计算方法-数值积分实验
计算方法_数值积分

f
(b)]
其中xk=a+kh
(k=0,1,2,…,N),
h
ba N
2.复合Simpson公式
如果在每个子区间上使用Simpson公式,就得到复
合Simpson公式。将N等分后的每个子区间再对分一次,
于是共有2N+1个节点,xk 在每个N等分的子区间[x2k ,
ak x2k+2]
h (k=0,1,2,…,2N), (2k=0,1,2,…,N-1)上应
这个问题有明显的答案
I*
4 a rc tg
x
|
1 0
3 .1 4 1 5 9 2 6
取n = 8用复合梯形公式
T8
1 8
1 2
f
(0)
2
f
1 8
2
f
1 4
2
f
3 8
2
f
1 2
2
f
5 8
5.1 牛顿 ― 柯特斯(Newton―Cotes) 公式
建立数值积分公式最基本的思想是选取一个既简单又 有足够精度的函数φ(x),用φ(x)代替被积函数f(x),于是有
b
b
a f (x)dx a (x)dx
现用第四章介绍的插值多项式Pn(x)来代替被积函数f(x),即有
b
b
a
算的结果进行比较。
解 计算结果列于表5-2中。
函数f (x) 梯形值 Simpson值 Cotes值 准确值
数值计算方法实验报告

数值计算方法实验报告一、实验介绍本次实验是关于数值计算方法的实验,旨在通过计算机模拟的方法,实现对于数值计算方法的掌握。
本次实验主要涉及到的内容包括数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等。
二、实验内容1. 数值微积分数值微积分是通过计算机模拟的方法,实现对于微积分中的积分运算的近似求解。
本次实验中,我们将会使用梯形公式和辛普森公式对于一定区间上的函数进行积分求解,并比较不同公式的计算误差。
2. 线性方程组的求解线性方程组求解是数值计算领域中的重要内容。
本次实验中,我们将会使用高斯消元法、LU分解法等方法对于给定的线性方程组进行求解,并通过比较不同方法的计算效率和精度,进一步了解不同方法的优缺点。
3. 插值与拟合插值与拟合是数值计算中的另一个重要内容。
本次实验中,我们将会使用拉格朗日插值法和牛顿插值法对于给定的数据进行插值求解,并使用最小二乘法对于给定的函数进行拟合求解。
4. 常微分方程的数值解常微分方程的数值解是数值计算中的难点之一。
本次实验中,我们将会使用欧拉法和龙格-库塔法等方法对于给定的常微分方程进行数值解的求解,并比较不同方法的计算精度和效率。
三、实验结果通过本次实验,我们进一步加深了对于数值计算方法的理解和掌握。
在数值微积分方面,我们发现梯形公式和辛普森公式都能够有效地求解积分,但是辛普森公式的计算精度更高。
在线性方程组求解方面,我们发现LU分解法相对于高斯消元法具有更高的计算效率和更好的数值精度。
在插值与拟合方面,我们发现拉格朗日插值法和牛顿插值法都能够有效地进行插值求解,而最小二乘法则可以更好地进行函数拟合求解。
在常微分方程的数值解方面,我们发现欧拉法和龙格-库塔法都能够有效地进行数值解的求解,但是龙格-库塔法的数值精度更高。
四、实验总结本次实验通过对于数值计算方法的模拟实现,进一步加深了我们对于数值计算方法的理解和掌握。
在实验过程中,我们了解了数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等多个方面的内容,在实践中进一步明确了不同方法的特点和优缺点,并可以通过比较不同方法的计算效率和数值精度来选择合适的数值计算方法。
插值法与数值积分````计算方法实验3

实验3 插值法与数值积分一、实验目的(1)掌握拉格朗日插值法、牛顿插值法。
(2)掌握数值积分常用算法:逐次分半梯形公式求积。
(3)记录运行结果,回答问题,完成实验报告。
二、实验内容思考问题:插值多项式是否阶次越高越好?数值积分与插值的关系是什么?逐次分半梯形公式求积如何判断误差是否满足要求?1.用拉格朗日插值法求2的平方根。
提示:可以用抛物线插值,f(1.69)=1.3,f(1.96)=1.4,f(2.25)=1.5。
2.用牛顿插值法求2的平方根。
提示:可以用抛物线插值,f(1.69)=1.3,f(1.96)=1.4,f(2.25)=1.5。
3.用逐次分半梯形公式求积计算∫x2dx。
提示:可以用相邻两次求得的结果的差的绝对值来间接判断误差是否满足要求。
三、实验步骤1.代码如下:#include<stdio.h>#include<math.h>#define MAXSIZE 50void input(double x[MAXSIZE],double y[MAXSIZE],long n){long i;for(i=0;i<=n-1;i++){printf("请输入插值节点x[%ld],y[%ld]:",i,i);scanf("%lf,%lf",&x[i],&y[i]);}}void main(void){double x[MAXSIZE],y[MAXSIZE],_x,_y,t;long n,i,j;printf("请输入插值节点的个数:");scanf("%ld",&n);input(x,y,n);printf("请输入插值点:");scanf("%lf",&_x);_y = 0;for(i=0;i<=n-1;i++){t = 1;for(j=0;j<=n-1;j++)if(j != i)t *= (_x-x[j]) / (x[i]-x[j]);_y += t * y[i];}printf("插值点(x,y)=(%lf,%lf)。
计算方法-数值积分市公开课获奖课件省名师示范课获奖课件

