北京十三中2015-2016学年上学期初二数学期中考试试卷带答案

合集下载

北京十三中八年级(上)期中数学试卷

北京十三中八年级(上)期中数学试卷

期中数学试卷题号一二三四总分得分一、选择题(本大题共8小题,共16.0分)1.彩陶、玉器、青铜器等器物以及壁画、织锦上美轮美奂的纹样,穿越时空,向人们呈现出古代中国丰富多彩的物质与精神世界,各种纹样经常通过平移、旋转、轴对称以及其它几何构架连接在一起,形成复杂而精美的图案,以下图案纹样中,从整体观察(个别细微之处的细节忽略不计),大致运用了旋转进行构图的是()A. 饕餮纹B. 三兔纹C. 凤鸟纹D. 花卉纹2.500米口径球面射电望远镜,简称FAST,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.2018年4月18日,FAST望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为( )A. 0.519×10-2B. 5.19×10-3C. 51.9×10-4D. 519×10-63.下列判断错误的是( )A. 当a≠0时,分式有意义B. 当a=-3时,分式有意义C. 当时,分式的值为0D. 当a=1时,分式的值为14.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A. 150°B. 180°C. 210°D. 225°5.下列各式中,正确的是( )A. =B. =C. =D. =-6.在△ABD与△ACD中,∠BAD=∠CAD,且B点,C点在AD边两侧,则不一定能使△ABD和△ACD全等的条件是( )A. BD=CDB. ∠B=∠CC. AB=ACD. ∠BDA=∠CDA7.课堂上,老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师将题目-给甲,甲一步计算后写出结果-后传给乙,乙一步计算后写出结果后传给丙,丙一步计算后写出结果后传给丁,丁最后算出结果为“1”接力中,自己负责的一步出现错误的是( )A. 甲B. 乙C. 丙D. 丁8.在课堂上,张老师布置了一道画图题:画一个Rt△ABC,使∠B=90°,它的两条边分别等于两条已知线段.小刘和小赵同学先画出了∠MBN=90°之后,后续画图的主要过程分别如图所示.那么小刘和小赵同学作图确定三角形的依据分别是( )A. SAS,HLB. HL,SASC. SAS,AASD. AAS,HL二、填空题(本大题共8小题,共16.0分)9.计算3-3的结果是______.10.如图,要测量池塘两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使A、C、E三点在一条直线上,这时测得______的长就等于AB的长.11.若多项式x2+ax+b可以写成(x+m)2的形式,且ab≠0,则a的值可以是______,b的值可以是______.12.如图,△ABC≌△DEB,AB=DE,∠E=∠ABC,则∠C的对应角为______ ,BD的对应边为______ .13.如图所示的网格是正方形网格,点P到射线OA的距离为m,点P到射线OB的距离为n,则m______n.(填“>”,“=”或“<”)14.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为______cm.15.2019年2月,全球首个5G火车站在上海虹桥火车站启动,虹桥火车站中5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输8千兆数据,5G网络快720秒,求这两种网络的峰值速率,设4G网络的峰值速率为每秒传输x千兆,依题意,可列方程为______.16.北京世界园艺博览会(简称“世园会”)园区2019年4月29日至2019年10月7日在中国北京市延庆区举行,门票价格如表:票种票价(元/人)普通票160指定日优惠票100普通票120平日优惠票80注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期;注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上线上购买世园会门票,票价可打九折,但仅限于普通票.小明全家于9月28日集体入园参观游览,通过计算发现:若提前两天线上购买门票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买优惠票的有______人.三、计算题(本大题共2小题,共12.0分)17.(1)分解因式x(x-a)+y(a-x)(2)分解因式x3y-10x2y+25xy18.先化简,再求值:,其中x满足x2-x-1=0.四、解答题(本大题共9小题,共56.0分)19.计算:(1)(6x4-8x3)÷(-2x2).(2)÷.20.解方程(1)+=1(2)-=21.如图,点A,B,C,D在一条直线上,且AC=BD,若∠1=∠2,EC=FB.求证:△ACE≌△DBF.证明:______22.列方程解应用题:10月1日,正值祖国母亲70岁生日,我校两校区共有4名教师光荣地加入了群众游行--“扬帆远航”方阵;一名老师作为志愿者,负责广场人员的集结和疏散.老师们在周一国旗下讲话时说:“我们的步数、欢呼声、气球浪和笑容都是有指标的”确保队伍行进时做到万无一失.载有国之重器的装甲车,在阅兵时更是精确到秒.从东华表至西华表(东、西华表间的距离为96米)所用的时间是固定的:每辆装甲车必须保证36s之内通过.如果彩排时有两辆装甲车同时从东华表出发,乙的速度是甲的1.1倍,又已知乙到达西华表的时间正好比甲提前3s,那么(1)甲的速度是每秒多少米(结果精确到1米/秒)?(2)这两辆装甲车能顺利完成彩排任务吗?请说明理由.23.如图,点A,E,F,C在同一条直线上,AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,若AB=CD,求证:BD平分EF.24.阅读下列材料:小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当m≠n时,m2+n≠m+n2.可是我见到有这样一个神奇的等式:()2+=+()2(其中a,b为任意实数,且b≠0).你相信它成立吗?”小雨:“我可以先给a,b取几组特殊值验证一下看看.”完成下列任务:(1)请选择两组你喜欢的、合适的a,b的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立(在相应方框内打勾);①当a=______,b=______时,等式______(成立;不成立);②当a=______,b=______时,等式______(成立;不成立).(2)对于任意实数a,b(b≠0),通过计算说明()2+=+()2是否成立.25.阅读理解应用待定系数法:设某一多项式的全部或部分系数为未知数,利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解x3-1.因为x3-1为三次多项式,若能因式分解,则可以分解成一个一次多项式和一个二次多项式的乘积.故我们可以猜想x3-1可以分解成x3-1=(x-1)(x2+ax+b).展开等式右边得:x3+(a-1)x2+(b-a)x-b,根据待定系数法原理,等式两边多项式的同类项的对应系数相等,a-1=0,b-a=0,-b=-1,可以求出a=1,b=1,所以x3-1=(x-1)(x2+x+1).(1)若x取任意值,等式x2+2x+3=x2+(3-a)x+3恒成立,则a=______;(2)已知多项式3x3+x2+4x-4有因式3x-2,请用待定系数法求出该多项式的另一因式.26.几何作图时,我们往往依据以下三个步骤①画草图分析思路②设计画图步骤③回答结论并验证请你按照以上所述,完成下面的尺规作图:已知三条线段h,m,c,求作△ABC,使其BC边上的高AH=h,中线AD=m,AB=c .(1)请先画草图(画出一个即可),并叙述简要的作图思路(即实现的大致作图步骤);步骤如下:(2)完成尺规作图(不要求写作法,作出一个满足条件的三角形即可)27.如图1,在平面直角坐标系xOy中,点A在y轴上,点B是第一象限的点,且AB⊥y轴,且AB=OA,点C是线段OA上任意一点,连接BC,作BD⊥BC,交x轴于点D .(1)依题意补全图1;(2)用等式表示线段OA,AC与OD之间的数量关系,并证明;(3)连接CD,作∠CBD的平分线,交CD边于点H,连接AH,求∠BAH的度数.答案和解析1.【答案】B【解析】解:A、图中利用的是对称,错误;B、图中利用的是旋转,正确;C、图中利用的位似,错误;D、图中利用的是平移,错误;故选:B.根据旋转的性质与特点判断即可.此题考查旋转问题,关键是根据旋转、对称、平移、位似的特点解答.2.【答案】B【解析】解:0.00519=5.19×10-3.故选:B.绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】B【解析】解:A、当a≠0时,分式有意义,正确,不合题意;B、当a=-3时,a2-9=0,则分式无意义,故此选项错误,符合题意;C、当时,分式的值为0,正确,不合题意;D、当a=1时,分式的值为1,正确,不合题意;故选:B.直接利用分式的值为零则分子为零,分母不为零进而得出答案.此题主要考查了分式的值为零的条件,正确把握性质是解题关键.4.【答案】B【解析】【分析】本题考查全等三角形的知识,解答本题的关键是证明△ABC△EDC.根据SAS可证得△ABC△EDC,可得出∠BAC=∠DEC,继而可得出答案.【解答】解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC△EDC(SAS),∴∠BAC=∠DEC,即∠BAC=∠1.,∠1+∠2=180°.故选B.5.【答案】C【解析】解;A、分式的分子分母都乘或除以同一个不为零的整式,故A错误;B、分子除以(a-2),分母除以(a+2),故B错误;C、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C正确;D、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故D错误;故选;C.根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.本题考查了分式的性质,利用了分式的性质.6.【答案】A【解析】解:A、∵∠BAD=∠CAD,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;B、∵∠BAD=∠CAD,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);C、∵∠BAD=∠CAD,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);D、∵∠BAD=∠CAD,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故选:A.利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.7.