练习2第4题_轴对称图形

合集下载

画轴对称图形练习题

画轴对称图形练习题

画轴对称图形练习题轴对称图形是指在平面上存在一个轴,当图形沿该轴作对称变换时,图形与自身重合。

画轴对称图形是培养儿童对称思维和审美能力的重要训练内容。

今天,我们来练习一些画轴对称图形的练习题。

1. 画出以下几个字母的轴对称图形:A、B、C、D、E、F、G。

2. 画出以下几个数字的轴对称图形:0、1、2、3、4、5、6、7、8、9。

3. 画出以下几个几何形状的轴对称图形:正方形、长方形、圆形、三角形、椭圆、五边形。

4. 根据给定的轴对称图形,完成图形的绘制:a) 给定一个正方形,画出它的轴对称图形。

b) 给定一个三角形,画出它的轴对称图形。

c) 给定一个长方形,画出它的轴对称图形。

d) 给定一个圆形,画出它的轴对称图形。

5. 设计一个轴对称的图案,使用你喜欢的颜色和形状进行绘制。

可以尝试使用不同的几何形状和线条来创造出独特的图案。

通过以上的练习题,我们可以巩固轴对称图形的绘制技巧和观察力。

画轴对称图形不仅能够培养我们的审美能力,还有助于提升我们的创造力和想象力。

在绘制过程中,我们需要注意以下几点:首先,要明确轴对称图形的基本特征,即从一个点为中心,沿轴线进行对称变换后图像不变。

其次,要注意绘制对称轴,可以使用直尺或绘图工具来帮助我们找到中心轴线。

然后,要对称地绘制图形的各个部分,确保每个部分都与其对称位置保持一致。

最后,要仔细观察和检查绘制结果,确保图形的各部分符合对称关系,并且整体上看起来完美对称。

在进行绘制时,可以使用纸和铅笔进行草图,并使用彩色铅笔或绘图软件进行上色。

可以尝试不同的颜色和图案来增加绘图的趣味性和创造力。

通过不断的练习和探索,我们可以提高自己的轴对称图形绘制能力,在欣赏美丽图形的同时,也培养了自己的审美能力和想象力。

所以,在日常生活中,多多练习画轴对称图形,让我们的大脑得到锻炼,同时也提高我们的艺术水平和绘画技巧。

希望以上的练习题能够帮助大家提升对轴对称图形的理解和绘制能力。

不要忘记享受绘画的过程,并在每次创作中发挥自己的想象力!。

初二数学轴对称练习题及答案

初二数学轴对称练习题及答案

初二数学轴对称练习题及答案轴对称是初中数学中的一个重要概念,它在几何图形的研究中具有广泛的应用。

本文将为大家提供一些初二数学轴对称的练习题及答案,帮助同学们更好地理解和掌握这个知识点。

1. 练习题一在平面上,画出图形ABC,其中AB=3 cm,BC=4 cm,AC=5 cm。

找出图形的对称中心,并标出。

解答:首先,根据给定条件画出图形ABC。

由题目可知,三角形ABC是一个直角三角形,其中∠ABC=90°。

以边AC为轴,将三角形沿中点F对折,使得点B和B'重合。

连接BB',则BB'即为轴对称线,其交点F即为图形ABC的对称中心。

2. 练习题二如图所示,J、K、L、M是矩形ABCD的四个顶点,N是JL的中点,P是KN的中点,连接BM和CP,交于点O。

证明:BO=OC。

解答:根据题目所给条件,我们可以先证明三角形MBN与三角形PCO全等。

首先,由矩形ABCD的性质可知,AD∥BC,故∠NBC=∠BAN=90°。

其次,由题目可知,N是JL的中点,所以NJ=NL,结合矩形的性质可得∠NJL=∠NLF=90°,因此NFBJ是一个矩形。

同理,NEDK也是一个矩形。

由于FB=EK,NJ=NL,所以根据余角定理可知∠NBF=∠NEK。

再根据SSS全等定理,得到三角形MBN与三角形PCO全等,因此MB=PC。

又因为M和P分别是BC和KN的中点,故MB=BC/2,PC=KN/2。

所以BC/2=KN/2,即BC=KN。

由于BO和OC分别是BM和CP的中线,所以BO=BM/2,OC=CP/2。

综上所述,BO=OC。

3. 练习题三已知矩形EFGH中,AB=8 cm,BC=6 cm。

在边AB和BC上分别取两个等分点D和I,并连接DI。

求证:DI垂直于FG。

解答:根据题目中所给条件,我们可以先证明三角形GBD与三角形ACI全等。

首先,由矩形EFGH的性质可知,EF∥GH,所以∠FGB=∠AGH=90°。

轴对称图形练习题及答案

轴对称图形练习题及答案

轴对称图形练习题及答案轴对称图形是一种数学概念,指的是如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

