重要作用。

1.CD4+ T 细胞与 HSC:Monteiro 等[1]发现在正常小鼠中,持续激活的 CD4+ T 细胞对于维持造血稳态十分重要,其重要通过分泌 IL-3 及 GM-CSF 参加造血调控。

另外,CD4+Th1 细胞能够通过分泌制瘤素 M 维持造血稳态[2]。

CD4+ CD25+FOXP3+调节性 T 细胞(Treg)在骨髓中约占 CD4+ T 细胞的 30%,重要定位于骨小梁附近血窦内皮[3];而在胸腺和脾脏等免疫器官中仅占 CD4+ T 细胞的 5%~10%[4]。

细胞信号转导中的SMAD蛋白家族研究

细胞信号转导中的SMAD蛋白家族研究

细胞信号转导中的SMAD蛋白家族研究细胞信号转导是指从细胞表面或细胞内传递的一系列分子反应,从而导致特定细胞功能的改变。

在许多关键的生物学过程中,细胞信号转导起着至关重要的作用。

SMAD蛋白家族是细胞信号转导中非常重要的分子之一。

本文将介绍SMAD蛋白家族的基本知识和最新的研究进展。

什么是SMAD蛋白家族?SMAD蛋白家族是一组信号传导蛋白质,可以被活化的细胞因子所激活,从而调控细胞的基因表达和细胞功能。

目前,SMAD蛋白家族已知有8种不同的成员。

其中,3种被称为R-SMADs,可以与细胞因子的受体结合,并通过多种交互作用进入细胞核,参与转录调控;2种被称为Co-SMADs,在核内与R-SMADs共同作用,参与基因表达的调控;还有3种SMADs作为调节分子(regulatory SMADs)与SMAD信号通路的激活和抑制相关。

SMADs的信号通路可以被负调控,以维持基因表达的平衡状态。

SMAD 蛋白家族在哪些生物学过程中起着至关重要的作用?SMAD 蛋白家族在多种生物学过程中发挥着至关重要的作用,包括器官分化、细胞增殖、凋亡、生物钟调控、生殖发育等。

SMAD信号通路是TGF-β和BMP等因子信号通路的核心。

最近的SMAD家族研究最新进展是什么?SMAD家族的研究已成为当前细胞信号转导和分子医学领域热门的前沿领域。

1. TGF-β/SMAD信号通路在肿瘤中的调节研究SMADs在人类肿瘤中的表达缺陷和异常已被广泛报道,并且很多基因的缺陷将会影响TGF-β/SMAD信号通路的正常功能。

通过对肿瘤患者和小鼠模型的研究,有人发现TGF-β/SMAD信号通路在肿瘤抑制中扮演重要的角色。

2. SMADs在器官分化中的作用SMADs在器官分化中也有一定重要性。

有学者发现一个叫做Smad4的SMAD蛋白,在心脏的发育中扮演着重要的角色。

Smad4的缺失会导致心脏缺陷,并最终导致心脏发育障碍。

研究表明,细胞外基质(Extracellular matrix, ECM)成分在心脏中起着重要作用。

趋化因子CXCL12又称基质细胞衍生因子1(SDF-1)—是小分子的细胞因子属于趋化因子蛋白家族

趋化因子CXCL12又称基质细胞衍生因子1(SDF-1)—是小分子的细胞因子属于趋化因子蛋白家族

趋化因子C‎XCL12‎又称基质细‎胞衍生因子‎1(SDF-1)—是小分子的‎细胞因子,属于趋化因‎子蛋白家族‎趋化因子C‎X CL12‎又称基质细‎胞衍生因子‎1(SDF-1)—是小分子的‎细胞因子,属于趋化因‎子蛋白家族‎。

它有两种形‎式,基质细胞衍‎生因子1α‎/CX CL1‎2a和基质‎细胞衍生因‎子1β/CX CL1‎2b。

趋化因子有‎4个保守的‎半胱氨酸残‎基形成两对‎双硫键以构‎成趋化因子‎的特殊结构‎。

第一第二半‎胱氨酸残基‎之间隔着一‎个介入氨基‎酸残基。

学术术语来‎源---内源性骨髓‎间充质干细‎胞与骨折微‎环境中的相‎关趋化因子‎文章亮点:1随着时间‎推移,骨折部位绿‎色荧光蛋白‎阳性细胞所‎占比例逐渐‎增高,增高的速率‎逐渐放缓,说明骨髓内‎的骨髓间充‎质干细胞参‎与骨折修复‎并在其中起‎到了重要作‎用。

2 基质细胞衍‎生因子1在‎骨折微环境‎中的表达亦‎呈先快速增‎高而后趋于‎平稳的趋势‎,初步证实了‎基质细胞衍‎生因子1在‎骨折微环境‎中的表达与‎骨髓间充质‎干细胞趋化‎到骨折部位‎之间存在关‎联。

3 骨折微环境‎中,肝细胞生长‎因子亦有一‎定量的表达‎,而且其表达‎亦呈逐渐增‎高的趋势。

这可能有利‎于上调骨髓‎间充质干细‎胞相应受体‎c-Met,进而诱导骨‎髓间充质干‎细胞的迁移‎。

4 骨折早期微‎环境中,单核细胞趋‎化蛋白1的‎表达量亦不‎小,它的表达可‎以招募单核‎巨噬细胞,参与炎症反‎应,似乎亦可以‎直接或间接‎地对骨髓间‎充质干细胞‎的趋化起到‎一定作用。

关键词:干细胞;骨髓干细胞‎;绿色荧光蛋‎白;骨髓间充质‎干细胞;嵌合体;骨折;趋化因子;基质细胞衍‎生因子1;集落刺激因‎子;肝细胞生长‎因子;单核细胞趋‎化蛋白1;间质金属蛋‎白酶9;省级基金;干细胞图片‎文章摘要背景:研究表明,骨髓间充质‎干细胞定向‎迁移依赖于‎损伤局部表‎达趋化因子‎与细胞表面‎相应受体的‎相互作用。