【答案】B【解析】解:出现错误的是乙,正确结果为,故选:B.检查四名同学,找出错误的步骤即可.此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8.【答案】A【解析】解:∵小刘同学先确定的是直角三角形的两条直角边,∴确定依据是SAS定理;∵小赵同学先确定的是直角三角形的一条直角边和斜边,∴确定依据是HL定理.故选:A.分别根据全等三角形的判定定理进行解答即可.本题考查的是作图-复杂作图,熟知全等三角形的判定定理是解答此题的关键.9.【答案】【解析】解:3-3==.故答案为:.直接利用负指数幂的性质化简得出答案.此题主要考查了负指数幂的性质,正确掌握定义是解题关键.10.【答案】DE【解析】解:根据题意可知:∠B=∠D=90°,BC=CD,∠ACB=∠ECD,即∴△ABC≌△EDC(ASA),∴AB=DE.故答案为:DE.由对顶角相等,两个直角相等及BD=CD,可以判断两个三角形全等;所以AB=DE.此题主要考查了全等三角形的应用,解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系,做题时要认真观察图形,根据已知选择方法.11.【答案】-4 4【解析】解:∵多项式x2+ax+b可以写成(x+m)2的形式,且ab≠0,∴x2+ax+b=(x+m)2,∴a可以为-4,b可以为4,即x2-4x+4=(x-2)2,故答案为:-4,4.此题是一道开放型的题目,答案不唯一,只要符合完全平方公式即可.本题考查了完全平方公式,能熟记完全平方公式是解此题的关键,a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.12.【答案】∠DBE;CA【解析】解:∵△ABC≌△DEB,AB=DE,∠E=∠ABC,∴∠C的对应角为∠DBE,BD的对应边为CA.要找准对应边、对应角要根据告诉的已知条件,并结合图形,一般来说,大对大,小对小,中间对中间,本题中∠C,∠DBE是处于中间大小的角,是对应角,BD与CA时最短的边,是对应边.本题考查的知识点为:全等三角形的对应边,对应角的找法.应注意各对应顶点在书写时应在同一位置,解题关键是找准对应边和对应角.13.【答案】>【解析】解:设OP经过格点C,∵点C到OA的距离为为,点C到OB的距离为1,过P作PG⊥OA于G,过P作PH⊥OB于H,∴CE∥PG,CF∥PH,∴==,∴===,∴m>n,故答案为:>.根据勾股定理和平行线分线段成比例定理即可得到结论.本题考查了勾股定理,解题的关键是利用勾股定理解答.14.【答案】9【解析】解:DE=CD,BE=BC=7cm,∴AE=AB-BE=3cm,∴△AED的周长=AE+AD+DE=AC+AE=6+3=9cm.由折叠中对应边相等可知,DE=CD,BE=BC,可求AE=AB-BE=AB-BC,则△AED的周长为AD+DE+AE=AC+AE.本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.15.【答案】-=720【解析】解:设4G网络的峰值速率为每秒传输x千兆,则5G网络的峰值速率为每秒传输10x千兆,根据题意,得-=720.故答案为-=720.根据题意,列出方程即可.本题考查了由实际问题抽象出分式方程,理解题意,找到等量关系列出方程是解题的关键.16.【答案】3【解析】解:设该家庭中购买普通票的有x人,则可以购买优惠票的有人,依题意,得:120x-120×0.9x=1080-996,解得:x=7,∴=3.故答案为:3.设该家庭中购买普通票的有x人,则可以购买优惠票的有人,根据网络购票优惠的钱数,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入中即可求出结论.此题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.17.【答案】(1)解:x(x-a)+y(a-x)=x(x-a)-y(x-a)=(x-a)(x-y);(2)解:x3y-10x2y+25xy=xy(x2-10x+25)=xy(x-5)2.【解析】(1)直接提取公因式(x-a)分解因式即可.(2)先提取公因式xy,然后利用完全平方公式进一步进行因式分解.考查了因式分解-提公因式法.当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.18.【答案】解:原式=×,=×=,∵x2-x-1=0,∴x2=x+1,将x2=x+1代入化简后的式子得:==1.【解析】先通分,计算括号里的,再把除法转化成乘法进行约分计算.最后根据化简的结果,可由x2-x-1=0,求出x+1=x2,再把x2=x+1的值代入计算即可.本题考查了分式的化简求值.解题的关键是注意对分式的分子、分母因式分解,除法转化成下乘法.19.【答案】解:(1)原式=-3x2+4x;(2)原式=•=.【解析】(1)原式利用多项式除以单项式法则计算即可求出值;(2)原式利用除法法则变形,约分即可得到结果.此题考查了分式的乘除法,以及整式的除法,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)去分母得:x2+3x+6x-18=x2-9,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:x2-4x+4-16=x2+4x+4,解得:x=-2,经检验x=-2是增根,分式方程无解.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.【答案】∵∠1=∠2,∴∠FBD=∠ECA,∵FB=CE,BD=AC,∴△DBF≌△ACE(SAS).【解析】证明:∵∠1=∠2,∴∠FBD=∠ECA,∵FB=CE,BD=AC,∴△DBF≌△ACE(SAS).故答案为:∵∠1=∠2,∴∠FBD=∠ECA,∵FB=CE,BD=AC,∴△DBF≌△ACE(SAS).根据SAS证明三角形全等即可.本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:(1)设甲车的速度为每秒x米,则乙车的速度为每秒1.1x米,依题意,得:-=3,解得:x=,经检验,x=是原方程的解,且符合题意,∴x=≈3.答:甲的速度约是每秒3米.(2)96÷=33(秒),33-3=30(秒),∵33<36,30<36,∴这两辆装甲车能顺利完成彩排任务.【解析】(1)设甲车的速度为每秒x米,则乙车的速度为每秒1.1x米,根据时间=路程÷速度结合乙到达西华表的时间正好比甲提前3s,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据时间=路程÷速度可求出甲车所用时间,结合甲、乙两车所用时间之间的关系可求出乙车所用时间,再与36秒进行比较后即可得出结论.本题考查了分式方程的应用以及近似数和有效数字,找准等量关系,正确列出分式方程是解题的关键.23.【答案】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵DE⊥AC,BF⊥AC,∴∠BFA=∠DEC=90°,在Rt△ABF和Rt∠CDE中,,∴Rt△ABF≌Rt∠CDE(HL).∴BF=DE,在△BFG和△DEG中,,∴△BFG≌△DEG(AAS),∴EG=FG,即BD平分EF.【解析】根据HL证出Rt△ABF≌Rt△CDE,得出BF=DE,再根据AAS证出△BFG≌△DEG 得出EG=FG,从而证得结论.本题考查了全等三角形的性质和全等三角形判定的应用,注意:三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.全等三角形的对应边相等,对应角相等.24.【答案】解:(1)①2,3,成立;②3,5,成立;(2)∵()2+==,+()2=+=.所以等式()2+=+()2成立.【解析】解:(1)例如:①当a=2,b=3时,等式()2+=()+()2成立,故答案为:2,3,成立;②当a=3,b=5时,等式()2+=+()2成立,故答案为:3,5,成立;(2)见答案.【分析】(1)利用特殊值代入检验即可;(2)两边分别通分计算即可判定;本题考查分式的化简求值,分式的基本性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.【答案】1【解析】解:(1)∵x2+2x+3=x2+(3-a)x+3,∴3-a=2,a=1;故答案为:1;(2)设3x3+x2+4x-4=(3x-2)(x2+ax+2)=3x3+(3a-2)x2+(6-2a)x-4,3a-2=1,a=1,多项式的另一因式是x2+x+2.(1)直接对比系数得出答案即可;(2)3x3+x2+4x-4=(3x-2)(x2+ax+2)进一步展开对比系数得出答案即可.此题考查因式分解的实际运用,理解题意,掌握待定系数法分解因式的方法与步骤是解决问题的关键.26.【答案】解:(1)画草图进行分析先画一条直线,在直线上任意取两点,作线段的垂直平分线,在垂直平分线上截取AD=h,再以点A为圆心,m、c长为半径画弧,交直线于点D、B ,以点D为圆心,BD长为半径画弧交直线于点C,即可画出图形;(2)如图所示:△ABC即为所求作的图形.【解析】(1)画草图进行分析先画一条直线,在直线上任意取两点,作线段的垂直平分线,在垂直平分线上截取AD=h,再以点A为圆心,m、c长为半径画弧,交直线于点D、B ,以点D为圆心,BD长为半径画弧交直线于点C,即可画出图形;(2)利用尺规作图即可.本题考查了作图-复杂作图,解决本题的关键是先分析再利用尺规作图.27.【答案】解:(1)如图1所示,(2)OA+AC=OD,如图1,过B作BE⊥x轴于E,则四边形AOEB是矩形,∴BE=AO,∠ABE=90°,∵AB=AO,∴AB=BE,∵BD⊥BC,∴∠CBD=90°,∴∠ABC=∠DBE,在△ABC与△BDE中,,∴△ABC≌△EBD(ASA),∴AC=DE,∵OE=AB=OA,∴AO+AC=OD;(3)如图2,由(1)知:△ABC≌△EBD,∴BC=BD,∵BD⊥BC,∴△BCD是等腰直角三角形,∴∠BCD=45°,∵BH平分∠CBD,∴∠BHC=90°,∵∠BAO=90°,过H作HN⊥OA,HM⊥AB,∴四边形ANMH是矩形,∴∠NHM=90°,∴∠NHC=∠MHB,∴△CNH≌△BHM(AAS),∴HN=HM,∴AH平分∠CAB,∴∠BAH=45°.【解析】(1)根据题意画出图形即可;(2)过B作BE⊥x轴于E,则四边形AOEB是矩形,根据矩形的想知道的BE=AO,∠ABE=90°,等量代换得到AB=BE推出△ABC≌△EBD,根据全等三角形的性质得到AC=DE,等量代换即可得到结论;(3)根据全等三角形的性质得到BC=BD,推出△BCD是等腰直角三角形,于是得到∠BCD=45°,根据等腰三角形的性质得到∠BHC=90°,过H作HN⊥OA,HM⊥AB,证明△CNH≌△BHM,可得出HN=HM,则AH平分∠CAB,可得到结论.本题是三角形综合题,考查了全等三角形的判定和性质,坐标与图形的性质,角平分线的定义,等腰直角三角形的判定和性质,正确的画出图形是解题的关键.。