以下是一些轴对称图形的练习题及答案。

练习题1:判断下列图形是否为轴对称图形,并找出对称轴。

1. 圆形2. 等边三角形3. 矩形4. 等腰梯形5. 五角星答案1:1. 圆形是轴对称图形,有无数条对称轴。

2. 等边三角形是轴对称图形,有3条对称轴。

3. 矩形是轴对称图形,有2条对称轴。

4. 等腰梯形是轴对称图形,有1条对称轴。

5. 五角星是轴对称图形,有5条对称轴。

练习题2:如果一个图形沿着某条直线折叠后,直线两旁的部分能够完全重合,这条直线叫做这个图形的对称轴。

请找出下列图形的对称轴数量。

1. 正方形2. 菱形3. 正六边形4. 半圆形5. 等腰三角形答案2:1. 正方形有4条对称轴。

2. 菱形有2条对称轴。

3. 正六边形有6条对称轴。

4. 半圆形有1条对称轴。

5. 等腰三角形有1条对称轴。

练习题3:在下列图形中,找出不是轴对称图形的图形。

1. 长方形2. 等边四边形3. 等腰梯形4. 平行四边形5. 正五边形答案3:4. 平行四边形不是轴对称图形。

练习题4:如果一个轴对称图形的对称轴是直线x=1,那么这个图形关于这条直线对称。

根据这个定义,判断下列点是否在对称轴上。

1. 点A(2,3)2. 点B(0,0)3. 点C(1,1)4. 点D(-1,1)答案4:1. 点A不在对称轴上。

2. 点B不在对称轴上。

3. 点C在对称轴上。

4. 点D不在对称轴上。

练习题5:在一个坐标平面上,如果一个点P(x,y)关于直线x=1对称,那么它的对称点的坐标是什么?答案5:如果点P(x,y)关于直线x=1对称,那么它的对称点的坐标是(2-x, y)。

这些练习题和答案可以帮助学生更好地理解和掌握轴对称图形的概念和性质。

通过解决这些问题,学生可以加深对轴对称图形的认识,提高解决相关问题的能力。

轴对称练习题(含答案)

轴对称练习题(含答案)