多发性骨髓瘤免疫微环境及治疗

多发性骨髓瘤免疫微环境及治疗

doi:10.3969/j.issn.1000⁃484X.2020.20.023多发性骨髓瘤免疫微环境及治疗①李洪杰 母润红 (北华大学基础医学院,吉林132011) 中图分类号 R392 文献标志码 A 文章编号 1000⁃484X (2020)20⁃2547⁃06①本文为吉林省科技厅项目(20190303047SF)㊂作者简介:李洪杰,女,在读硕士,主要从事肿瘤免疫学方面的研究,E⁃mail:lihongjie1128@㊂通讯作者及指导教师:母润红,女,博士,副教授,硕士生导师,主要从事肿瘤免疫治疗方面的研究,E⁃mail:murunhong@㊂[摘 要] 多发性骨髓瘤(MM)是一种具有侵袭性且不可治愈的血液学恶性肿瘤,表现为异常浆细胞的恶性增殖,由于骨髓瘤细胞定植在骨髓微环境,微环境中的肿瘤细胞㊁免疫细胞及多种细胞因子相互作用,一方面抑制肿瘤细胞,另一方面又抑制微环境的抗肿瘤效应,故免疫反应在其发展过程中起关键作用㊂在过去数十年里,干细胞移植技术㊁蛋白酶体抑制剂及免疫抑制剂等新型治疗方法很大程度地提高了MM 患者的预后㊂即便如此,但大多数MM 患者仍然无法治愈,复发率高㊂因此,清晰掌握骨髓微环境的免疫成分是更精准地靶向治疗肿瘤的关键㊂本文对MM 患者的免疫微环境及目前临床研究中常用的治疗方法进行了综述㊂[关键词] 多发性骨髓瘤;微环境;免疫反应;治疗Immune microenvironment and treatment of multiple myelomaLI Hong⁃Jie ,MU Run⁃Hong .Basic Medical College of Beihua University ,Jilin 132011,China[Abstract ] Multiple myeloma (MM)is an aggressive and incurable hematologic malignant tumor,which characterized bymalignant proliferation of abnormal plasma cells,malignant myeloma cells engraftment in bone marrow microenvironment,tumor cells,immune cells and a variety of cytokines in microenvironment interaction,on the one hand,inhibit tumor cells,on the other hand,suppress the antitumor effect of microenvironment,therefore,immune response plays a critical role in its development process.In the past decades,stem cell transplantation techniques,proteasome inhibitors and immunosuppressive agents have greatly improved prognosis of patients with MM.Nevertheless,most patients with MM are still incurable and have a high recurrence rate.Therefore,a clear understanding of immune components of bone marrow microenvironment is the key to more accurate targeting of tumors.In this paper,wereviewed the immune microenvironment of MM patients,and the treatment methods commonly used in clinical studies were described.[Key words ] Multiple myeloma;Microenvironment;Immune response;Treatment 多发性骨髓瘤(multiple myeloma,MM)是终末分化的B 细胞恶性增殖性疾病,约占所有癌症的2%,所有血液学恶性肿瘤的10%,且其发病率逐年上升㊂仅在英国,2016年就有5540人被确诊,3079人死亡,患者初次确诊时中位年龄约为65岁[1]㊂骨髓瘤细胞的存活㊁生长和增殖依赖于骨髓微环境,与正常浆细胞不同,骨髓瘤细胞分泌的IgM 抗体,可作为MM 患者的诊断标志[2]㊂外周血恶性浆细胞比例>20%称为浆细胞白血病,临床症状主要表现为:高钙血症㊁肾功能不全及贫血㊂MM 是一种多步骤性疾病,起初以无症状的单克隆丙种球蛋白病(MGUS)为特征,MGUS 占成年人口的1%,每年约有1%的MGUS 患者转变为恶性MM [3]㊂干细胞移植给MM 患者带来了希望,但MM 目前仍然很难治愈㊂蛋白酶体抑制剂和免疫调节药物的应用在过去几年大幅提高了MM 患者生存率㊂本文回顾了MM 患者骨髓的重要免疫成分,描述了微环境中不同组分在免疫系统中的相互作用(图1),最后,对MM 的治疗方式进行了综述㊂1 骨髓微环境的组成及作用骨髓瘤细胞间的相互作用和骨髓微环境对骨髓瘤的发生㊁发展及治疗至关重要,微环境中包含多种细胞类型,包括造血细胞(B 细胞㊁T 细胞㊁自然杀伤细胞㊁骨髓来源的抑制细胞和破骨细胞)和非造血细胞(骨髓基质细胞㊁成骨细胞和内皮细胞)㊂这些细胞共同分泌多种因子,这些因子可促进MM 细胞的迁移和增殖,也可促进骨损伤[4]㊂骨髓为正常浆细胞提供生存环境的同时,也保护了恶性浆细胞㊂MM 细胞向骨髓的迁移类似于成熟浆细胞的归巢,趋化因子基质衍生因子⁃1(SDF⁃1㊃7452㊃李洪杰等 多发性骨髓瘤免疫微环境及治疗 第20期或CXCL12)是骨髓瘤细胞向骨髓迁移的关键调控因子[5]㊂内皮细胞可能参与MM 细胞的迁移,内皮细胞分泌细胞外嗜环素A,与MM 细胞表面的CD147结合,促进细胞迁移[6]㊂MM 患者的广泛性骨病是由于破骨细胞活性增加㊁数量增多㊁成骨细胞活性降低和数量减少所致㊂研究发现,MM 细胞与骨髓基质细胞和成骨细胞的相互作用导致RANKL (NF⁃κB 配体的受体激活剂,又称TNFRSF11B)水平升高和骨保护素水平降低㊂RANKL 连接RANK (NF⁃κB 的受体激活剂,又称TNFRSF11A),由破骨细胞前体表达,导致破骨细胞分化增加,骨保护素水平降低,使有效RANKL 水平升高[7]㊂破骨细胞和成骨细胞数量及活性的不平衡导致骨的破坏和骨病的发生㊂外泌体可能在微环境和MM 细胞的相互作用中发挥作用㊂在患者中发现,来自骨髓基质细胞的外泌体中某些miRNA(如miR⁃15a)的含量低于健康个体,可能会影响肿瘤的生长和发育,因为miR⁃15a 被认为是一种抑制肿瘤的miRNA [8,9]㊂由骨髓基质细胞及破骨细胞产生的血管内皮生长因子A (VEGFA)是一种强大的血管生成因子,通过增加局部血管的丰度来增加氧气供应,临床上已表明微血管密度增高提示预后不良[10]㊂在血管内,内皮细胞和壁细胞创建了一个微环境,影响了许多干细胞和祖细胞的行为[11]㊂体外研究证明巨噬细胞作为微环境的重要组成部分,可促进T 细胞分化,抑制肿瘤细胞生长,同时调整性T 细胞(Treg)也可抑制微环境中的抗肿瘤免疫[12]㊂在骨髓中,IL⁃6在支持MM 生长中起重要作用㊂目前证明IL⁃6来源于髓系细胞,主要为髓系前体细胞㊂此外,骨髓瘤细胞诱导骨髓基质细胞图1 MM 骨髓微环境Fig.1 MM bone marrow microenvironmentNote:A.MM cells;B.BM stromal cell;C.Osteoblast;D.Osteoclast;E.Dendritic cell;F.CD4T cell;G.CD8T cell;H.NK cell;I.Tregs;J.Endotheliocyte;K.Blood vessel;L.MDSC.(BMSC)㊁成骨细胞及未成熟的髓系细胞产生IL⁃6,从而促进自身增殖㊂IL⁃6在正常浆细胞中促进免疫球蛋白产生,同时,在MM 细胞中发挥促进增殖和抗凋亡作用,从而保护骨髓瘤细胞并促进肿瘤细胞增殖[2,13,14]㊂2 MM 的免疫反应多年来,研究人员几乎只专注于肿瘤细胞,他们认为,破译这些细胞的生物学特性可能有助于癌症的治愈㊂然而,近年来癌症生物学的研究表明,不仅是肿瘤细胞本身,微环境在肿瘤的发生㊁进展㊁转移㊁耐药和复发中都发挥重要作用,有证据表明,肿瘤微环境中残留的免疫细胞功能失调可导致宿主抗肿瘤免疫功能受到抑制,在正常的微环境中,效应细胞能够产生强大的抗肿瘤反应㊂然而,肿瘤细胞往往通过抑制其周围微环境的抗肿瘤免疫来保护自身免受宿主免疫系统的攻击[15,16]㊂与实体肿瘤相似,MM 细胞调节骨髓微环境中的免疫分子,使其适应骨髓瘤自身的生长㊂肿瘤进展过程中的主要免疫抑制机制包括:①调节免疫细胞的扩增[如骨髓源性抑制细胞(MDSCs)];②抗原提呈细胞(APCs)功能障碍;③免疫效应细胞(效应T 细胞,NK 细胞)的抑制[17,18]㊂2.1 骨髓源性抑制细胞的双向调节作用 在MM 患者的微环境中,MDSCs 的增加对于肿瘤进展具有双向作用,一方面诱导免疫抑制,另一方面通过分泌细胞因子和生长因子促进肿瘤细胞生长[19]㊂MDSCs 通过信号转导和转录因子(STAT3)活化促进免疫逃逸㊁血管生成㊁耐药和转移[20]㊂然而,其在骨髓中的作用及主要的位点尚不明确㊂骨髓微环境保护MM 细胞抵抗化学药物的损伤以及来自宿主免疫系统的攻击㊂现已发现在骨髓瘤患者体内MDSCs 和Tregs 明显增加,这些细胞的水平与疾病的发展阶段和临床疗效有关[21]㊂MDSCs 由不成熟的粒细胞㊁巨噬细胞及树突状细胞的前体组成,通过抑制适应性免疫应答来促进肿瘤生长,并使CD4和CD8介导细胞免疫应答受到抑制[22]㊂这些细胞分泌精氨酸酶以消耗微环境中的精氨酸,导致用于活化T 细胞的精氨酸减少㊂此外,MDSCs 通过亚硝基化和活性氧(ROS)的释放抑制T 细胞受体,引发肿瘤免疫逃逸[23]㊂2.2 APCs 的功能 树突状细胞(DC)是体内最重要的抗原提呈细胞,在机体抗肿瘤免疫等过程中发挥重要作用,DC 能捕获㊁提呈肿瘤抗原并激活初始型T 细胞,从而引发一系列的肿瘤抗原特异性的免㊃8452㊃中国免疫学杂志2020年第36卷疫应答[24]㊂骨髓不仅是一个原发性淋巴器官,同时也是一个次级淋巴器官,T细胞在骨髓中发生反应㊂成熟DC上调其细胞膜上共刺激分子CD86㊁CD80㊁CD83和CD40表达,这些活化的DC共刺激分子与T细胞膜上的同源CD28结合,从而引发DC分泌IL⁃6㊁IL⁃12㊁TNF⁃α㊁IL⁃1β或IL⁃10等细胞因子,诱导T细胞分化成不同类型的效应T细胞,启动适应性免疫应答㊂DC及其产生的细胞因子在调节促炎/抗炎和Th1/Th2反应中起关键作用[25]㊂研究表明,未成熟DC和半成熟DC均能引起T细胞无能或T 