北京 八年级(上)期中数学试卷(含答案)

北京 八年级(上)期中数学试卷(含答案)

年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.图中的两个三角形全等,则∠α=()A. B. C. D.2.下列条件中,不能判定三角形全等的是()A. 三条边对应相等B. 两边和其中一角对应相等C. 两边和夹角对应相等D. 两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A. B.C. D.4.下列各式中,正确的是()A. B. C. D.5.若分式的值为0,则x应满足的条件是()A. B. C. D.6.下列各分式中,最简分式是()A. B. C. D.7.若x2-2(m-3)x+16是完全平方式,则m的值等于()A. B. 7 C. 7或 D. 7或8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.B.C. ≌D.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A. B. C. D. 无法确定10.如图,在ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S ABD:S ACD=()A. 3:4B. 4:3C. 16:9D. 9:16二、填空题(本大题共8小题,共16.0分)11.计算:3-2=______.12.若(x-2)0有意义,则x的取值范围是______ .13.分解因式:x2+x-2= ______ .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是______ .15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得AOB≌ DOC,你补充的条件是______ .16.在ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为______ cm.17.若x2+4x+1=0,则x2+= ______ .18.请同学们观察 22-2=2(2-1)=2,23-22=22(2-1)=22,24-23=23(2-1)=23…(1)写出表示一般规律的第n个等式______ ;(2)根据所总结的规律计算210-29-28-…-22-2= ______ .三、计算题(本大题共3小题,共16.0分)19.分解下列因式:(1)9a2-1(2)p3-16p2+64p.20.先化简,再求值:,其中x=5.21.解分式方程:.四、解答题(本大题共9小题,共38.0分)22.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x-3-3(x+1)(C)=-2x-6(D)(1)上述计算过程中,从哪一步开始出现错误:______ ;(2)从B到C是否正确,若不正确,错误的原因是______ ;(3)请你正确解答.23.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.24.计算(1)-.(2)()-1+(-1)+(2-)0+|-3|.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:ABD≌ ACE.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.在AFD和BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.若x2+y2-4x+2y+5=0,求()2010+y2010的值.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.已知:在ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.答案和解析1.【答案】C【解析】解:∵两个三角形全等,∴α=58°.故选C.根据全等三角形对应角相等解答即可.本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.【答案】B【解析】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.根据全等三角形的判定定理逐个判断即可.本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.【答案】C【解析】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2-1=(x+1)(x-1),正确;D、结果不是积的形式,故选项错误.故选:C.根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.【答案】D【解析】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.利用分式的基本性质对各式进行化简即可.本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.【答案】B【解析】解:由题意得:x2-4=0且x+2≠0,解得:x=2.故选:B.根据分式值为0的条件可得x2-4=0且x+2≠0,再解出x的值即可.此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.【答案】C【解析】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)最简分式是指分子和分母没有公因式.本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.【答案】D【解析】解:依题意,得m-3=±4,解得m=7或-1.故选:D.这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.【答案】D【解析】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴ APE≌ APF(HL∴AE=AF故选D.题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.本题主要考查平分线的性质,由已知证明APE≌ APF是解题的关键.9.【答案】A【解析】解:7-3<2x<7+3,即2<x<5.故选A.根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.【答案】B【解析】解:∵AD是ABC的角平分线,∴设ABD的边AB上的高与ACD的AC上的高分别为h1,h2,∴h1=h2,∴ ABD与ACD的面积之比=AB:AC=8:6=4:3,故选:B.利用角平分线的性质,可得出ABD的边AB上的高与ACD的AC上的高相等,估计三角形的面积公式,即可得出ABD与ACD的面积之比等于对应边之比.本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.11.【答案】【解析】解:3-2=.故答案为.根据负整数指数为正整数指数的倒数计算.本题主要考查了负指数幂的运算,比较简单.12.【答案】x≠2【解析】解:由题意,得x-2≠0,解得x≠2,故答案为:x≠2.根据非零的零次幂等于1,可得答案.本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.【答案】(x-1)(x+2)【解析】解:∵(-1)×2=-2,2-1=1,∴x2+x-2=(x-1)(x+2).故答案为:(x-1)(x+2).因为(-1)×2=-2,2-1=1,所以利用十字相乘法分解因式即可.本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.【答案】两角和它们的夹边分别相等的两个三角形全等【解析】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.【答案】AO=DO或AB=DC或BO=CO【解析】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定AOB≌ DOC.故填AO=DO或AB=DC或BO=CO.本题要判定AOB≌ DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.【答案】1.5【解析】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.【答案】14【解析】解:∵x2+4x+1=0,∴x+4+=0,即x+=-4,∴(x+)2=(-4)2,∴x2+2+=16,∴x2+=14.故答案为14.由x2+4x+1=0可得x≠0,两边除以x可得到x+=-4,再两边平方,根据完全平方公式展开即可得到x2+的值.本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.【答案】2n+1-2n=2n;2【解析】解:(1)观察,发现规律:22-2=2(2-1)=2,23-22=22(2-1)=22,24-23=23(2-1)=23,…,∴第n个等式为2n+1-2n=2n.故答案为:2n+1-2n=2n.(2)∵2n=2n+1-2n,∴210-29-28-…-22-2=210-210+29-29+28-28+27-…-23+22-2=22-2=2.故答案为:2.(1)根据等式的变化找出变化规律“第n个等式为2n+1-2n=2n”,此题得解;(2)根据2n=2n+1-2n将算式210-29-28-…-22-2进行拆项,合并同类项即可得出结论.本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.19.【答案】解:(1)原式=(3a+1)(3a-1);(2)原式=p(p2-16p+64)=p(p-8)2.【解析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.【答案】解:==-(3分)=-===,(4分)当x=5时,原式==.(5分)【解析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.21.【答案】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=-5,∴系数化成1得:x=-,经检验x=-是原方程的解,∴原方程的解是x=-.【解析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.22.【答案】A;不能去分母【解析】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.异分母分式相加减,先化为同分母分式,再加减.本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.23.【答案】解:如图所示:P点即为所求.【解析】400米=40000cm1:20000=PB:40000得PB=2cm作出角平分线,进而截取PB=2cm进而得出答案.此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.24.【答案】解:(1)原式===;(2)原式=2-1+1+3=5.【解析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.25.【答案】证明:∵∠1=∠2,∴∠EAC =∠BAD ,在 DAB 和 EAC 中,∴ ABD ≌ ACE (SAS )【解析】首先得出∠EAC=∠BAD ,进而利用全等三角形的判定方法(SAS )得出即可. 此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.【答案】证明:(1)∵AB ⊥BD ,CD ⊥BD ,∴∠ABD =∠CDB =90°,∴在Rt ABD 和Rt CDB 中,公共边 已知, ∴Rt ABD Rt CDB (HL ),∴AB =DC (全等三角形的对应边相等);(2)∵Rt ABD Rt CDB [由(1)知],∴∠ADB =∠CBD (全等三角形的对应角相等),∴AD ∥BC (内错角相等,两直线平行).【解析】(1)易证 ABD ≌ CDB ,根据全等三角形的对应边相等知AB=DC ; (2)因为 ABD ≌ CDB ,所以全等三角形的对应角∠ADB=∠CBD .然后由平行线的判定定理知AD ∥BC .本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .以及三角形全等的性质:全等三角形的对应边、对应角相等.27.【答案】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE =CF ,∴AF =CE ,∵AD ∥BC ,∴∠A =∠C ,又AD =BC ,∴ ADF ≌ CBE (SAS ),【解析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.【答案】解:∵x2+y2-4x+2y+5=0,∴x2-4x+4+y2+2y+1=0,∴(x-2)2+(y+1)2=0,∴x-2=0,y+1=0,解得,x=2,y=-1,∴()2010+y2010==1+1=2.【解析】根据x2+y2-4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.【答案】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在ABE和ADN中,∴ ABE≌ ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在AEM和ANM中,∴ AEM≌ ANM(SAS),∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN-BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴ ABM≌ ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°-45°=45°=∠MAN,∵在AMN和AEN中,∴ AMN≌ AEN(SAS),∴MN=EN,∵DN-DE=EN,∴DN-BM=MN.【解析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证ABE≌ ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证AEM≌ ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证ABM≌ ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证AMN≌ AEN,推出MN=EN即可.本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.【答案】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt EDH与Rt EDG中,,∴Rt EDH≌Rt EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH-∠ECD=(∠BDH-∠BCA)=×20°=10°.【解析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt EDH≌Rt EDG,根据全等三角形的性质和角的和差关系可求∠CED.本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.。

北京上学期初中八年级期中考试数学试卷(附答案解析)

北京上学期初中八年级期中考试数学试卷(附答案解析)

北京上学期初中八年级期中考试数学试卷(考试时间:100分钟 满分:100分)一、选择题:本大题共10小题,每题2分,共20分。

1. 下列平面图形中,不是..轴对称图形的是( )A. B. C. D.2. 下列运算正确的是( ) A. 235a b ab += B .(ab)2=a 2b 2C. 236a a a ⋅=D. 235()a a =3. 如果等腰三角形的一个内角等于110°,则它的底角是( ) A. 35° B. 55° C. 70° D. 35°或70°4. 已知:21m =,23n =,则2m n +=( ) A. 2B. 3C. 4D. 65. 如图,在△ABC 中,AB =AC ,D 是BC 的中点,下列结论不正确...的是( )A. ∠B =∠CB. AD ⊥BCC. AD 平分∠BACD. AB =2BD6. 如图,△ACB ≌△DCE ,且∠BCE =60°则∠ACD 的度数为( )A. 40°B. 50°C. 60°D. 70°7. 如图,在∠ACB 的两边上分别取点A 、B 使得CA =CB ,将两个全等的直角三角板的直角顶点分别放在点A 、B 处,一条直角边分别落在∠ACB 的两边上,另一条直角边交于点P ,连接CP ,则判定△ACP ≌△BCP 的依据是( )A. AASB. ASAC. SSSD. HL8. 点P (2,3)关于x 轴的对称点是( ) A. (2,-3)B. (-2,3)C. (-2,-3)D. (-3,-2)9. 如图,△ABC 中,∠ABC =∠ACB ,D 为BC 上的一点,BF =CD ,CE =BD ,则∠EDF 等于( )A. 90° -∠AB. 90° -21∠A C. 180° -∠A D. 45° -21∠A 10. 如图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,延长AM 交BC 于点N ,连接DM 。