-辛1 普森求积公式旳几何意义是用一条过三点旳抛物线(如上 图中三点)近似替代被积函数旳曲线,从而用一种二次抛物线 -1所.5 围成旳轻易计算旳曲边梯形面积(图中阴影部分)来近似替 代原来旳曲边梯形旳面积.
-2
-2.5
辛普森积分法
❖ 经过对n个区间按上述公式累加,可得区间[x0,x1]上 旳积分形式为
算法特色
❖ 成果输出清楚,且精度高,能保存到小数点后13位(中值法)
算法特色
将各措施旳误差一次性输出,能直观旳看出各积分措施旳误差大 小并进行比较
总结
经过本章旳学习,我们更深刻旳了解了数值积分 旳原理及实现措施,而且在小组讨论中,学习到了怎 样实当代码旳简洁、降低变量旳定义以及怎样实当代 码时间与空间旳优化等,大家都有所收益
❖ 对大多数f(x)而言,找原函 数困难,虽然存在原函数也 不能用初等函数表达
ex2 , sin x , 1 x3 ...... x
❖ 原函数体现式过于复杂
x2 2x2 3 3
❖ 被积函数由表格给出,没有 解析形式,也无法使用 Newton-Leibniz公式来求 积分
数值积分
❖ 为了防止上述积分过程中存在旳问题,我们能够采用 数值积分旳措施来求解,这么就防止了原函数旳求解 过程,同步对于由测量或计算得到旳数据表表达旳 f(x)也能够求解
进行泰勒展开,可得区间
[x0,x0+2x ]上旳积分形式如下所
2
示: 2.5
3
3.5
x0-12x
x0-1.5
f
(x)dx
x 3
(
f
(x0)
4f
(x0
x)
f
(x0
2x))
O(x5)
数值计算方法之数值积分

数值计算方法之数值积分数值积分是数值计算中的一个重要内容,它是对函数在其中一区间上的积分进行数值近似计算的方法。
数值积分在计算机科学、自然科学以及工程领域都有广泛的应用,如求解不定积分、概率密度函数的积分、求解微分方程初值问题等。
数值积分的基本思想是将积分区间划分为若干小区间,然后对每个小区间进行数值近似计算,再将结果相加得到近似的积分值。
常用的数值积分方法包括矩形法、梯形法、辛普森法等。
首先介绍矩形法。
矩形法是将积分区间划分为若干个小区间,然后用每个小区间的函数值与该小区间的宽度相乘得到每个小矩形的面积,最后将所有小矩形的面积相加得到近似的积分值。
矩形法分为左矩形法、右矩形法和中矩形法三种。
左矩形法即用每个小区间的最左端点的函数值进行计算,右矩形法用最右端点的函数值进行计算,中矩形法用每个小区间中点的函数值进行计算。
梯形法是将积分区间划分为若干个小区间,然后用每个小区间两个端点的函数值与该小区间的宽度相乘,再将每个小梯形的面积相加得到近似的积分值。
梯形法相较于矩形法更为精确,但需要更多的计算量。
辛普森法是将积分区间划分为若干个小区间,然后用每个小区间的三个点的函数值进行插值,将插值函数进行积分得到该小区间的近似积分值,最后将所有小区间的近似积分值相加得到近似的积分值。
辛普森法相比矩形法和梯形法更为精确,但计算量更大。
除了以上几种基本的数值积分方法外,还有龙贝格积分法、高斯积分法等更为精确的数值积分方法。
这些方法的原理和步骤略有不同,但都是通过将积分区间分割为若干小区间,然后进行数值近似计算得到积分值的。
总结起来,数值积分是通过将积分区间分割为若干小区间,然后对每个小区间进行数值近似计算得到积分值的方法。
常用的数值积分方法包括矩形法、梯形法、辛普森法等。
数值积分在计算机科学、自然科学以及工程领域均有广泛应用,是数值计算中的重要内容。
实验报告7—数值积分