细胞衰竭,诱导免疫耐受,促进肿瘤发生㊂而成熟DC激活免疫反应,发挥介导抗肿瘤免疫反应的作用[26]㊂类浆细胞样树突状细胞(pDCs)是DCs的另一个主要分支,也参与骨髓瘤的病理过程㊂pDCs通过分泌Ⅰ型IFN和IL⁃6对正常浆细胞的产生和抗体应答起关键作用[27]㊂Chauhan等[28]发现MM患者骨髓pDCs的数量和频率增加,且pDCs可促进骨髓瘤细胞的生长㊁存活㊁趋化和耐药㊂提示DC的功能直接影响机体的抗肿瘤效应㊂巨噬细胞是先天免疫细胞,在宿主自身防御和维持组织稳态中发挥作用㊂巨噬细胞可塑性强,可根据周围环境改变表型㊂活化的巨噬细胞一般分为2类:一类是经典的M1型巨噬细胞,另一类是M2型巨噬细胞㊂M1巨噬细胞主要由IFN⁃γ,TNF⁃α和IL⁃12诱导,参与抗原递呈并对肿瘤细胞产生细胞毒性作用㊂且M1型巨噬细胞产生高水平的MHC⁃Ⅰ及MHC⁃Ⅱ类分子,促进肿瘤特异性抗原表达㊂M2型巨噬细胞由IL⁃4㊁IL⁃10和IL⁃13诱导,支持肿瘤细胞增殖,增强血管生成,形成免疫抑制环境[29]㊂未成熟巨噬细胞浸润到肿瘤微环境中,随后被激活,这类巨噬细胞被称为肿瘤相关巨噬细胞(TAM)㊂TAMs支持微环境中肿瘤细胞的生长㊁存活及血管生成,可降低抗原呈递能力并抑制T细胞的活化和增殖㊂在肿瘤发生发展过程中,TAMs通常通过促进癌细胞迁移和侵入,刺激血管生成和抑制抗肿瘤免疫以实现肿瘤的发生发展[30]㊂巨噬细胞在骨髓小室中通过细胞与细胞之间接触依赖的行为和非接触性介导的机制维持骨髓瘤细胞生长,同时增强间充质干细胞对肿瘤细胞的保护作用㊂作为骨髓微环境的重要组成部分,通过巨噬细胞与肿瘤细胞活化信号通路之间的联系,可抑制蛋白酶通路阻挡药物诱导的凋亡[31]㊂2.3 免疫效应细胞的抑制作用 与健康人相比, MM患者外周血中CD4+/CD8+T细胞比例下降,而骨髓中CD4+/CD8+T细胞比例无明显改变,外周血CD4+T细胞比例降低与患者临床表现差相关[32]㊂肿瘤特异性CD4+T细胞不能直接识别MHC⁃Ⅱ阴性的肿瘤细胞,而是通过与肿瘤浸润的巨噬细胞结合,间接识别MHC⁃Ⅱ阴性的骨髓瘤细胞[33]㊂CD4+T提高宿主ACP活化内源性CD8+T细胞的能力,CD4+和CD8+T细胞共同产生的IFN⁃γ刺激先天性和适应性免疫应答㊂多项研究显示,Tregs作为T细胞的一种亚型,在多种实体肿瘤中表达升高,在包括MM 的血液恶性肿瘤[12,14,31,34]㊂Tregs分泌的TGF⁃β和IL⁃10参与损伤的发生,来自肿瘤相关性宿主的Tregs有改变肿瘤抑制的能力[35]㊂同时,Tregs在微环境中产生高水平的IL⁃10,抑制DC功能,ICOS-Foxp3+Tregs通过TGF⁃β抑制T细胞功能㊂Tregs在癌症中的积累提示预后不良[36]㊂免疫效应细胞的抑制可促进肿瘤生长,阻碍肿瘤治疗㊂NK细胞是固有淋巴细胞(ILC),能识别并快速清除感染或转化的异常细胞,在肿瘤免疫监视中起重要作用[37]㊂NK细胞除了能释放溶菌素(Pfp)和颗粒酶(Grz)直接识别裂解肿瘤细胞外还能通过分泌多种细胞因子间接抗肿瘤㊂然而,尽管NK细胞可以在无刺激的情况下自然杀伤靶细胞,并维持抑制信号和活化信号间的平衡,但在肿瘤背景下,这种平衡被多种机制打破㊂首先,肿瘤细胞可使活化受体下调,同时上调NK细胞抑制受体㊂然而,肿瘤细胞激活受体的配体低表达,抑制受体的配体高表达,最终,细胞因子及ROS在微环境中的释放干扰了NK细胞及DCs的抗癌作用,增强肿瘤的免疫逃逸[38]㊂此外,细胞毒实验发现,外周血NK细胞的下降与临床晚期乳酸脱氢酶(LDH)水平升高㊁骨髓浆细胞浸润及β⁃2微球蛋白水平显著相关㊂NK细胞分泌大量的细胞因子和趋化因子,其中IFN⁃γ具有潜在的抗肿瘤活性,但其对MM的影响仍需进一步研究[39]㊂3 多发性骨髓瘤的免疫治疗MM的治疗方法包括初始治疗㊁自体干细胞移植及巩固/维持治疗和复发的治疗㊂目前,临床多采用化疗方式治疗,当患者完全缓解后考虑骨髓移植㊂在过去的十几年中,新一代蛋白酶体抑制剂和免疫调节剂的出现改变了该病的格局,但MM仍不能治愈[40]㊂下文将对几种基于免疫的治疗方法进行简单综述,主要包括单克隆抗体,免疫检查点抑制以及CAR⁃T疗法㊂3.1 单克隆抗体 单克隆抗体已成为骨髓瘤治疗的一个重要组成部分,无论是单一用药还是与其他㊃9452㊃李洪杰等 多发性骨髓瘤免疫微环境及治疗 第20期生物治疗相结合,都表现出较好的疗效㊂单克隆抗体通常针对肿瘤上的一种抗原或受体位点及一种特定的酶或蛋白质,靶向骨髓微环境,中和生长因子,抑制血管生成,增强宿主抗肿瘤免疫应答㊂本综述主要介绍两种已取得较好临床疗效的单克隆抗体:埃罗妥珠单抗(Elotuzumab)和达雷木单抗(Daratumumab)㊂2007年,一项临床前研究发现, Elotuzumab可抑制MM细胞与骨髓基质细胞间的配体阻断诱导增殖的途径,并对恶性浆细胞产生抗体依赖性细胞毒性[41]㊂有研究发现,Elotuzumab与地塞米松联合用药与地塞米松单用药相比,总有效率提高13%;与来那度胺联合应用效果更佳,总有效率达82%[42,43]㊂提示Elotuzumab是一种安全具有效的抗MM治疗方案,尤其是与标准方案联合使用,可以改善疗效和预后㊂Daratumumab是一种针对人类IgG1k的单克隆抗体,CD38是重要免疫治疗靶点,Daratumumab与CD38这一靶点结合,通过细胞毒性以及抗体介导的吞噬和凋亡诱导,促进MM细胞的死亡[44]㊂报道有显示,来那度胺和地塞米松组的客观缓解率(ORR)为76.4%(P<0.001),而Daratumumab㊁来那度胺和地塞米松组的ORR为92.9%; Daratumumab组的部分缓解率(PR)和完全缓解率(CR)均显著高于对照组(P<0.001)㊂值得注意的是,Daratumumab组25%的患者没有微小残留疾病(MRD),提示联合使用Daratumumab可以产生更好的效果[45]㊂3.2 免疫检查点抑制 PD⁃1/PD⁃L1是一种负性共刺激分子,PD⁃1与其配体相互作用导致Th1细胞因子分泌减少,抑制T细胞增殖,促进T细胞凋亡,抑制细胞毒性T细胞介导的杀伤,癌细胞利用该系统创造一个免疫抑制的环境,促进免疫耐受和疾病进展[46,47]㊂靶向抑制免疫检查点可增强T细胞活性,促进抗肿瘤免疫反应㊂PD⁃1作为Ⅰ型跨膜蛋白表达在活化T细胞表面,与其配体PD⁃L1和PD⁃L2相互作用,实现免疫检查点抑制抗肿瘤免疫㊂抑制剂靶向PD⁃1及其配体(PD⁃L1或B7H1)在临床试验中表现出显著功效㊂Gorgun等[48]的研究也证明PD⁃1/PD⁃L1阻断诱导抗MM免疫应答㊂并且,来那度胺可进一步增强效应细胞介导的细胞毒性,为临床评估联合治疗提供框架[49]㊂3.3 CAR⁃T疗法 嵌合抗原受体(CAR)工程化T 细胞是患者自身的T淋巴细胞被基因重组,编码出一种结合肿瘤抗原的合成受体,使T细胞能够识别并杀死表达抗原的癌细胞㊂CAR分子是一种融合蛋白,其胞外片段是根据抗原筛选出的抗体序列所衍生的单链可变区(single chain variable fragment,scFv),而胞内信号区能启动T细胞激活信号和其他下游效应㊂CAR目前分为4代:第一代CAR的细胞内结构域仅含有CD3ζ链;第二代含有CD3ζ链和共刺激分子,如CD28㊁4⁃1BB㊁CD134(OX40)或者ICOS;第三代CAR分子在第二代的分子基础结构上增加了两个共刺激结构域(CD28或4⁃1BB等),以增强CAR⁃T的活力和持久力;第四代CAR则加入了细胞因子或共刺激配体,以期提高CAR⁃T细胞对肿瘤的浸润能力并抵抗来自肿瘤微环境的抑制作用[50]㊂Shah等[14]于2017年12月报告病人体内输注抗BCMA CAR⁃T细胞后,患者血液中检测到CAR⁃T细胞扩增,ORR为94%㊂此外,Garfall等[51]发现复发/难治性MM患者在接受高剂量melphalan+auto⁃SCT治疗后行抗CD19CAR⁃T细胞治疗与先前的自体SCT相比,患者反应效果显著㊂抗CD19CAR⁃T细胞目前正在与抗BCMA CAR⁃T细胞联合进行临床试验[52]㊂除此之外,截至2018年12月,一些探索治疗MM其他靶点的CAR试验已经开始,包括CD38(NCT03464916)㊁CD138 (NCT01886976㊁NCT03672318)㊁Kappa轻链(NCT00881920)和SLAMF7(NCT03710421)[53]㊂4 总结与展望目前对于MM细胞和骨髓微环境关系的研究主要集中于细胞与细胞㊁细胞与基质之间的联系,以及生长因子㊁细胞因子等方面㊂早期研究建立了骨髓微环境在MM病理过程中的作用,但微环境的免疫成分还没有得到足够的重视,免疫反应是一个动态的复杂过程,微环境中的不同成分互相平衡并保护宿主,了解促成MM中的免疫抑制环境的主要因素是至关重要的目标㊂在未来,单克隆抗体㊁检查点抑制剂㊁工程化T细胞㊁蛋白酶体抑制剂及肿瘤疫苗有望成为改善临床结果的常规选择㊂即便如此,复发和耐药仍不可避免㊂因此,充分利用微环境中的免疫成分,探索药物的联合应用,实现对MM的精准治疗仍是一个需要攻克的难题㊂参考文献:[1] Agnarelli A,Chevassut T,Mancini E.IRF4in multiple myeloma⁃biology,disease and therapeutic target[J].Leuk Res,2018,72(9) 52⁃58.[2] Guillerey C,Nakamura K,Vuckovic S,et al.Immune responses inmultiple myeloma:Role of the natural immune surveillance and potential of immunotherapies[J].Cell Mol Life Sci,2016,73(8):㊃0552㊃中国免疫学杂志2020年第36卷1569⁃1589.[3] Kuehl WM,Bergsage PL.Multiple myeloma:Evolving geneticevents and host interactions[J].Nat Rev Cancer,2002,2(3): 175⁃187.[4] Braga WM,da Silva BR,de Carvalho AC,et al.FOXP3and CTLA4overexpression in multiple myeloma bone marrow as a sign of accu⁃mulation of CD4(+)T regulatory cells[J].Cancer Immunol Im⁃munother,2014,63(11):1189⁃1197.