2016十三中初二(上)期中数学

2016十三中初二(上)期中数学

2016十三中初二(上)期中数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列图形中为轴对称图形的是()A.B. C. D.2.(3分)下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上饮用水的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民每天的上网时长3.(3分)下列各式从左到右的变形属于分解因式的是()A.(a+1)(a﹣1)=a2﹣1 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2﹣1=x(x﹣)4.(3分)如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠A=∠EDF C.BC∥EF D.∠B=∠E5.(3分)如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°6.(3分)如图,用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上分别取点M、N,使OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP.可证得△POM≌△PON,OP平分∠AOB.以上依画法证明△POM≌△PON根据的是()A.SSS B.SAS C.AAS D.HL7.(3分)一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成()A.10组 B.9组C.8组D.7组8.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.59.(3分)如果多项式x2+ax+b可因式分解为(x﹣1)(x+2),则a、b的值为()A.a=1,b=2 B.a=1,b=﹣2 C.a=﹣1,b=﹣2 D.a=﹣1,b=210.(3分)已知:如图,小强拿一张正方形的纸,沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线剪去一个角,再打开后的形状是()A.B.C.D.二、填空题(11-15,17,18每小题2分,16题3分,共17分)11.(2分)已知点A 的坐标为(3,﹣2),则点A关于x轴对称点的坐标为.12.(2分)分解因式:x2y﹣y=.13.(2分)如果想表示我国从1995﹣2016年间国民生产总值的变化情况,最适合采用的统计图是.14.(2分)如图,在△ABC中,∠A=90°,BD平分∠ABC,∠C=30°,AD=2,AB=2,那么S△ABC=.15.(2分)如图,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为.16.(3分)在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标.17.(2分)如果多项式y2﹣2my+1是完全平方式,那么m=.18.(2分)等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的一个底角的度数为.三、解答题(每小题12分,共18分)19.(12分)分解因式:(1)12ab﹣6b(2)9a2﹣1(3)m2﹣5m﹣36(4)3x2﹣6xy+3y2.20.(6分)利用因式分解计算:(1)5032﹣4972(2)1722+56×172+282.四、作图题:(每题4分,共8分)21.(4分)某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)22.(4分)如图,等边三角形ABC,D为BC边的中点,AD=12,P为AC的中点,问在AD是否存在一点Q,使CQ+PQ 最小,如果存在,写出作图思路,画出Q的位置,并求出这个最小值;如果不存在,说明理由.五、解答题(第23-25每题4分,26-28每题5分,共27分)23.(4分)已知:如图,CB=DE,∠B=∠E,∠BAE=∠CAD.求证:AC=AD.24.(4分)已知:如图,点A,B,C,D在一条直线上,AB=CD,AE∥FD,且∠E=∠F.求证:EC=FB.25.(4分)为了解今年全县2000名初四学生“创新能力大赛”的笔试情况.随机抽取了部分参赛同学的成绩,整理并制作如图所示的图表(部分未完成).请你根据表中提供的信息,解答下列问题:(1)此次调查的样本容量为;(2)在表中:m=;n=;(3)补全频数分布直方图;(4)如果比赛成绩80分以上(含80分)为优秀,那么你估计该县初四学生笔试成绩的优秀人数大约是名.分数段频数频率60≤x<70 30 0.170≤x<80 90 n80≤x<90 m 0.490≤x<100 60 0.226.(5分)已知在△ABC中,三边长a、b、c满足a2+8b2+c2﹣4b(a+c)=0,试判断△ABC的形状并加以说明.27.(5分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC 全等.28.(5分)已知,如图:AD是△ABC的中线,AE⊥AB,AE=AB,AF⊥AC,AF=AC,连结EF.试猜想线段AD与EF 的关系,并证明.数学试题答案一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.2.【解答】A、调查市场上饮用水的质量情况,适合抽样调查,故A不符合题意;B、调查某品牌圆珠笔芯的使用寿命,适合抽样调查,故B不符合题意;C、调查乘坐飞机的旅客是否携带了危禁物品,是重大的调查,适合普查,故C符合题意;D、调查我市市民每天的上网时长,适合抽样调查,故D不符合题意;故选:C.3.【解答】A、是整式的乘法,故A不符合题意;B、x2﹣4=(x+2)(x﹣2),故B符合题意;C、没把一个多项式化为几个整式的积的形式,故C不符合题意;D、没把一个多项式化为几个整式的积的形式,故D不符合题意;故选:B.4.【解答】∵AB=DE,BC=EF,∴当∠B=∠E时,可利用“SAS”判断△ABC≌△DEF.故选D.5.【解答】∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE﹣∠DAC=70°﹣35°=35°.故选B.6.【解答】∵OM=ON,OP=OP,∠OMP=∠ONP=90°∴△OPM≌△OPN所用的判定定理是HL.故选D.7.【解答】在样本数据中最大值为143,最小值为50,它们的差是143﹣50=93,已知组距为10,那么由于=,故可以分成10组.故选:A.8.【解答】如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.9.【解答】根据题意得:x2+ax+b=(x﹣1)(x+2)=x2+x﹣2,则a=1,b=﹣2,故选B10.【解答】如图所示:,故选:C.二、填空题(11-15,17,18每小题2分,16题3分,共17分)11.【解答】点A 的坐标为(3,﹣2),则点A关于x轴对称点的坐标为(3,2),故答案为:(3,2),12.【解答】x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).13.【解答】想表示我国从1995﹣2016年间国民生产总值的变化情况,最适合采用的统计图是折线统计图,故答案为:折线统计图.14.【解答】:作DE⊥BC于E,∵BD平分∠ABC,∠A=90°,DE⊥BC,∴DE=DA=2,∵∠A=90°,∠C=30°,∴BC=2AB=4,∴S△ABC=S△ABD+S△DBC=×AB×AD+×BC×DE=6,故答案为:6.15.【解答】:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵P1P2=6,∴△PMN的周长=6.故答案为:6.16.【解答】如图所示:有3个点,当E在E、F、N处时,△ACE和△ACB全等,点E的坐标是:(1,5),(1,﹣1),(5,﹣1),故答案为:(1,5)或(1,﹣1)或(5,﹣1).17.【解答】∵y2﹣2my+1是一个完全平方式,∴﹣2my=±2y,∴m=±1.故答案是:±1.18.【解答】当这个三角形是锐角三角形时:高与另一腰的夹角为40,则顶角是50°,因而底角是65°;如图所示:当这个三角形是钝角三角形时:∠ABD=40°,BD⊥CD,故∠BAD=50°,所以∠B=∠C=25°因此这个等腰三角形的一个底角的度数为25°或65°.故填25°或65°.三、解答题(每小题12分,共18分)19.【解答】解:(1)原式=6b(2a﹣1);(2)原式=(3a+1)(3a﹣1);(3)原式=(m﹣9)(m+4);(4)原式=3(x2﹣2xy+y2)=3(x﹣y)2.20.【解答】解:(1)原式=(503+497)×(503﹣497)=1000×6=6000;(2)原式=1722+2×28×172+282=(172+28)2=2002=40000.四、作图题:(每题4分,共8分)21.【解答】解:如图所示,点M就是所要求作的建立超市的位置.22.【解答】解:存在.如图,连接PB交AD于点Q,此时QP+CQ的值最小.∵△ABC是等边三角形,BD=CD,∴QB=QC,∴CQ+PQ=BP+PQ=PB,∵AP=PC,BD=CD,∴AD、BP是△ABC的中线,且AD=BP=12.∴CQ+PQ的最小值为12.五、解答题(第23-25每题4分,26-28每题5分,共27分)23.【解答】证明:∵∠BAE=∠CAD∴∠BAE﹣∠CAE=∠CAD﹣∠CAE∴∠BAC=∠EAD,在△ABC与△AED中,,∴△ABC≌△AED(AAS),∴AC=AD.24.【解答】证明:∵AE∥DF,∴∠A=∠D.∵AB=CD,∴AB+BC=CD+BC.即AC=BD.在△AEC和△DFB中,,∴△AEC≌△DFB(AAS).∴EC=BF.25.【解答】解:(1)样本容量是:30÷0.1=300;(2)m=300×0.4=120,n==0.3;(3)画图如下:(4)2000×(0.4+0.2)=1200(人).26.【解答】解:三角形是等腰三角形.a2+8b2+c2﹣4b(a+c)=0,a2+8b2+c2﹣4ab﹣4bc=0,a2﹣4ab+4b2+c2﹣4bc+4b2=0,(a﹣2b)2+(c﹣2b)2=0,则a=2b,c=2b,∴a=c,则三角形是等腰三角形.27.【解答】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).28.【解答】猜想:EF=2AD,EF⊥AD.证明:延长AD到M,使得AD=DM,连接MC,延长DA交EF于N,∴AD=DM,AM=2AD,∵AD是△ABC的中线,∴BD=CD,∵在△ABD和△MCD中,,∴△ABD≌△MCD,(SAS)∴AB=MC,∠BAD=∠M,∵AB=AE,∴AE=MC,∵AE⊥AB,AF⊥AC,∴∠EAB=∠FAC=90°,∵∠FAC+∠BAC+∠EAB+∠EAF=360°,∴∠BAC+∠EAF=180°,∵∠CAD+∠M+∠MCA=180°,∴∠CAD+∠BAD+∠MCA=180°,即∠BAC+∠MCA=180°,∴∠EAF=∠MCA.∵在△AEF和△CMA中,,∴△AEF≌△CMA,(SAS)∴EF=AM,∠CAM=∠F,∴EF=2AD;∵∠CAF=90°,∴∠CAM+∠FAN=90°,∵∠CAM=∠F,∴∠F+∠FAN=90°,∴∠ANF=90°,∴EF⊥AD.word下载地址。