轴对称练习题(含答案)一.选择题1.下列图形中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,D,E是BC边上两点,且满足AB=BE,AC=CD,若∠B=α,∠C=β,则∠DAE的度数为()A.B.C.D.3.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.16 C.8 D.104.点A(4,﹣2)关于x轴的对称点的坐标为()A.( 4,2 )B.(﹣4,2)C.(﹣4,﹣2)D.(﹣2,4)5.已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°6.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°7.在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5 B.7 C.9 D.108.如图,Rt△ACB中,∠ACB=90°,∠A=60°,CD、CE分别是△ABC的高和中线,下列说法错误的是()A.AD=ABB.S△CEB =S△ACEC.AC、BC的垂直平分线都经过ED.图中只有一个等腰三角形9.如图,a∥b,△ABC的顶点A在直线a上,AC=BC,∠1=50°,∠2=20°,则∠C的度数为()A.70°B.30°C.40°D.55°10.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90°.则小意同学判断的依据是()A.等角对等边B.线段中垂线上的点到线段两段距离相等C.垂线段最短D.等腰三角形“三线合一”11.如图,在△ABC中,∠CDE=64°,∠A=28°,DE垂直平分BC;则∠ABD=()A.100°B.128°C.108°D.98°12.如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°二.填空题13.在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则b a的值是.14.已知一个等腰三角形腰上的高与底边的夹角为37°,则这个等腰三角形的顶角等于度.15.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC 的垂直平分线交BC于N,交AC于F,若MN=2,则NF=.16.如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是.三.解答题17.如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.18.如图,AD⊥BC于D,且DC=AB+BD,若∠C=26°,求∠BAC的度数.19.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a=,b=.20.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. (1)若∠A 4=9°,则∠BAA 4的度数为 ; (2)若∠BAA 4=α,则∠B n ﹣1A n A n ﹣1的度数为 ; (3)过A 做AC ∥A 3B 2,若∠BAC =100°,求∠B 3A 4A 3的度数.参考答案一.选择题1.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.解:∵BE=BA,∴∠BAE=∠BEA,∴α=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴β=180°﹣2∠CAD,②①+②得:α+β=360°﹣2(∠BAE+∠CAD)∴α+β=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)] =360°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE]=360°﹣2(∠BAC+∠DAE),∵∠BAC=180°﹣(α+β),∴α+β=360°﹣2[180°﹣(α+β)+∠DAE]∴α+β=2∠DAE,∴∠DAE=(α+β),故选:A.3.解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.4.解:点A(4,﹣2)关于x轴的对称点为(4,2).故选:A.5.解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.6.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.7.解:如图:∴最多画9条,故选:C.8.解:∵∠ACB=90°,AD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∴AC=,AD=AC,∴AD=AB;故A正确;∵CE是△ABC的中线,∴S△BCE =S△ACE,故B正确,∵CE=AE=BE=AB,∴AC、BC的垂直平分线都经过E,故C正确;∴△ACE和△BCE是等腰三角形,故D错误;故选:D.9.解:延长AB交直线b于E,∵a∥b,∴∠3=∠1=50°,∴∠ABC=∠2+∠3=20°+50°=70°,∵CA=CB,∴∠BAC=∠ABC=70°,∴∠C=180°﹣70°﹣70°=40°,故选:C.10.解:由作图可知,CE=CD,∵OE=OD,∴CO⊥ED(等腰三角形的三线合一),∴∠AOB=90°.故选:D.11.解:∵DE垂直平分BC,∴BD=DC,∴∠BDE=∠CDE=64°,∴∠ADB=180°﹣64°﹣64°=52°,∵∠A=28°,∴∠ABD=180°﹣28°﹣52°=100°.故选:A.12.解:∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.二.填空题(共4小题)13.解:∵点M(a,b)与点N(3,﹣1)关于x轴对称,∴a=3,b=1,∴b a=1,故答案为:1.14.解:如图(1)顶角是钝角时,∵等腰三角形腰上的高与底边的夹角为37°,∴∠OCB=37°,∵OC⊥OB,∴∠ABC=90°﹣37°=53°,∴∠BAC=180°﹣53°﹣53°=74°,即△ABC为锐角三角形,顶角是钝角这种情况不成立;(2)顶角是锐角时,∠B=90°﹣37°=53°,∠A=180°﹣2×53°=74°.因此,顶角为74°.故答案为:74.15.解:∵在△ABC中,AB=AC,∠A=120°,∴∠C=∠B=(180°﹣∠A)=30°,连接AN,AM,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B=30°,∠C=∠NAC=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴AM=AN,∴△AMN是等边三角形,∵MN=2,∴AN=2=CN,在Rt△NFC中,∠C=30°,∠NFC=90°,CN=2,∴NF=CN=1,故答案为:1.16.解:∵BC的垂直平分线分别交AB、BC于点D和点E,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°.∵∠ADC是△BCD的外角,∴∠ADC=∠B+∠DCB=25°+25°=50°.∵AC=DC,∴∠CAD=∠ADC=50°,∴∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣50°﹣50°=80°.故答案为:80°.三.解答题(共4小题)17.(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.18.解:截取DE=BD,连接AE,如右图所示,∵DC=AB+BD,BD=DE,∴AB=CE,∵AD⊥BE,∴∠ADB=∠ADE=90°,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴AB=AE,∠B=∠AED,∴AE=CE,∴∠EAC=∠C,∵∠C=26°,∠AED=∠EAC+∠C,∴∠AED=52°,∴∠B=52°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣52°﹣26°=102°,即∠BAC的度数是102°.19.解:(1)如图所示,△A1B1C1即为所求;A 1(﹣1,﹣4)、B1(﹣5,﹣4)、C1(﹣4,﹣1);(2)△ABC的面积是×4×3=6,故答案为:6;(3)∵点P(a+1,b﹣1)与点C(4,﹣1)关于x轴对称,∴a+1=4、b﹣1=1,解得:a=3、b=2,故答案为:3、2.20.解:(1)∵AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4….,∴∠B 2A 3A 2=2∠A 4=18°, ∴∠B 1A 2A 1=2∠B 2A 3A 2=36°, ∴∠BAA 4=∠BA 1A =2∠B 1A 2A 1=72°;(2)∵AB =A 1B ,∴∠BAA 4=BA 1A =α, ∵A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. ∴∠B 1A 2A 1=∠BA 1A =α; 同理可得,∠B 2A 3A 2=α,∠B 3A 4A 3=α, 以此类推,∠B n ﹣1A n A n ﹣1=,故答案为:72°,; (3)设∠B 3A 4A 3=x °, ∵A 3B 3=A 3A 4,∴∠A 3B 3A 4=∠A 4,∴∠B 2A 3A 2=2x °,同理,∠BAA 4=8x °, ∵AC ∥A 3B 2,∴∠A 4AC =∠A 4,∴8x +2x =100,∴x =10,∴∠B 3A 4A 3的度数为10°.。