标题:积分方程的数值积分计算1.实验描述:数值积分最突出的优点是它可以计算无法解析求解的积分问题。
根据节点的选择方法可将数值积分分为常见的:组合梯形公式法、组合辛普生公式法、龙贝格积分法、自适应积分法、高斯—勒让德积分法。
本实验利用5种方法计算同一积分,通过误差分析比较各种方法的优缺点。
2.实验内容:计算320sin(4)x x e dx -⎰,并进行误差分析。
具体内容如下: 1.用组合梯形公式10M =计算。
2.用组合辛普生公式5M =计算。
3.用龙贝格积分计算,本次实验中采用4阶公式(4,4)R 计算。
4.用自适应积分方法计算,本次实验中起始容差:0=0.00001ζ。
5.用5点高斯—勒让德积分计算。
通过误差分析比较各种方法的优缺点。
3.实验原理及分析:数值积分的目的是:通过在有限采样点上计算()f x 在区间[,]a b 上的定积分。
设01...M a x x x b =<<<=,若有:()[][]ba f x dx Q f E f =+⎰,其中[]Q f 形如:0[]()Mk k k Q f w f x ==∑,则称[]Q f 为面积公式,[]E f 为截断误差,0{}M k k x =为面积节点,0{}M k k w =为权。
根据节点{}k x 的选择方法可将积分方法分为:组合梯形公式法、组合辛普生公式法、龙贝格积分法、自适应积分法、高斯—勒让德积分法。
下面着重介绍5种方法的原理:①组合梯形公式法及误差分析:设等距节点k x a kh =+,0,1,...,k M =将区间划分为宽度为b a h M-=的M 个子区间,M 个子区间的组合梯形积分公式有3种等价表示方法: 11(,)(()())2Mk k k h T f h f x f x -==+∑011(,)=(2...2)2M M h T f h f f f f -++++ 11(,)(()())()2M k k h T f h f a f b h f x -==++∑ ②组合辛普生公式法误差分析:设等距节点k x a kh =+,0,1,...,2k M =将区间分为2M 个宽度为2b a h M-=的子区间,2M 个子区间的组合辛普生积分公式也有3种等价表示方法:222121(,)(()4()())3Mk k k k h S f h f x f x f x --==++∑ 012322212(,)(424...24)3M M M h S f h f f f f f f f --=+++++++ 12211124 (,)(()())()()333M Mk k k k h h h S f h f a f b f x f x --===+++∑∑ ③龙贝格积分法及误差分析:龙贝格积分法是利用理查森外推法来提高精度的,下面给出一般公式:4(,1)(1,1)(,)41K K R J K R J K R J K ----=- 其中J K ≥ (,0)()R J T J =,为梯形公式;(,1)()R J S J =,为辛普生公式;(,2)()R J B J =,为布尔公式。
数值计算中的数值积分方法

数值计算中的数值积分方法数值计算是应用数学的一个分支,它主要涉及数值计算方法、算法和数值实验。
其中,数值积分作为数值计算中的一个重要环节,其作用在于将连续函数转化为离散的数据,从而方便计算机进行计算和处理。
本文将介绍数值积分的概念、方法和应用。
一、数值积分的概念数值积分是利用数值方法对定积分进行估计的过程。
在数值积分中,积分被近似为离散区间的和,从而可以被计算机进行处理。
数值积分中,被积函数的精确的积分值是无法计算的,而只能通过数值方法进行估计。
数值积分的目的是通过选取合适的算法和参数来尽可能减小误差,达到精度和效率的平衡。
二、数值积分的方法1. 矩形法矩形法是数学上最简单的数值积分方法之一。
矩形法的算法是将要积分的区间分为若干个小区间,然后计算每个小区间中矩形的面积,最后将所有小矩形的面积加起来得到近似的积分值。
矩形法的精度一般较低,适用于计算不需要高精度的函数积分。
2. 梯形法梯形法是数值积分中常用的一种方法,其原理是将区间分为若干个梯形,并计算每个梯形的面积,最后将所有梯形的面积加起来得到近似的积分值。
梯形法的计算精度较高,但其计算量较大。
3. 辛普森法辛普森法是数值积分中一种高精度的方法,它是利用二次多项式去估计原函数。
辛普森法的原理是将区间分为若干等分小区间,并计算每个小区间中的二次多项式的积分值,最后将所有小区间的积分值加起来得到近似的积分值。
辛普森法的优点是其精度高,计算量相对较小。
三、数值积分的应用数值积分方法在各个领域都有广泛的应用。
例如,它可以被用于工程学、物理学和金融学中的数值计算。
在工程学中,数值积分被用于数值模拟和计算机辅助设计中。
在物理学中,数值积分则被用于数值求解微分方程和计算机模拟等领域。
在金融学中,数值积分则被应用于计算复杂的金融模型和风险分析。
总之,数值积分方法是数学和计算机科学中非常重要的一部分。
通过不同的数值积分方法来近似计算定积分,我们能够利用计算机更加高效地进行数学计算和数据分析,从而使得数学和物理等学科的研究者能够更加快速地得出准确的结果。
数值积分使用数值方法计算定积分