[5] Katz BZ.Adhesion molecules⁃the lifelines of multiple myelomacells[J].Semin Cancer Biol,2010,20(3):186⁃195. [6] Zhu D,Wang Z,Zhao JJ,et al.The Cyclophilin A⁃CD147complexpromotes the proliferation and homing of multiple myeloma cells [J].Nat Med,2015,21(6):572⁃580.[7] Peters S,Clézardin P,Márquez⁃Rodas I,et al.The RANK⁃RANKLaxis:An opportunity for drug repurposing in cancer?[J].Clin Transl Oncol,2019,21(8):977⁃991.[8] Roccaro AM,Sacco A,Maiso P,et al.BM mesenchymal stromalcell⁃derived exosomes facilitate multiple myeloma progression[J].J Clin Invest,2013,123(4):1542⁃1555.[9] Roccaro AM,Sacco A,Thompson B,et al.MicroRNAs15a and16regulate tumor proliferation in multiple myeloma[J].Blood,2009, 113(26):6669⁃6680.[10] Rajkumar SV,Mesa RA,Fonseca R,et al.Bone marrowangiogenesis in400patients with monoclonal gammopathy of un⁃determined significance,multiple myeloma,and primaryamyloidosis[J].Clin Cancer Res,2002,8(7):2210⁃2216. [11] Xu J,Wang Q,Xu H,et al.Anti⁃BCMA CAR⁃T cells for treatmentof plasma cell dyscrasia:Case report on POEMS syndrome andmultiple myeloma[J].J Hematol Oncol,2018,11(1):128⁃136.[12] Kim J,Denu RA,Dollar BA,et al.Macrophages and mesenchymalstromal cells support survival and proliferation of multiplemyeloma cells[J].Br J Haematol,2012,158(3):336⁃346. [13] Li Y,Du Z,Wang X,et al.Association of IL⁃6promoter andreceptor polymorphisms with multiple myeloma risk:A systematicreview and meta⁃analysis[J].Genet Test Mol Biomarkers,2016,20(10):587⁃596.[14] Shah GL,Landau H,Londono D,et al.Gain of chromosome1qportends worse prognosis in multiple myeloma despite novel agent⁃based induction regimens and autologous transplantation[J].Leuk Lymphoma,2017,58(8):1823⁃1831.[15] Quail DF,Joyce JA.Microenvironmental regulation of tumorprogression and metastasis[J].Nat Med,2013,19(11):1423⁃1437.[16] Kerhar SP,Restifo NP.Cellular constituents of immune escapewithin the tumor microenvironment[J].Cancer Res,2012,72(13):3125⁃3130.[17] Andersen MH.The targeting of immunosuppressive mechanisms inhematological malignancies[J].Leukemia,2014,28(9):1784⁃1792.[18] Vinay DS,Ryan EP,Pawelec G,et al.Immune evasion in cancer:Mechanistic basis and therapeutic strategies[J].Semin CancerBiol,2015,35(Suppl):S185⁃S198.[19] Grgün GT,Whitehill G,Anderson JL,et al.Tumor⁃promotingimmune⁃suppressive myeloid⁃derived suppressor cells in themultiple myeloma microenvironment in humans[J].Blood,2013,121(15):2975⁃2987.[20] Kujawski M,Kortylewski M,Lee H,et al.Stat3mediates myeloidcell⁃dependent tumor angiogenesis in mice[J].J Clin Invest,2008,118(10):3367⁃3377.[21] Malek E,de Lima M,Letterio JJ,et al.Myeloid⁃derived suppressorcells:The green light for myeloma immune escape[J].BloodRev,2016,30(5):341⁃348.[22] Goh C,Narayanan S,Hahn YS.Myeloid⁃derived suppressor cells:The dark knight or the joker in viral infections?[J].ImmunolRev,2013,255(1):210⁃221.[23] Serafini P,Borrello I,Bronte V.Myeloid suppressor cells incancer:Recruitment,phenotype,properties,and mechanisms ofimmune suppression[J].Semin Cancer Biol,2006,16(1):53⁃65.[24] Jacques B,Akarolina P.Dendritic cells as therapeutic vaccinesagainst cancer[J].Nat Rev Immunol,2005,5(4):296⁃306.[25] Mbongue JC,Nieves HA,Torrez TW,et al.The role of dendriticcell maturation in the induction of insulin⁃dependent diabetesmellitus[J].Front Immunol,2017,8(3):327⁃335. [26] Dudek AM,Martin S,Garg AD,et al.Immature,semi⁃mature,andfully mature dendritic cells:Toward a DC⁃cancer cells interfacethat augments anticancer immunity[J].Front Immunol,2013.doi:10.3389/fimmu.2013.00438.[27] Jego G,Palucka AK,Blanck JP,et al.Plasmacytoid dendritic cellsinduce plasma cell differentiation through typeⅠinterferon andinterleukin6[J].Immunity,2003,19(2):225⁃234. [28] Chauhan D,Singh AV,Brahmandam M,et al.Functionalinteraction of plasmacytoid dendritic cells with multiple myelomacells:A therapeutic target[J].Cancer Cell,2009,16(4):309⁃323.[29] Lewis CE,Pollard JW.Distinct role of macrophages in differenttumor microenvironments[J].Cancer Res,2006,66(2):605⁃612.[30] Chanmee T,Ontong P,Konno K,et al.Tumor⁃associatedmacrophages as major players in the tumor microenvironment[J].Cancers(Basel),2014,6(3):1670⁃1690.[31] Zheng Y,Yang J,Qian J,et al.PSGL⁃1/selectin and ICAM⁃1/CD18interactions are involved in macrophage⁃induced drugresistance in myeloma[J].Leukemia,2013,27(3):702⁃710.[32] Mills KH,Cawley JC.Abnormal monoclonal antibody⁃definedhelper/suppressor T⁃cell subpopulations in multiple myeloma:Re⁃lationship to treatment and clinical stage[J].Br J Haematol,2010,53(2):271⁃275.