20152016学年度北京市第十三中学分校初二上学期中数学试题最新版.doc

20152016学年度北京市第十三中学分校初二上学期中数学试题最新版.doc

第Ⅰ卷一、选择题:(每小题3分,共30分) 1.要使分式15-x 有意义,则x 的取值范围是( ). A .1x ≠ B .1x > C .1x < D . 1x ≠-2.计算32-的结果是( ).A .6-B . 8-C .81- D .813.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线上取两点C 、D ,使 BC=CD,再作出BF 的垂线DE ,使E 与A 、C 在一条直线上(如图所示),可以测得DE 的长就是AB 的长(即测得河宽),可由△EDC ≌△ABC 得到,判定这两个三角形全等的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角4.若分式211x x --的值为0,则x 的值为( )A .1B .—1C .±1D .05.下列各式中,正确的是( ).A .2121+=++a b a b B .21422-=--a a aC . 22)1(111--=-+a a a a D .a b a b --=--112015---2016学年度北京市第十三中学分校 第一学期期中 八年级 数 学 试 卷(A 卷)第3题图6. 如图,已知△ABC 的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC 全等的三角形是( )A. 只有乙B. 只有丙C. 甲和乙D. 乙和丙7.某化肥厂计划在x 天内生产化肥120吨,由于采用了新技术,每天比原来生产3吨,实际生产180吨与原计划生产120吨所用的时间相等,那么适合x 的方程是 ( ) A .x x 1803120=+ B .x x 1803-120= C .3180120+=x x D .x x 1803120=+ 8. 如图,已知AD AE =,添加下列条件仍无法证明 ABE ACD ∆≅∆的是( ) A .AB AC = B . BE CD = C . B C ∠=∠ D . ADC AEB ∠=∠9.如图,正方形ABCD 的边长为4,将一个足够大的直角三角板的直角顶点放于点A 处,该三角板的两条直角边与CD 交于点F ,与CB 延长线交于点E .四边形AECF 的面积是( ).A .16B .12C .8D .410.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:Ba 4165a41甲乙74丙6题图8题图9题图作法:(1) 如图所示,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ; (2) 画一条射线O ’A ’,以点O ’为圆心,OC 长为半径画弧,交O ’A ’于点C ’; (3) 以点C ’为圆心,CD 长为半径画弧,与第2步中所画的弧相交于点D ’; (4) 过点D ’画射线O ’B ’,则∠A ’O ’B ’=∠AOB对于“想一想”中的问题,下列回答正确的是( )A .根据“边边边”可知,△'''C O D ≌△COD ,所以∠'''A OB =∠AOB B .根据“边角边”可知,△'''C OD ≌△COD ,所以∠'''A O B =∠AOB C .根据“角边角”可知,△'''C O D ≌△COD ,所以∠'''A O B =∠AOB D .根据“角角边”可知,△'''C O D ≌△COD ,所以∠'''A O B =∠AOB第Ⅱ卷二、填空题:(每小题3分,共18分)11.计算:22x yx y x y+++= . 12.因式分解: x 2y —3xy = .13.若分式方程2321--=+-x xa x 有增根,则a 的值是 . 14. 如图,三角形纸片ABC ,10cm 7cm 6cm AB BC AC ===,,,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则AED △的周长为 . 15. 已知41-=+x x ,则221xx +的值为 .16.如图,一个粒子在第一象限内及x 轴、y 轴上运动,在第一分钟内它从原点运动到(1,0),而后它接着按图示在x 轴、y轴平行的方向上来回运动,且每分钟移14题图16题图动一个长度单位,那么在2015分钟后这个粒子所处的位置 (坐标)是 .三、解答题:(共52分,17、18、19题,共24分,每小题4分;20、21、22、23题,每题5分,共20分;24题3分、25题5分) 17. 因式分解:(1)a ab ab 442+- (2)b a b a ++-2218.计算:(1) 11142-++-a aa a (2)23221211a a a a a a --÷+++ 19.解方程: (1)2353114=-+--x x x (2)22416222-+=--+-x x x x x20. 已知:如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =.求证:A E ∠=∠.21. 列方程解应用题:小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.EDCBA22.先化简,再求值:122)121(22++-÷+---x x xx x x x x ,其中x 满足x 2﹣x ﹣1=0.23.已知:如图,点E 在△ABC 外部,点D 在边BC 上,DE 交AC 于F ,若∠1=∠2=∠3, AC=AE. 求证:△ABC ≌△ADE.24. 阅读下面材料:在数学课上,老师提出如下问题:BACDEF123小芸的作法如下:请你跟随小芸的叙述,在下图中完成..这个尺规作图老师说:“小芸的作法正确.” 请回答:小芸的作图依据是________________________________________________25.已知:小明在AOB ∠的两边上分别取点M ,N ,使得OM ON =,并把两个完全一样的含有30°的直角三角板按如图所示的位置进行放置,两个直角三角板的斜边交于点P .小明说:“射线OP 是AOB ∠的平分线”请问:小明的说法正确吗?若正确,请给出证明,若的长为半径画弧,两弧在∠AOB 的内部相交于不正确,请说明理由.答:小明的说法____________________________草稿纸考生须知本附加题共20分,得分不计入总分,请实验班和有能力的同学在完成好100分试卷的前提下,完成以下题目.2015---2016学年度北京市第十三中学分校第一学期期中八年级数学试卷(B卷)1. 已知:a 2+b 2—12a —8b +52=0(1)则=a ;=b ;(2)若a 、b 、c 是三角形的三边,且c 为最长边,则c 的取值范围是___________.2.关于x 的分式方程1131=-+-xx m 的解为正数 (1)用含m 的代数式表示该分式方程的解____________________ (2)则m 的取值范围是 . 3.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26 cm ,宽为x cm ,分别回答下列问题: (1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求x 的取值范围. (2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点A 的距离(用x 表示).4.(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE=BD+CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由. (3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.。