轴对称练习题(含答案)

轴对称练习题(含答案)

轴对称练习题13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25° B.45° C.30° D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A=8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD =∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ; (2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI. 2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为()A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.轴对称13.1.1轴对称1.A 2.A 3.B 4.B5.解:(1)∵AB与A′B′是对应线段,∴AB=A′B′=6cm.又∵AC与A′C′是对应线段,∴A′C′=AC=8cm.(2)∵∠A′与∠A是对应角,∴∠A′=∠A=90°,∴S△A′B′C′=A′B′·A′C′÷2=24(cm2).13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.C 2.C 3.AC 4.305.解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD.∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm.∵AC=4cm,∴BC=7cm.第2课时线段垂直平分线的有关作图1.D2.解:如图所示.3.解:(1)图略.(2)中点垂直平分线4.解:连接AB,作线段AB的垂直平分线MN交直线l于点P,则点P即为所求位置.图略.13.2画轴对称图形第1课时画轴对称图形1.(1)M,P,N(2)G,H,I GM DM HP EP IN FN(3)GH HI IG2.解:如图所示.3.解:如图所示.第2课时用坐标表示轴对称1.C 2.C 3.A 4.B 5.(-5,-3) 6.217.解:(1)如图.(2)A1(1,5),B1(1,0),C1(4,3).(3)7.5。

初中数学轴对称图形知识点加习题总结

初中数学轴对称图形知识点加习题总结

知识点1 轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;这时,我们也说这个图形关于这条直线的轴对称。

知识点2 对称轴的性质1.对称轴是一条直线。

2.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

4.图形对称例1下面哪些图形是轴对称图形?画出轴对称图形的对称轴。

例2.推理游戏:下面应该是什么图形?知识点3线段垂直平分线定义及其性质定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

性质1.垂直平分线垂直且平分其所在线段。

2.垂直平分线上任意一点,到线段两端点的距离相等。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

例3.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=6,则线段PB的长度为〔〕A.3 B.5 C.6 D.8解析:∵直线CD是线段AB的垂直平分线,∴PB=PA,∵PA=6,∴PB=6.答案C.例4如以下图,DE是线段AB的垂直平分线,以下结论一定成立的是〔〕A.ED=CDB.∠DAC=∠BC.∠C>2∠BD.∠B+∠ADE=90°分析:∵DE是线段AB的垂直平分线,∴AD=BD.∴∠B=∠BAD,∠ADE=∠BDE.∴∠B+∠ADE=90°答案D课堂练习11.点A,B关于直线a对称,P是直线a上的任意一点,以下说法不正确的选项是〔〕A.直线AB与直线a垂直B.直线a是点A和点B的对称轴C.线段PA与线段PB相等D.假设PA=PB,则点P是线段AB的中点2.三角形中到三边的距离相等的点是〔〕A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点3.已知A和B两点在线段EF的中垂线上,且∠EAF=100°,∠EBF=70°,则∠AEB等于( )A、95°B、15°C、95°或15°D、170°或30°4.已知:如图,线段AB垂直平分线段CD则AC=。