[33] Corthay A,Lundin KU,Lorvik KB,et al.Secretion of tumor⁃specific antigen by myeloma cells is required for cancer immuno⁃surveillance by CD4+T cells[J].Cancer Res,2009,69(14):5901⁃5907.[34] Abdi J,Chen G,Chang H.Drug resistance in multiple myeloma:Latest findings and new concepts on molecular mechanisms[J].Oncotarget,2013,4(12):2186⁃2207.[35] Feyler S,Scott GB,Parrish C,et al.Tumour cell generation ofinducible regulatory T⁃cells in multiple myeloma is contact⁃dependent and antigen⁃presenting cell⁃independent[J].PLoSOne,2012,7(5):e35981.(下转第2557页)㊃1552㊃李洪杰等 多发性骨髓瘤免疫微环境及治疗 第20期New Engl J Med,2011,364(7):616⁃626.[37] Gupta S,Köttgen A,Hoxha E,et al.Genetics of membranous ne⁃phropathy[J].Nephrol Dial Transplant,2018,33(9):1493⁃1502.[38] Wang HY,Cui Z,Xie LJ,et al.HLA classⅡalleles differing bya single amino acid associate with clinical phenotype and outcomein patients with primary membranous nephropathy[J].KidneyInt,2018,94(5):974⁃982.[39] Couser WG,Johnson RJ.The etiology of glomerulonephritis:Rolesof infection and autoimmunity[J].Kidney Int,2014,86(5):905⁃914.[40] Doshi M,Annigeri RA,Kowdle PC,et al.Membranousnephropathy due to chronic mercury poisoning from traditionalIndian medicines:Report of five cases[J].Clin Kidney J,2019,12(2):239⁃244.[41] Zhang XD,Cui Z,Zhao MH.The genetic and environmentalfactors of primary membranous nephropathy:An overview fromChina[J].Kidney Dis,2018,4(2):65⁃73.[收稿2019⁃05⁃09 修回2019⁃07⁃09](编辑 陈 阳)(上接第2551页)[36] Tognarelli S,Wirsching S,von M,et al.Enhancing the activationand releasing the brakes:A double hit strategy to improve NK cellcytotoxicity against multiple myeloma[J].Front Immunol,2018.doi:10.3389/fimmu.018.02743.[37] Guillerey C,Smyth MJ.NK cells and cancer immunoediting[J].Curr Top Microbiol Immunol,2016,395:115⁃145. [38] Cheretien AS,Le Roy A,Vey N,et al.Cancer⁃induced alterationsof NK⁃mediated target recognition:Current and investigationalpharmacological strategies aiming at restoring NK⁃mediated anti⁃tumor activity[J].Front Immunol,2014,5:122. [39] Jeon YW,Yoon S,Min GJ,et al.Enhancement of Graft⁃versus⁃host disease control efficacy by adoptive transfer of type1regulatory T cells in bone marrow transplant model[J].StemCells Dev,2019,28(2):129⁃140.[40] Naymagon L,Abdul⁃Hay M.Novel agents in the treatment ofmultiple myeloma:A review about the future[J].J HematolOncol,2016,9(1):52⁃71.[41] Hsi ED,Steinle R,Balasa B,et al.CS1,a potential newtherapeutic antibody target for the treatment of multiple myeloma[J].Clin Cancer Res,2008,14(9):2775⁃2784. [42] Lonial S,Dimopoulos M,Palumbo A,et al Elotuzumab therapy forrelapsed or refractory multiple myeloma[J].N Engl J Med,2015,373(7):621⁃631.[43] Zonder JA,Mohrbacher AF,Singhal S,et al.A phase1,multicenter,open⁃label,dose escalation study of elotuzumab inpatients with advanced multiple myeloma[J].Blood,2012,120(3):552⁃559.[44] McEllistrim C,Krawczyk J,O′Dwyer ME.New developments inthe treatment of multiple myeloma:Clinical utility ofdaratumumab[J].Biologics,2017,(11):31⁃43. [45] Dimopoulos MA,Oriol A,Nahi H,et al.Daratumumab,lenalidomide,and dexamethasone for multiple myeloma[J].NEngl J Med,2016,375:1319⁃1331.[46] Rosenblatt J,Avigan D.Targeting the PD⁃1/PD⁃L1axis inmultiple myeloma:A dream or a reality?[J].Blood,2017,129:275⁃279.[47] Gajewski TF,Schreiber H,Fu YX.Innate and adaptive immunecells in the tumor microenvironment[J].Nat Immunol,2013,(14):1014⁃1022.[48] Gorgun G,Samur MK,Cowens KB,et al.Lenalidomide enhancesimmune checkpoint blockade⁃induced immune response inmultiple myeloma[J].Clin Cancer Res,2015,21(20):4607⁃4618.[49] Gacerez AT,Arellano B,Sentman CL.How chimeric antigenreceptor design affects adoptive T cell therapy[J].J Cell Physiol,2016,231(12):2590⁃2598.[50] 童晨曦宋银宏.嵌合抗原受体基因修饰的NK细胞治疗实体瘤的研究进展[J].中国免疫学杂志,2018,34(10):1578⁃1584.Tong CX,Song YH.Progress of chimeric antigen receptor⁃modified NK cell therapy for solid tumors[J].Chin J Immunol,2018,43(10):1578⁃1584.[51] Garfall AL,Stadtmauer EA,Maus MV,et al.Pilot study of anti⁃CD19chimeric antigen receptor T cells(CTL019)in conjunctionwith salvage autologous stem cell transplantation for advancedmultiple myeloma[J].Blood,2016,128(22):974. [52] Shi X,Yan L,Shang J,et al.Tandom autologous transplantationand combined infusion of CD19and bcma⁃specific chimericantigen receptor T cells for high risk mm:Initial safety andefficacy report from a clinical pilot study[J].Blood,2018,132(Suppl1):1009.[53] Sandra P Susanibar Adaniya,Adam D Cohen,Alfred LGarfall.Chimeric antigen receptor T cell immunotherapy formultiple myeloma:A review of current data and potential clinicalapplications[J].Am J Hematol.2019,94(S1):S28⁃S33.[收稿2019⁃04⁃29 修回2019⁃05⁃30](编辑 陈 阳 刘格格)㊃7552㊃陈施晓等 特发性膜性肾病靶抗原PLA2R抗原表位的研究进展 第20期。