2015-2016学年新课标人教版八年级(上)期中数学试卷及答案

2015-2016学年新课标人教版八年级(上)期中数学试卷及答案

2015-2016学年八年级(上)期中数学试卷一、选择题.(每小题3分,共24分)1.如图,轴对称图形有()A.3个B.4个C.5个D.6个2.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.93.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60° B.90° C.120° D.150°4.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A. 3 B. 2 C.D. 15.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C6.已知点P(﹣2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A. 1 B.﹣1 C. 5 D.﹣57.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A. 5 B. 4 C. 3 D. 28.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),则经过第2014次变换后所得A点坐标是()A.(a,﹣b)B.(﹣a,﹣b)C.(﹣a,b)D.(a,b)二、填空题.(每小题3分,共21分)9.已知△ABC的一个外角为50°,则△ABC一定是三角形.10.要使五边形木架(用5根木条钉成)不变形,至少要再钉根木条.11.如图,△ABE≌△ACD,点B、C是对应顶点,△ABE的周长为32,AB=14,BE=11,则AD的长为.12.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为.13.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.14.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.15.已知A(﹣1,﹣2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.三、解答题.(本大题共8个小题,满分75分)16.如图,∠A=90°,E为BC上的一点,A点和E点关于BD的对称,B点、C点关于DE 对称,求∠ABC和∠C的度数.17.已知:如图AD⊥BE,垂足C是BE的中点,AB=DE.AB与DE有何位置关系?请说明理由.18.如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.19.如图,BD是∠ABC的角平分线,DE⊥AB于点E,DF⊥BC于点F,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为cm.20.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.21.(10分)(2012•泸州)如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.22.(10分)(2012秋•宁江区校级期末)在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=40°,求∠EBC的度数;(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.23.(10分)(2014秋•扶沟县期中)已知△ABC中,三边长a,b,c都是整数,且满足a >b>c,a=8,那么满足条件的三角形共多少个?2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一、选择题.(每小题3分,共24分)1.如图,轴对称图形有()A.3个B.4个C.5个D.6个考点:轴对称图形.分析:根据轴对称图形的概念结合图形求解.解答:解:轴对称图形有:第一个、第二个、第三个、第五个.故选B.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.9考点:多边形内角与外角.专题:计算题.分析:根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.解答:解:∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°﹣150°=30°,∴这个正多边形的边数==12.故选A.点评:本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.3.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60° B.90° C.120° D.150°考点:全等三角形的应用.分析:先根据BC=EF,AC=DF判断出Rt△ABC≌Rt△DEF,再根据全等三角形的性质可知,∠1=∠4,再由直角三角形的两锐角互余即可解答.解答:解:∵滑梯、墙、地面正好构成直角三角形,∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF,∴∠2=∠3,∠1=∠4,∵∠3+∠4=90°,∴∠ABC+∠DFE=90°.故选B.点评:本题考查的是全等三角形的判定及性质,直角三角形的性质,属较简单题目.4.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A. 3 B. 2 C.D. 1考点:线段垂直平分线的性质;角平分线的性质;含30度角的直角三角形.专题:计算题.分析:连接AF,求出AF=BF,求出∠AFD、∠B,得出∠BAC=30°,求出AE,求出∠FAC=∠AFE=30°,推出AE=EF,代入求出即可.解答:解:连接AF,∵AB的垂直平分线DE交于BC的延长线于F,∴AF=BF,∵FD⊥AB,∴∠AFD=∠BFD=30°,∠B=∠FAB=90°﹣30°=60°,∵∠ACB=90°,∴∠BAC=30°,∠FAC=60°﹣30°=30°,∵DE=1,∴AE=2DE=2,∵∠FAE=∠AFD=30°,∴EF=AE=2,故选B.点评:本题考查了含30度角的直角三角形,线段垂直平分线,角平分线的性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目综合性比较强.5.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C考点:全等三角形的性质.分析:根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是100°,再根据全等三角形的对应角相等解答.解答:解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于100°,∴与△ABC全等的三角形的100°的角的对应角是∠A.故选:A.点评:本题主要考查了全等三角形的对应角相等的性质,三角形的内角和等于180°,根据∠A=∠C判断出这两个角都不能是100°是解题的关键.6.已知点P(﹣2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.﹣1 C. 5 D.﹣5考点:关于x轴、y轴对称的点的坐标.分析:根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y)即求关于y轴的对称点时:纵坐标不变,横坐标变成相反数,根据这一关系,就可以求出a=﹣(﹣2)=2,b=3.解答:解:根据两点关于y轴对称,则横坐标互为相反数,纵坐标不变,得a=﹣(﹣2)=2,b=3.∴a+b=5故选C.点评:本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.7.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A. 5 B. 4 C. 3 D. 2考点:三角形的外角性质;角平分线的性质;直角三角形斜边上的中线.分析:过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是4,又DE∥AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.解答:解:如图,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=8,过D作DG⊥AC于G,则DG=DE=×8=4,∵DE∥AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=4.故选:B.点评:本题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解题的关键.8.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),则经过第2014次变换后所得A点坐标是()A.(a,﹣b)B.(﹣a,﹣b)C.(﹣a,b)D.(a,b)考点:关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.专题:规律型.分析:利用已知得出图形的变换规律,进而得出经过第2014次变换后所得A点坐标与第2次变换后的坐标相同求出即可.解答:解:∵在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,∴对应图形4次循环一周,∵2014÷4=503…2,∴经过第2014次变换后所得A点坐标与第2次变换后的坐标相同,故其坐标为:(a,﹣b).故选:A.点评:此题主要考查了关于坐标轴以及原点对称点的性质,得出A点变化规律是解题关键.二、填空题.(每小题3分,共21分)9.已知△ABC的一个外角为50°,则△ABC一定是钝角三角形.考点:三角形的外角性质.分析:根据三角形的外角与相邻的内角互为邻补角求出内角,再根据三角形的形状定义判断即可.解答:解:∵△ABC的一个外角为50°,∴与它相邻的内角为180°﹣50°=130°,∴△ABC一定是钝角三角形.故答案为:钝角.点评:本题考查了三角形的外角性质,求出与它相邻的内角是钝角是解题的关键.10.要使五边形木架(用5根木条钉成)不变形,至少要再钉2根木条.考点:三角形的稳定性.分析:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解答:解:再钉上两根木条,就可以使五边形分成三个三角形.故至少要再钉两根木条.点评:本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.11.如图,△ABE≌△ACD,点B、C是对应顶点,△ABE的周长为32,AB=14,BE=11,则AD的长为7.考点:全等三角形的性质.分析:根据△ABE的周长求出AE,再根据全等三角形对应边相等解答即可.解答:解:∵△ABE的周长为32,AB=14,BE=11,∴AE=32﹣14﹣11=32﹣25=7,∵△ABE≌△ACD,∴AD=AE=7.故答案为:7.点评:本题考查了全等三角形对应边相等的性质,三角形的周长,熟记性质并准确找出对应边是解题的关键.12.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为2.考点:角平分线的性质;垂线段最短.专题:动点型.分析:过P作PE⊥OM于E,根据垂线段最短,得出当Q与E重合时,PQ最小,根据角平分线性质求出PE=PA,即可求出答案.解答:解:过P作PE⊥OM于E,当Q与E重合时,PQ最小,∵PE⊥OM,PA⊥ON,OP平分∠MON,∴PE=PA=2,即PQ的最小值是2,故答案为:2.点评:本题考查了垂线段最短和角平分线的性质的应用,能根据题意得出PQ最小时Q的位置是解此题的关键,此题主要培养学生的理解能力.13.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15.考点:轴对称的性质.分析:P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.解答:解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:15点评:本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.14.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.考点:多边形内角与外角.专题:应用题.分析:由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.解答:解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.点评:本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.15.已知A(﹣1,﹣2)和B(1,3),将点A向上平移5个单位长度后得到的点与点B关于y轴对称.考点:关于x轴、y轴对称的点的坐标.分析:熟悉:关于y轴对称的点,纵坐标相同,横坐标互为相反数;把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.解答:解:根据平面直角坐标系中对称点的规律可知,点B关于y轴对称的点为(﹣1,3),又点A(﹣1,﹣2),所以将点A向上平移5个单位长度后得到的点(﹣1,3).点评:解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.平移时坐标变化规律:把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.三、解答题.(本大题共8个小题,满分75分)16.如图,∠A=90°,E为BC上的一点,A点和E点关于BD的对称,B点、C点关于DE 对称,求∠ABC和∠C的度数.考点:轴对称的性质.分析:根据轴对称的性质可得∠ABD=∠EBD,∠C=∠DBC,进而可得∠ABC=2∠ABD=2∠DBE,∠ABC=2∠C,再根据∠A=90°,可得∠ABC+∠BCD=90°,进而可得答案.解答:解:∵A点和E点关于BD的对称,∴∠ABD=∠EBD,即∠ABC=2∠ABD=2∠DBE,∵B点、C点关于DE对称,∴∠C=∠DBC,∴∠ABC=2∠C,∵∠A=90°,∴∠ABC+∠BCD=90°,∴∠ABC=60°,∠C=30°.点评:此题主要考查了轴对称的性质,以及直角三角形的性质,关键是掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.17.已知:如图AD⊥BE,垂足C是BE的中点,AB=DE.AB与DE有何位置关系?请说明理由.考点:全等三角形的性质;全等三角形的判定;旋转的性质.分析:根据条件易证△ABC≌△DEC,即可判断.解答:解:AB∥DE;理由:∵AD垂直平分BE,且AB=DE,又∵BC=EC,BE⊥AD∴Rt△ABC≌Rt△DEC∴∠A=∠D,∴AB∥DE.点评:掌握三角形全等的判定定理,通过已知条件能够正确证明△ABC≌△DEC是解决本题的关键.18.如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.考点:全等三角形的性质.分析:根据全等三角形的性质得出∠BEA=∠CDE=100°,同时利用三角形的内角和求出∠DEC=45°,再根据角的计算得出即可.解答:解:∵△EAB≌△DCE,∴∠BEA=∠CDE=100°,∵∠A=∠C=35°,∠CDE=100°,∴∠DEC=180°﹣100°﹣35°=45°,∵∠DEB=10°,∴∠BEC=45°﹣10°=35°,∴∠CEA=100°﹣35°=65°.点评:此题考查全等三角形的性质,关键是根据全等三角形的对应角相等分析.19.如图,BD是∠ABC的角平分线,DE⊥AB于点E,DF⊥BC于点F,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为cm.考点:角平分线的性质.分析:把S△ABC=36cm2分成两部分即△ABD和△BCD,利用三角形的面积公式可得等量关系式,求这个等量关系即可.解答:解:∵BD是∠ABC的角平分线,DE⊥AB,DF⊥BC,∴DE=DF,∵S△ABC=36cm2,S△BCD=BC•DF,又∵S△ABC=S△ABD+S△BCD,AB=18cm,BC=12cm,∴×18•DE+×12•DF=36,∴9DE+6DF=36.又∵DE=DF,∴9DE+6DE=36,∴DE=cm.点评:本题主要考查了三角形的面积公式和角的平分线上的点到角的两边的距离相等的性质.解题的关键是得到DE=DF.20.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.考点:等边三角形的性质.专题:证明题.分析:要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.解答:证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.点评:本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为60°的知识.辅助线的作出是正确解答本题的关键.21.(10分)(2012•泸州)如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.考点:全等三角形的判定与性质;平行线的判定;等边三角形的性质.专题:证明题.分析:根据等边三角形性质推出BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,求出∠BCD=∠ACE,根据SAS证△ACE≌△BCD,推出∠EAC=∠DBC=∠ACB,根据平行线的判定推出即可.解答:证明:∵△ABC和△DEC是等边三角形,∴BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,∴∠BCA﹣∠DCA=∠ECD﹣∠DCA,即∠BCD=∠ACE,∵在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴∠EAC=∠B=60°=∠ACB,∴AE∥BC.点评:本题考查了等边三角形性质,全等三角形的判定和性质,平行线的判定,关键是求出△ACE≌△BCD,主要考查学生的推理能力.22.(10分)(2012秋•宁江区校级期末)在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=40°,求∠EBC的度数;(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.考点:线段垂直平分线的性质;等腰三角形的判定与性质.分析:(1)已知AB=AC,要求∠EBC就先求出∠ABE的度数,利用线段垂直平分线的性质易求解.(2)已知△ABC的周长为41cm,一边长为15cm,AB>BC,则AB=15cm,求△BCE周长只需证明BE+CE=AC即可.解答:解:(1)已知AB=AC,DE是AB的垂直平分线∴∠ABE=∠A=40°.又因为∠A=40°∴∠ABC=∠ACB=70°,∴∠EBC=∠ABC﹣∠ABE=30°.(2)已知△ABC的周长为41cm,一边长为15cm,AB>BC,则AB=15cm,∴BC=11cm.根据垂直平分线的性质可得BE+CE=AC,∴△BCE周长=BE+CE+BC=26cm.点评:本题考查了线段的垂直平分线的性质以及等腰三角形的性质;进行线段以及角的有效转移是正确解答本题的关键.23.(10分)(2014秋•扶沟县期中)已知△ABC中,三边长a,b,c都是整数,且满足a >b>c,a=8,那么满足条件的三角形共多少个?考点:三角形三边关系.分析:首先根据三角形的三边关系可得b+c>a,再根据条件b>c可确定b>4,再由a>b可得4<b<8,进而可确定b的值,然后再确定c的值即可.解答:解:根据三角形的三边关系可得b+c>a,∵b>c,∴b>4,∵a>b,a=8,∴4<b<8,∵b为整数,∴b=5,6,7,∴a=8,b=5,c=4,a=8,b=6,c=5或4或3,a=8,b=7,c=6或5或4或3或2.因此满足条件的三角形共有1+3+5=9(个).点评:此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.。