数值积分使用数值方法计算定积分定积分是数学中的重要概念,用于求解曲线下面的面积。
在某些情况下,定积分无法通过解析解来求解,此时可以使用数值方法来进行近似计算。
数值积分是一种广泛应用的技术,本文将介绍数值积分的基本原理以及常见的数值方法。
一、数值积分的基本原理数值积分的基本原理是将曲线下的面积近似为若干个矩形的面积之和。
假设要计算函数f(x)在区间[a, b]上的定积分,首先将[a, b]等分成n个小区间,每个小区间的宽度为Δx=(b-a)/n。
然后,在每个小区间上选择一个代表点xi,计算其对应的函数值f(xi),然后将所有矩形的面积相加,即可得到近似的定积分值。
二、矩形法矩形法是数值积分中最简单的方法之一。
它将每个小区间上的函数值看作是一个常数,然后通过计算矩形的面积来近似定积分的值。
矩形法主要有两种形式:左矩形法和右矩形法。
1. 左矩形法左矩形法使用小区间左端点的函数值来代表整个小区间上的函数值。
即近似矩形的面积为f(xi) * Δx,其中xi为小区间的左端点。
然后将所有矩形的面积相加,得到近似的定积分值。
2. 右矩形法右矩形法与左矩形法相似,仅仅是使用小区间右端点的函数值来代表整个小区间上的函数值。
近似矩形的面积为f(xi + Δx) * Δx,其中xi为小区间的左端点。
同样地,将所有矩形的面积相加,得到近似的定积分值。
三、梯形法梯形法是比矩形法更精确的数值积分方法。
它通过使用每个小区间的两个端点处函数值的平均值来代表整个小区间上的函数值,并计算梯形的面积来近似定积分的值。
梯形法的计算公式为:(f(xi) + f(xi + Δx)) * Δx / 2,其中xi为小区间的左端点。
将所有梯形的面积相加,得到近似的定积分值。
四、辛普森法辛普森法是一种更加高阶的数值积分方法,它使用三个点对应的函数值来逼近曲线。
将每个小区间看作一个二次函数,可以通过拟合这个二次函数来近似定积分的值。
辛普森法的计算公式为:(f(xi) + 4 * f(xi + Δx/2) + f(xi + Δx)) * Δx / 6,其中xi为小区间的左端点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二 数值积分实验
一. 实验目的
(1)熟悉数值积分与数值微分方法的基本思想,加深对数值积分与数值微分方法的理解。
(2)熟悉Matlab 编程环境,利用Matlab 实现具体的数值积分与数值微分方法。
二. 实验要求
用Matlab 软件实现复化梯形方法、复化辛甫生方法、龙贝格方法和高斯公式的相应算法,并用实例在计算机上计算。
三. 实验内容
1. 实验题目
已知x e x f x 4sin 1)(-+=的数据表
分别编写用复化梯形法、复化辛甫生公法、龙贝格法、三点高斯法求积分⎰=10
)(dx x f I 近似值的计算机程序。
A. 复化梯形法:
a . 编写文件Trapezoid.m,代码如下所示:
x 0.00 0.25 0.50 0.75 1.00 f (x ) 1.00000 1.65534 1.55152 1.06666 0.72159
b.编写文件f2.m:
c.运行:
B.复化辛甫生公法
a.编写文件FSimpson.m,代码如下所示:
b.编写文件f2.m: function f=f2(x)
f=1+exp(-x).*sin(4*x);
c.运行:
C.龙贝格法
a.编写文件Romberg.m,代码如下所示:b.运行:
D.三点高斯法
a.编写文件TGauss.m文件,如下所示:
b.运行:
2. 设计思想
要求针对上述题目,详细分析每种算法的设计思想。
总体的思想是化复杂为简单的重复
A.复化梯形法使用直接法,通过递归,缩减规模;
B.复化辛甫生也是使用直接法,根据公式直接进行编程,通过递归缩减规模;
C.龙贝格算法应该在做了的几个中最体现了“化复杂为简单的重复”的思想,多个循环通过变量的适当递增,和一个for循环语句来实现,循环主体只有一句话,但确是整个程序中的亮点和难点;
D.三点高斯法直接通过一条简单的公式来编写程序,难度不大;
四.实验体会
对实验过程进行分析总结,对比不同方法的精度,指出每种算法的设计要点及应注意的事项,以及自己通过实验所获得的对数值积分方法的理解。