CXCL12CXCR4轴的表达和功能研究进展

CXCL12CXCR4轴的表达和功能研究进展

doi:10.3969/j.issn.1007 7146.2018.02.001CXCL12/CXCR4轴的表达和功能研究进展王 昊,卢 明(解放军第163医院神经外科,湖南长沙410003)摘 要:CXCL12/CXCR4(CXCligand12/CXCreceptor4)轴不仅在趋化、细胞迁徙方面起作用,还参与细胞增殖、分化、干细胞的归巢、炎症反应、免疫调节、内分泌调节及提高痛觉敏感性等多种生命活动中。

CXCR4在许多类型的肿瘤中有高表达,并且对于这些类型的肿瘤的远处转移有十分明显的促进作用。

在干细胞归巢方面,间充质干细胞中CXCR4表达普遍不高,通过病毒载体过表达CXCR4于间充质干细胞,用于移植治疗损伤或炎症性疾病,取得了十分不错的成效,并引起了广泛关注。

在免疫调节方面,研究者发现CXCL12/CXCR4轴也参与到其中。

本文对CXCL12/CXCR4轴的生物学功能进行了综述。

关键词:CXCL12/CXCR4轴;肿瘤转移;干细胞归巢;免疫调节中图分类号:Q71文献标志码:A文章编号:1007 7146(2018)02 0097 06AdvancesinExpressionandFunctionResearchofCXCL12/CXCR4AxisWANGHao,LUMing(DepartmentofNeurosurgery,theSecondAffiliatedHospitalofHunanNormalUniversity,Changsha410003,Hunan,China)Abstract:Inthepastknowledge,CXCL12/CXCR4axisplayedaroleinchemotaxisandcellmigration.Yetstudiesinthelastfewyearsshowedthatitsfunctionalsoinvolvescellproliferation,differentiation,stemcellshoming,inflamma tion,immunoregulationandotherlifeprocesses.Inmanytypesoftumor,CXCR4ishighlyexpressed,andcontributessignificantlytometastasisofthesetypesoftumor.Withrespecttostemcellshoming,theexpressionsofCXCR4inallkindsofmesenchymalstemcellsaregenerallylow,byoverexpressingCXCR4inmesenchymalstemcellsviacertainvi rusvectorsandthentransplantingthemtomammalmodelsofinjuriesandinflammatorydiseases,theresearchersa chievedsatisfactoryresults,whichreceivedgreatattention.Intermsofimmunoregulation,researchersdiscoveredthatCXCL12/CXCR4axisisalsoinvolvedin.Hereinthisarticle,thenewfunctionsofCXCL12/CXCR4axisarereviewed.Keywords:CXCL12/CXCR4axis;tumormetastasis;stemcellshoming;immunoregulation第27卷第2期2018年4月 激 光 生 物 学 报ACTA LASER BIOLOGY SINICAVol.27No.2Apr.2018收稿日期:2018 03 19;修回日期:2018 05 03基金项目:国家自然科学基金项目(81371358)作者简介:王昊(1989-),男,湖南长沙人,硕士研究生,主要从事CXCL12/CXCR4轴、人鼻黏膜间充质干细胞方面的研究。

SDF-1CXCR4在骨微环境及骨疾病中的研究进展

SDF-1CXCR4在骨微环境及骨疾病中的研究进展

-综述与进展-J Med Res , January 2021 , Vol. 50 No. 1SDF-1/CXCR4在骨微环境及骨疾病中的研究进展郑洋郝海静刘晓奇摘要基质细胞衍生因子-l(SDF-l)又称CXCL12,是CXC 家族中的一种趋化因子,能够与趋化性细胞因子受体4(CX-CR4)相互作用,属于一组小的分泌型炎性细胞因子,对特定的细胞具有趋化作用并且在体内、体外促进血管生成。

SDF - 1和 CXCR4可以在多种组织和细胞中广泛地表达,包括大脑、心脏、肺、肝脏、脾脏等器官以及免疫细胞,而且SDF - 1/CXCR4在各大系统的发育中也都有其重要的身影。