北京第13中学—度初二上期中数学试题及答案.doc

北京第13中学—度初二上期中数学试题及答案.doc

北京市第十三中学2014-2015学年度 八年级数学期中测试 2014年11月下面各题均有四个选项,其中只有一个是符合题意的. 1. 下列平面图形中,不是..轴对称图形的是( )2. 点P (1,2)关于y 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1) 3.下列各式从左到右的变形属于分解因式的是( )A .(2)(3)(3)(2)m m m m --=--B .21(1)(1)a a a -=+- C .2(1)(1)1x x x +-=- D .2223(1)2a a a -+=-+4.计算33-的结果是( ). A .9- B .27- C .271 D .271- 5.在△ABC 和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC ≌△A′B′C′一定成立的是( ).A .AC=A′C′B .BC=B′C′C .∠B=∠B′D .∠C=∠C′ 6.计算1a -1 – aa -1的结果为()A. 1+a a -1B . -aa -1 C . -1 D .1-aABCD7.与三角形的三个顶点距离相等的点是( )A .三条中线的交点B .三条角平分线的交点C .三条高的交点D .三条边垂直平分线的交点 8.已知:如图,在△ABC 中,D 是BC 边上一点,且AB=AD=DC , ∠BAD=40°,则∠C 为 ( )A .35°B .25°C .40°D .50°9.如图,在△ABC 中,AB=4,AC=3,AD 平分∠BAC 交BC 于点D , 则S △ABD :S △ADC 为( )A . 4∶3B .16∶19C .3∶4D . 不能确定10.在ΔABC 中,高AD 、BE 所在直线交于H 点,若BH =AC ,则∠ABC =( ). A .30︒ B .45︒或135︒ C .45︒ D .30︒或150︒ 二、填空题(每小题2分,共20分)11.若1)5(0=+x ,则x 的取值范围________. 12. 分解因式:x 2+6x +9=_________13.把0.000 043用科学记数法表示为_____________.14.计算:20132-20142= .15.当分式24-2+x x 的值为0时, x 的值是 .16.如图,在四边形ABCD 中,CD=CB ,∠B=∠D=90°,∠BAC=55°, 则∠BCD 的度数为 .17.如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若1P 2P =6,则△PMN 的周长为____________.18.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积28cm 2,则图中阴影部分的面积是 ___ cm 2. 19.已知311=-y x ,则分式yxy x yxy x ---+2232的值为 . ABCDABCDABCDb20.如图,点A 的坐标为(0,1),点B 的坐标为(3,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,且C 、D 不重合,那么点D 的坐标是________________________.三、解答题(每小题5分,共40分)21.分解因式: 8m 3n -2mn 22.计算:(m+2+m-25)m -34-m 2•23.解分式方程:45251=+-++xx x24.先化简,再求值:21)21441(22++÷++++x x x x x x ,其中x =3.25. 如图,点A ,E ,F ,C 在同一条直线上,AD =BC ,A E =CF , ∠A =∠C .求证:△ADF ≌△CBE .26. a ,b 分别代表铁路和公路,点M 、N 分别代表蔬菜和杂货批发市场.现要建中转站O 点,使O 点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O 点位置,不写作法,保留作图痕迹.27.如图,在平面直角坐标系xoy 中,A(-1,5),B (-1,0),C (-4,3).(1)ABC △的面积是____________.(2)作出ABC △关于x 轴的对称图形111A B C △. (3)写出点111,,A B C 的坐标.FEDABC28.学校在假期内对教室内的黑板进行整修,需在规定期限内完成.如果由甲工程小组做,恰好如期完成;如果由乙工程小组做,则要超过规定期限3天.结果两队合作了2天,余下部分由乙组独做,正好在规定期限内完成,问规定期限是几天?四、解答题(每小题5分,共10分)29.如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连结BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE 的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?30.已知:如图,在△ABC中,AB=AC,∠BAC=α,且60°<α<120°.P为△ABC内部一点,且PC=AC,∠PCA=120°—α.(1)用含α的代数式表示∠APC,得∠APC =_______________________;(2)直接写出∠BAP与∠PCB的大小关系是_____________________;(3)求∠PBC的度数.APB C初二数学期中测试答案 2014年11月一.选择题1.A 2.B 3.B 4.C 5.B 6.C 7.D 8.A 9.A 10.B 二.填空题11. 5-≠x 12. (x+3)2 13. 4.3×10-5 14. -4027 15. 270° 17. 6 18. 14 19 . 3/5 20. (-1,3)(-1,-1)(4,-1)三、解答题21. 原式=2m (4m 2-1)=2mn(2m+1)(2m-1)22. (m+2+m-25)m -34-m 2•=m -25)2-m )(2m (++m -34-m 2•=m -2)m -3)(m 3(+m-3)2-m (2•=-2m-6 23. 解:方程两边同乘(5)x +,得 20421+=-+x x . 解得 7-=x .检验:7-=x 时50x +≠,7-=x 是原分式方程的解. 24. 解:21)21441(22++÷++++x x x x x x =21])2(1)2(1[2++÷+++x x x x x =21)2(222++÷++x x x x x =22(1)2(2)1x x x x x ++⋅++ =222x x+. 当3=x 时,原式=22323+⨯=152. 25. 证明:∵ A E =CF , ∴ A E +EF = CF + EF . ∴ AF =EC .在△ADF 和△CBE 中,⎪⎩⎪⎨⎧=∠=∠=,,,CE AF C A CB AD ∴ △ADF ≌△CBE .26. 略27. (1)7.5FEDABC28. 设规定期限是x 天,则132=++x x x 解得:x=6 检验:x=6是方程的解且符合题意 答:设规定期限是6天29. (1)EC 证△ABC ≌△AEC 60°不变 30. (1)∠APC 230α+=.(2)相等(∠BAP=∠PCB . ) (3)解法一:在CB 上截取CM 使CM=AP ,连接PM (如图). ∵PC=AC ,AB=AC , ∴PC=AB . 在△ABP 和△CPM 中, AB=CP ,∠3=∠4, AP=CM ,∴△ABP ≌△CPM . ∴∠6=∠7, BP=PM . ∴∠8=∠9.∵∠6=∠ABC -∠8,∠7=∠9-∠4,∴∠ABC -∠8=∠9-∠4.即(290α-)-∠8=∠9-(302-α). ∴ ∠8+∠9=60. ∴2∠8=60. ∴∠8= 30.即∠PBC= 30.解法二:作点P 关于BC 的对称点N ,连接PN 、AN 、BN 和CN (略)4521CPAB63987。

北京 八年级(上)期中数学试卷- (含答案)