轴对称练习题及答案

轴对称练习题及答案

轴对称练习题及答案一、选择题1. 以下哪个图形是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 轴对称图形的对称轴与图形的对称点之间的关系是:A. 垂直B. 平行C. 相交D. 重合3. 一个轴对称图形的对称点到对称轴的距离是:A. 相等B. 不相等C. 有时相等有时不相等D. 无法确定4. 如果一个图形关于x轴对称,那么它的对称点的坐标关系是:A. (x,y)和(x,-y)B. (x,y)和(-x,y)C. (x,y)和(-x,-y)D. (x,y)和(y,x)5. 一个点关于y轴的对称点的坐标是:A. (-x,y)B. (x,-y)C. (-y,x)D. (y,-x)二、填空题1. 轴对称图形的对称轴是图形中所有对称点的________。

2. 如果一个图形关于y轴对称,那么它的对称点的坐标关系是(x,y)和________。

3. 一个图形关于原点对称,那么它的对称点的坐标关系是(x,y)和________。

三、解答题1. 已知点A(3,4),求点A关于x轴的对称点的坐标。

2. 已知点B(-2,-3),求点B关于y轴的对称点的坐标。

3. 已知点C(1,-1),求点C关于原点的对称点的坐标。

四、判断题1. 所有矩形都是轴对称图形。

()2. 所有等腰三角形都是轴对称图形。

()3. 所有等边三角形都是轴对称图形。

()4. 所有平行四边形都是轴对称图形。

()五、综合题1. 给出一个等腰梯形的上底长为4cm,下底长为8cm,高为3cm,求等腰梯形的对称轴。

2. 如果一个矩形的长为10cm,宽为6cm,求矩形关于x轴对称后,新的矩形的长和宽。

3. 已知一个正方形的边长为5cm,求正方形关于y轴对称后,新正方形的边长。

答案:一、选择题1. A2. D3. A4. A5. A二、填空题1. 连线中点2. (-x,y)3. (-x,-y)三、解答题1. 点A关于x轴的对称点的坐标为(3,-4)。

轴对称图形练习题

轴对称图形练习题

轴对称图形练习题轴对称图形练习题在数学学习中,轴对称图形是一个重要的概念。

它涉及到对称性和几何形状的关系,对于培养学生的观察能力和逻辑思维具有重要意义。

本文将通过一些具体的练习题,来帮助读者更好地理解轴对称图形以及如何解决相关问题。

练习题1:图1是一个轴对称图形,请找出它的对称轴,并将它画出来。

(插入图1)解析:对称轴是指一个线段,可以将图形分为两部分,使得两部分完全重合。

观察图1,我们可以发现,图形在垂直方向上是对称的。

因此,对称轴应该是垂直于图形的线段。

我们可以选择图形中心的垂直线作为对称轴,将图形分为左右两部分,可以发现它们完全重合。

因此,对称轴应该是图1中心的垂直线。

练习题2:图2是一个轴对称图形,请找出它的对称轴,并将它画出来。

(插入图2)解析:观察图2,我们可以发现图形在水平方向上是对称的。

因此,对称轴应该是水平于图形的线段。

我们可以选择图形中心的水平线作为对称轴,将图形分为上下两部分,可以发现它们完全重合。

因此,对称轴应该是图2中心的水平线。

练习题3:图3是一个轴对称图形,请找出它的对称轴,并将它画出来。

(插入图3)解析:观察图3,我们可以发现图形在斜线方向上是对称的。

因此,对称轴应该是斜线。

我们可以选择从图形左上角到右下角的线段作为对称轴,将图形分为两部分,可以发现它们完全重合。

因此,对称轴应该是从图3左上角到右下角的线段。

通过以上练习题,我们可以看到轴对称图形的特点和解题方法。

首先,我们需要观察图形,找出它的对称性。

然后,我们可以根据对称性选择合适的对称轴,并将图形分为两部分,使它们完全重合。

最后,我们将对称轴画出来,以便更好地理解和分析图形。

轴对称图形不仅仅是数学学习中的一个概念,它还广泛应用于日常生活和各个领域。

例如,在建筑设计中,设计师经常使用轴对称图形来创造美观和和谐的建筑结构。

在艺术创作中,轴对称图形也是一个常见的元素,可以增加作品的平衡感和美感。

总之,轴对称图形是数学学习中的一个重要概念,通过练习题的解析,我们可以更好地理解和应用它。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档