在骨再生、骨分化以及骨科疾病的发生、发展中SDF-1同样起着重要作用,如新生血管形成,BMSC 迁移和细胞因子分泌等。

本文将介绍近年来SDF - 1/CXCR4在骨科学方面的研究进展并对其与骨科相关疾病的关系展开综述。

关键词基质细胞衍生因子-l CXCR4骨疾病骨再生中图分类号 R363;R7 文献标识码 A ]基质细胞衍生因子-1 ( stromal cell derived fac ­tors -1,SDF - 1)及其趋化因子受体(C - X - C che- mokine receptor 4 , CXCR4 )是 CXC 类趋化因子亚家 族的新成员,SDF - 1有SDF - 1a 和SDF -13两种亚型,SDF - 1a 为其主要亚型。

SDF - 1在人脑、肺、心 脏、肠道、肾脏、肝脏、骨骼肌、软骨、骨髓等组织中均 有表达,并且在血管内皮细胞、成骨细胞和成纤维细 胞中也可以检测到SDF - 1的存在。

当缺血、缺氧和炎症等病理性反应以及在促血管生成等疾病,例如肿 瘤中SDF-1的表达量会显著升高[l ]o 在组织造血过程中SDF-1也扮演了主要的角色,造血干细胞释 放至外周血循环时,其在骨髓微环境中表达增高。

研 究表明,SDF - 1/CXCR4在具有趋化作用的同时,也 是其他祖细胞的生长因子。

MSCs成骨信号轴BMP-2-Smad-Runx2-Osterix与迁移信号轴CXCL12-CXCR

MSCs成骨信号轴BMP-2-Smad-Runx2-Osterix与迁移信号轴CXCL12-CXCR

MSCs成骨信号轴BMP-2-Smad-Runx2-Osterix与迁移信号轴CXCL12-CXCR4的交叉影响骨骼是人体一个重要的组成部分,对于整个身体的运动和支撑起着至关重要的作用。

骨骼的正常发育和修复需要多种信号轴的协调和调控。

其中,成骨信号轴和迁移信号轴在骨骼发育和修复中起着重要作用。

MSCs(骨髓间充质干细胞)是一种多潜能干细胞,具有成骨和迁移的潜能,是骨骼发育和修复的重要细胞来源。

本文将探讨MSCs成骨信号轴BMP-2/Smad/Runx2/Osterix与迁移信号轴CXCL12/CXCR4的交叉影响。

起首,我们先介绍MSCs成骨信号轴。

BMP-2(骨形态发育因子2)是成骨过程中的关键分子,它通过结合细胞膜上的受体,激活Smad信号通路。

Smad是一组信号转导蛋白,能够进入细胞核,与转录因子Runx2结合,增进成骨相关基因的转录和表达。

Osterix是Runx2的转录调控因子,能够直接调控成骨细胞的分化和成骨过程。

其次,我们来介绍MSCs迁移信号轴。

CXCL12(趋化因子12)是一种趋化因子,能够刺激MSCs的迁移。

CXCR4是CXCL12的受体,它存在于MSCs的细胞膜上。

当CXCL12与CXCR4结合时,能够通过激活一系列下游信号通路,增进MSCs 的迁移。

探究表明,成骨信号轴和迁移信号轴在MSCs的功能调控中互相影响。

起首,BMP-2可以增进CXCL12的表达。

试验证明,BMP-2处理后,MSCs细胞中CXCL12的表达水平明显上调。

而且,BMP-2还能够通过活化Smad信号通路,增强CXCR4在MSCs的表达。

这表明,成骨信号轴可以通过上调CXCL12和CXCR4的表达,增进MSCs的迁移。

其次,迁移信号轴对成骨信号轴也有调控作用。

探究发现,CXCL12可以增进MSCs的成骨分化。

试验证明,添加CXCL12处理后,MSCs的成骨相关基因如Runx2和Osterix的表达水平明显上调。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ABSTRACT最近我们报导了离体情况下,SMAD独立性骨形态生成蛋白4(BMP4)信号通路在造血干细胞/祖细胞(HSPCs)中活化,影响了它们导向骨髓(BM)的过程。

本文中,我们评估了活体中,影响BM龛是否会导致BMP信号传递过程发生改变。

我们揭示了注入BMP拮抗剂头蛋白(Noggin)来抑制SMAD依赖性BMP信号转导,显著增加了BM血浆中CXCL12的水平,增强了植入HSPCs的导向与血管生成。

反过来,注入BMP7而不是BMP4,造成HSPC 导向能力下降。

利用ST2细胞充当BM龛的体外模型,我们发现在中和抗BMP4抗体,NGN,或背成形因子(Dorsomorphin, DM)同时敲除掉Smad1/5及BMP4的条件下孵化,所有这些都增强了CXCL12的产生。

染色质免疫沉淀分析识别出了CXCL12启动子中与SMAD4结合的元件。

删除这个元件后,观察到CXCL12启动子活性增加,并且NGN或DM不再影响Cxcl12表达。

有趣的是,BMP7表达只出现在成骨细胞中,不出现在其它龛成分中。

因此,我们将SMAD依赖性BMP信号转导描述为BM龛中一种新的CXCL12生产调控因子,影响HSPC的导向,移植成活以及运动。

INTRODUCTION在治疗多种类型癌症,骨髓(BM)衰竭中,遗传性代谢障碍,以及严重先天性免疫缺陷时,常常使用造血干细胞(HSC)移植(1)。

在骨髓中,HSCs与其所处的微环境相互作用,这种微环境也称为“龛”。

最初提出HSCs与成骨细胞有关(2),然而后来发现许多HSCs与窦状小管内皮有关(3)。

移植后的造血重建,需要HSCs有效地导向到BM龛中。

多种从细胞分泌到BM龛中的细胞因子和生长因子调控着HSCs的维持和分化(4)。

HSCs也表达一系列黏附受体,接受BM中不同类型细胞分泌的配体,使得植入的HSCs可以导向和定居(5)。

黏附受体表达情况的改变,或其与龛中相应受体之间相互作用的改变,不止会引起HSC动员,也会使HSC难以维持(6)。

细胞因子CXCL12及其G蛋白耦联受体(GPCR)CXCR4,在造血干细胞/祖细胞迁移到BM,以及定居于龛的过程中起主要作用(7~11)。

基于Mx-cre技术,将CXCR4从成年小鼠HSCs中条件性删除,显示出CXCR4对维持原始HSCs很重要(10)。

这一相互作用对于人类及小鼠HSCs植入受辐射处理后的宿主体内后,进行导向的过程十分重要(10,11)。

由BM 龛细胞产生的一种CXCL12细胞因子浓度梯度,吸引着植入的HSCs前来,它们首先黏附于内皮并滚动,然后通过穿内皮迁移,穿入组织(12)。

根据表达CXCL12的细胞类型,CXCL12不同地影响HSCs的维持,和谱系定型祖细胞的维持(13,14)。

尽管人们做了很多工作来评估分泌出来的CXCL12的更新与失活,关于Cxcl12基因表达调控的方面仍然所知不多。

CXCL12的表达在缺氧条件下升高,这是由HIF-1α结合在其启动子上所致(15)。

诸如IL-1好IL-6这样的炎症刺激,以一种CCAAT/增强子结合蛋白β(c/EBP β)依赖性方式诱导CXCL12表达(16)。

另外,Cxcl12启动子区域,除了别的以外,还含有Sp1,AP1,NF K B,PARP1结合位点(17)。

骨形态生成蛋白(BMPs)是中胚层分化的主要调控因子,在造血系统的发育中起重要作用(18,19)。

另外,它们在骨组织的形成与动态平衡中起重要作用,这形成了关键性的BM龛(20)。

BMPs可以调控出生后时期的骨动态平衡,并调控骨量来影响成年造血过程,这一点虽然已经了解得很清楚,但尚不清楚BMP-介导的成骨生物学上的变化是否会直接影响HSPC的功能。

以前,人们发现TGF-β可以影响基质细胞系中Cxcl12的表达(26)。

这里,我们揭示了BM龛中,通过SMAD依赖性BMP信号转导途径调控CXCL12的表达,影响了HSCs的导向与移植成活,也影响造血祖细胞的动员。

MATERIAL AND METHODS此处暂略RESULTS系统性抑制SMAD-依赖性BMP信号转导途径增强了HSCs的导向与移植成活为了评估SMAD依赖性BMP信号转导途径在成年造血过程中的作用,我们对经亚致死量辐射处理过的CD45.2小鼠静注PBS/NGN。

NGN与BMPs结合,抑制其与其受体的结合(34)。

大约50000个来自CD45.1小鼠的BM细胞被移植到经处理后的CD45.2小鼠中,以评估在BMP信号转导途径发生改变后,移植成活方面是否有任何变化(Fig.1A,1B)。

我们观察到移植后第4,8及12周,在未注射NGN的原始受体内的供体源性嵌合现象连续增加。

另外,对继发受体的分析显示,注入NGN的小鼠中,长期供体源性的与BM的嵌合现象增加了3倍。

这些研究揭示了SMAD信号转导途径的抑制显著增加了HSCs的长期群体恢复(repopulation)能力。

为了确定注射了NGN的小鼠中,HSPCs的移植成活增加是否是由导向能力增强所致,所有的BM细胞或lin-细胞被注射到受到致死剂量辐射的动物中,移植后16小时,定居在BM内的克隆形成细胞(CFCs)的总数被统计出来,并与注射的CFCs的数量进行比较(Fig.1C)。

植入的CFCs在BM中定居的比例,在那些NGN处理前的动物中明显更高。

换言之,注射BMP7而不是BMP4,会引起植入HSCs的导向能力下降。

下一步我们检验了注入NGN后,在龛内表达的关键造血调控因子相应的表达情况(Supporting Information Fig.1A)。

向小鼠注入PBS/NGN后24小时,用压碎与胶原酶Ⅰ处理分离出后肢骨中的BM细胞。

用MACS分离的lin-CD45-BM龛细胞来做qRT-PCR以定量其基因表达情况。

在所有被分析的基因中(Cd44,Cxcl12,Icam1,Vcam1,Mmp7,Mmp9,Upa,Ang1,Opn,Scf,以及Ccl2),我们发现Cxcl12的表达在NGN注射后增加了2倍(Supporting Information Fig.1A)。

我们重复了这些实验,评估在注射PBS/BMP7/NGN之后,除了Cxcl12表达之外的SMAD目标基因的表达,以分析SMAD信号转导途径的状态(Fig.1D)。

SMAD目标基因Id2,Id3,以及Runx2的表达在BMP7注入后增高了,而与注射PBS的对照组相比,注射NGN后的小鼠中,这些目标基因的表达下降了,这证实了注射的蛋白质对龛细胞中SMAD依赖性BMP信号转导途径的反应性调控(Fig.1D)。

另外,注入BMP7增加了lin-CD45-BM细胞中SMAD目标基因的表达,而减少了Cxcl12的表达,这与NGN注射的结果相反。

之后我们测试了注入DM,一种特异性SMAD 磷酸化抑制剂(35),是否会产生类似NGN的效果。

我们观察到注射DM也能引起lin-CD45-BM 细胞中Cxcl12表达的增加(Supporting Information Fig.1B)。

这也伴随着移植后16小时内定居在BM中的植入CFCs比例增加(Supporting Information Fig.1C)。

我们也通过对BM血浆的ELISA评估了由BM龛细胞分泌的CXCL12蛋白(Fig.1E)。

与基因表达结果一致,NGN和BMP7也影响了BM血浆中CXCL12蛋白的水平。

我们没有发现外周血CXCL12水平有任何变化(PB; Fig.1F)。

在BM基质细胞中抑制SMAD介导的BMP信号转导途径强化了CXCL12的表达由于CXCL12是已知的最重要的将HSCs趋向到龛中的化学因子,我们研究其表达程度的改变是否会引起HSPCs向经过NGN处理的龛中迁移。

我们使用了成熟BM基质源性细胞系ST2作为离体模型,用小室转移系统(transwell system)测定迁移(Fig.2A)。

我们评估了谱系耗竭的(lineage-depleted)BM细胞(被PKH-26标记),向ST2细胞趋化迁移的过程,这种ST2细胞要么受了NGN或DM处理,要么就没受处理。

DM是一种BMP信号转导途径非常强力的小分子抑制剂,通过选择性抑制BMP受体Ⅰ来发挥作用。

用DM抑制BMP信号转导途径引起HSPCs向ST2细胞迁移(Fig.2A)。

增加NGN也使得HSPCs向ST2细胞的趋化过程增强,提示有信号途径的自分泌调节参与进来。

由于静注BMP7抑制了植入HSPCs的导向,我们也分析了HSPCs向经BMP7处理过的ST2细胞迁移的可能性。

但是,和活体中BMP7对HSPCs定居产生的作用不同,我们没有发现离体条件下BMP7对迁移有任何影响。

由于注射BMP7/NGN造成SMAD信号转导途径改变,并伴有BM龛中Cxcl12的表达变化。

我们检验了经处理的ST2中Cxcl12的表达是否也有相同的变化。

在有BMP抑制剂NGN 或DM存在的情况下培养两天,ST2细胞中,Cxcl12的表达与对照组相比,用qRT-PCR检测(Fig.2B)。

我们观察到ST2细胞中,在SMAD信号途径受到NGN或DM抑制的情况下,Cxcl12表达情况显著增高,我们测定了那些受DM或未受DM处理的ST2细胞的上清液中CXCL12蛋白的水平,进一步扩展了这些发现(Fig.2C)。

与基因表达的数据一致,我们发现经DM处理培养的ST2 细胞,与对照组相比,CXCL12的分泌水平增高。

这些结果被我们做的荧光素酶启动子试验进一步证实,在该试验中,CXCL12启动子被复制到pGL3载体的荧光素酶基因上游(the CXCL12 promoter was cloned upstream of the luciferase gene of the pGL3 vector)。

ST2细胞转染了含有CXCL12启动子的载体,然后用双重荧光素酶试验来评估受对照载体处理,或受DM/NGN抑制剂处理后荧光素酶的活性(Fig.2D)。

NGN和DM都增强了CXCL12介导的荧光素酶表达,不过NGN的增强效果要弱于DM。

除了ST2细胞,我们还用原始BM基质细胞来做qRT-PCR,评估Cxcl12的表达是否受到了SMAD信号途径改变的影响(Fig.2E)。

就像对ST2细胞的影响那样,用DM或NGN抑制SMAD介导的BMP信号途径,也诱导Cxcl12在原始BM基质细胞中表达增加。

这些结果揭示了在那些属于BM龛的细胞中,抑制BMP信号途径增强了Cxcl12的表达。

此外,NGN在Cxcl12表达上的作用提示,SMAD介导的BMP 信号途径在基质细胞中确实是活化的,这或是由FBS中的BMPs存在所致,或是由这些细胞中的BMPs所致。

ST2细胞中Cxcl12的表达受到自分泌形式的调控在我们揭示ST2细胞中SMAD依赖性BMP信号途径的抑制增强了HSPCs的趋化并增加了CXCL12的产量时,通过增加BMP7进行的刺激在离体情况下却没有这些效果。

相关文档
最新文档