北京 八年级(上)期中数学试卷-  (含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各式由左边到右边的变形中,是分解因式的为()A. B.C. D.2.下列各式中能用平方差公式因式分解的是()A. B. C. D.3.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC≌△A′B′C′还要从下列条件中补选一个,错误的选法是()A. ′B. ′C. ′′D. ′′4.如图,△ABC的三边AB、BC、CA的长分别是20、30、40,它的三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A. 1:1:1B. 1:2:3C. 2:3:4D. 3:4:55.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A. B. C. D.6.点M(- 5,3)关于x轴的对称点的坐标是()A. B. C. D.7.将两块全等的直角三角形(有一锐角为30°)拼成一个四边形,其中轴对称图形的四边形有多少个()A. 1B. 2C. 3D. 48.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A. 在AC,BC两边高线的交点处B. 在AC,BC两边中线的交点处C. 在AC,BC两边垂直平分线的交点处D. 在,两内角平分线的交点处9.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于()A.B.C.D.10.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.B.C.D.二、填空题(本大题共10小题,共30.0分)11.因式分解:a2b-ab=ab(______ ).12.因式分解:2x2+8x+8=2(______ )= ______ .13.若a-b=3,x-y=2,则a2-2ab+b2-x+y= ______ .14.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是______(只需一个即可,图中不能再添加其他点或线).15.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A= ______ °.16.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带______去玻璃店.17.等腰三角形的一个内角为70°,另外两个内角的度数为______.18.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为______ cm.19.如果等腰三角形的三边均为整数且它的周长为10cm,那么它的三边长为______ .20.用棋子摆成如图所示的“T”字图案.(1)摆成第一个“T”字需要______ 个棋子,第二个图案需______ 个棋子;(2)按这样的规律摆下去,摆成第10个“T”字需要______ 个棋子,第n个需______ 个棋子.三、解答题(本大题共8小题,共48.0分)21.因式分解(1)3(y-x)2+2(x-y)(2)a2-4ab+4b2(3)1-a4(4)x2-5x+6.22.平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,-1).(1)试在平面直角坐标系中,标出A、B、C三点;(2)求△ABC的面积.(3)若△A1B1C1与△ABC关于x轴对称,写出A1、B1、C1的坐标.23.已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.24.如图,已知AB⊥AD,AC⊥AE,AB=AD,AC=AE,BC分别交AD、DE于点G、F,AC与DE交于点H.求证:(1)△ABC≌△ADE;(2)BC⊥DE.25.如图:在△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O与AB、AC相交于点M、N,且MN∥BC,求证:△AMN的周长等于AB+AC.26.某校八年级同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.阅读后回答下列问题:(1)方案(Ⅰ)是否可行?若可行,请证明;(2)方案(Ⅱ)是否可行?若可行,请证明;(3)方案(Ⅱ)中若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?______.(填是或否,不用证明)27.如图①,在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,且BD⊥l于的D,CE⊥l于的E.(1)求证:BD+CE=DE;(2)当变换到如图②所示的位置时,试探究BD、CE、DE的数量关系,请说明理由.点.(1)写出点D到△ABC三个顶点A、B、C的距离的关系(不要求证明)(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△DMN的形状,并证明你的结论.答案和解析1.【答案】C【解析】解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,x2-4x+4=(x-2)2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;故选:C.根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.这类问题的关键在于能否正确应用分解因式的定义来判断.2.【答案】C【解析】解:A、-x2y2不符合平方差公式的特点,不能用平方差公式进行因式分解;B、x2+y2两平方项符号相同,不能用平方差公式进行因式分解;C、x2-y2符合平方差公式的特点,能用平方差公式进行因式分解;D、x-y不符合平方差公式的特点,不能用平方差公式进行因式分解.故选:C.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.3.【答案】C【解析】解:AB=A′B′,∠A=∠A′,∠B=∠B′符合ASA,A正确;∠C=∠C′符合AAS,B正确;AC=A′C′符合SAS,D正确;若BC=B′C′则有“SSA”,不能证明全等,明显是错误的.故选:C.注意普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.考查三角形全等的判定的应用.做题时要按判定全等的方法逐个验证.4.【答案】C【解析】解:利用同高不同底的三角形的面积之比就是底之比可知选C.故选C.利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高是相等的,这点是非常重要的.5.【答案】B【解析】解:按照题意,动手操作一下,可知展开后所得的图形是选项B.故选B.此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.对于一下折叠、展开图的问题,亲自动手操作一下,可以培养空间想象能力.6.【答案】A【解析】解:根据两点关于x轴对称,横坐标不变,纵坐标互为相反数,∴点M(-5,3)关于x轴的对称点的坐标是(-5,-3),故选A.根据两点关于x轴对称,横坐标不变,纵坐标互为相反数即可得出结果.本题主要考查了两点关于x轴对称,横坐标不变,纵坐标互为相反数,属于基础题,比较简单.7.【答案】B【解析】解:如图所示:可拼成如上图所示的四种四边形.轴对称图形有①④;中心对称图形有:①②③.故选:B.根据题意画出符合题意的四边形,进而利用轴对称图形以及中心对称图形的性质得出即可.此题主要考查了图形的剪拼以及轴对称图形以及中心对称图形的性质,得出符合题意四边形是解题关键.8.【答案】C【解析】解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在AC,BC两边垂直平分线的交点处.故选C.要求到三小区的距离相等,首先思考到A小区、B小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AB的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.本题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等;此题是一道实际应用题,做题时,可分别考虑,先满足到两个小区的距离相等,再满足到另两个小区的距离相等,交点即可得到.9.【答案】C【解析】解:∵四边形ABCD为矩形,∴AD∥BC,∴∠DEF=∠EFB=65°,又由折叠的性质可得∠D′EF=∠DEF=65°,∴∠AED′=180°-65°-65°=50°,故选:C.由平行可求得∠DEF,又由折叠的性质可得∠DEF=∠D′EF,结合平角可求得∠AED′.本题主要考查平行线的性质及折叠的性质,掌握两直线平行内错角相等是解题的关键.10.【答案】C【解析】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC==80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC-∠ABE=80°-20°=60°.故选:C.先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.11.【答案】a-1【解析】解:a2b-ab=ab(a-1),故答案为a-1.先提公因式ab,再用多项式a2b-ab除以ab即可得出答案.本题考查了因式分解,掌握因式分解中的提公因式法是解题的关键.12.【答案】x2+4x+4;2(x+2)2【解析】解:2x2+8x+8=2(x2+4x+4)=2(x+2)2.故答案为:x2+4x+4;2(x+2)2.提出公因数2后,根据完全平方公式即可得出2x2+8x+8=2(x+2)2.本题考查了提公因数法与公式法的综合运用以及完全平方公式,熟练掌握完全平方公式的应用是解题的关键.13.【答案】7【解析】解:a2-2ab+b2-x+y=(a-b)2-(x-y),把a-b=3,x-y=2代入得:原式=32-2=7.故答案为:7.直接将原式分解因式,进而将已知代入求出答案.此题主要考查了公式法分解因式,正确应用公式是解题关键.14.【答案】∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO【解析】解:∵∠A=∠A,AE=AD,添加:∠ADC=∠AEB(ASA),∠B=∠C(AAS),AB=AC(SAS),∠BDO=∠CEO (ASA),∴△ABE≌△ACD.故填:∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO.要使△ABE≌△ACD,已知AE=AD,∠A=∠A,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.15.【答案】55【解析】解:∵三角形△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.根据旋转的性质,可得知∠ACA′=35°,从而求得∠A′的度数,又因为∠A的对应角是∠A′,即可求出∠A的度数.此题考查了旋转地性质;图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.解题的关键是正确确定对应角.16.【答案】③【解析】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故答案为:③.本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.这是一道考查全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.17.【答案】55°,55°或70°,40°【解析】解:分情况讨论:(1)若等腰三角形的顶角为70°时,另外两个内角=(180°-70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°-70°-70°=40°.故填55°,55°或70°,40°.已知给出了一个内角是70°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还需用三角形内角和定理去验证每种情况是不是都成立.本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.18.【答案】9【解析】解:DE=CD,BE=BC=7cm,∴AE=AB-BE=3cm,∴△AED的周长=AE+AD+DE=AC+AE=6+3=9cm.由折叠中对应边相等可知,DE=CD,BE=BC,可求AE=AB-BE=AB-BC,则△AED的周长为AD+DE+AE=AC+AE.本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.19.【答案】3cm,3cm,4cm或4cm,4cm,2cm【解析】解:等腰三角形的三边均为整数且它的周长为10cm,那三边的组合方式有以下几种:①1cm,1cm,8cm;②2cm,2cm,6cm;③3cm,3cm,4cm;④4cm,4cm,2cm;又因为三角形两边之和大于第三边,两边之差小于第三边,则③④符合.它的三边长为3cm,3cm,4cm或4cm,4cm,2cm.故填3cm,3cm,4cm或4cm,4cm,2cm.已知等腰三角形的周长,求三边,则需要列出所有的组合形式,然后根据三角形的构造条件判断哪些符合.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键;其中三边为整数也是非常重要的条件.20.【答案】5;8;32;3n+2【解析】解:(1)摆成第一个“T”字需要(2×2-1)+2=5个棋子;第二个图案需(3×2-1)+3=8个棋子;故答案为:5,8;(2)摆成第10个“T”字需要11×2-1+11=32个棋子;第n个需(n+1)×2-1+n+1=3n+2个棋子.故答案为:32;3n+2.(1)数出棋子的个数即可;(2)分别找到横行棋子数与n的关系与除横行外竖列棋子的个数与n的关系,相加即可.考查图形的规律性问题;得到横行及除横行外竖列中棋子数与n的关系是解决本题的关键.21.【答案】(1)3(y-x)2+2(x-y)=(x-y)(3x-3y+2);(2)a2-4ab+4b2=(a-2b)2;(3)1-a4=(1+a2)(1-a2)=(1+a2)(1+a)(1-a);(4)x2-5x+6=(x-2)(x-3).【解析】(1)直接提取公因式(x-y),进而分解因式得出答案;(2)直接利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式得出答案;(4)直接利用十字相乘法分解因式得出答案.此题主要考查了提取公因式法以及公式法、十字相乘法分解因式,正确应用公式法分解因式是解题关键.22.【答案】解:(1)如图所示:(2)由图形可得:AB=2,AB边上的高=|-1|+|4|=5,∴△ABC的面积=AB×5=5.(3)∵A(0,4),B(2,4),C(3,-1),△A1B1C1与△ABC关于x轴对称,∴A1(0,-4)、B1(2,-4)、C1.(3,1).【解析】(1)根据三点的坐标,在直角坐标系中分别标出位置即可.(2)以AB为底,则点C到AB得距离即是底边AB的高,结合坐标系可得出高为点C的纵坐标的绝对值加上点B的纵坐标的绝对值,从而根据三角形的面积公式计算即可.(3)关于x轴对称的点的坐标,横坐标不变,纵坐标互为相反数,从而可得出A1、B1、C1的坐标.本题考查轴对称作图及直角坐标系的知识,难度一般,解答本题的关键是正确的找出三点的位置,另外要掌握关于x轴对称的点的坐标的特点.23.【答案】证明:在△AOB和△DOC中,,所以,△AOB≌△DOC(AAS).【解析】根据对顶角相等可得∠AOB=∠DOC,然后利用“角角边”证明即可.本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键,难点在于根据对顶角相等确定出三角形全等的条件.24.【答案】证明:(1)∵AB⊥AD,AC⊥AE,∴∠DAB=∠CAE=90°,∴∠DAB+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(SAS).(2)∵△ABC≌△ADE,∴∠E=∠C,∵∠E+∠AHE=90°,∠AHE=∠DHC,∴∠C+∠DHC=90°,∴BC⊥DE.【解析】(1)利用AB⊥AD,AC⊥AE,得出∠DAB=∠CAE,进一步得出∠BAC=∠DAE,再根据已知条件及全等的判定方法SAS即可证得△ABC≌△ADE;(2)由△ABC≌△ADE,得出∠E=∠C,利用∠E+∠AHE=90°,推出∠C+∠DHC=90°,结论成立.本题考查了全等三角形全等的判定及性质,垂直的意义,熟练掌握全等三角形的判定方法是解题的关键.25.【答案】解:∵BO平分∠ABC,∴∠ABO=∠CBO,∵MN∥BC,∴∠CBO=∠BOM,∴∠ABO=∠BOM,∴BM=OM,同理可得CN=ON,∴△AMN的周长=AM+MO+ON+AN=AM+BM+CN+AN=AB+AC.【解析】根据角平分线的定义可得∠ABO=∠CBO,根据两直线平行,内错角相等可得∠CBO=∠BOM,从而得到∠ABO=∠BOM,再根据等角对等边可得BM=OM,同理可得CN=ON,然后即可求出△AMN的周长=AB+AC.本题考查了等腰三角形的判定与性质,用到的知识点是平行线的性质、角平分线的定义、等腰三角形的判定与性质,证出BM=OM,CN=ON是本题的关键.26.【答案】否【解析】解:(1)方案(Ⅰ)可行;理由如下:∵DC=AC,EC=BC,在△ACB和△DCE中,,∴△ACB≌△DCE(SAS),∴AB=DE,∴测出DE的距离即为AB的长,故方案(Ⅰ)可行.(2)方案(Ⅱ)可行;理由如下:∵AB⊥BC,DE⊥CD∴∠ABC=∠EDC=90°,在△ACB和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED,∴测出DE的长即为AB的距离,故方案(Ⅱ)可行.(3)若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)不成立;理由如下:若∠ABD=∠BDE≠90°,∠ACB=∠ECD,∴△ABC∽△EDC,∴,∴只要测出ED、BC、CD的长,即可求得AB的长.但是此题没有其他条件,可能无法测出其他线段长度,∴方案(Ⅱ)不成立;故答案为:否.(1)由题意可证明△ACB≌△DCE,AB=DE,故方案(Ⅰ)可行;(2)由题意可证明△ABC≌△EDC,AB=ED,故方案(Ⅱ)可行;(3)若仅满足∠ABD=∠BDE≠90°,故此时方案(Ⅱ)不成立.本题是三角形综合题,主要考查了全等三角形的判定与性质、相似三角形的判定和性质;本题综合性强,证明三角形全等是解决问题的关键.27.【答案】证明:(1)∵∠DAB+∠EAC=90°,∠DAB+∠ABD=90°,∴∠EAC=∠ABD,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,CE=AD,∵DE=AD+AE,∴DE=BD+CE;(2)BD-CE=DE,理由如下:∵CE⊥AN,BD⊥AN,∴∠AEC=∠BDA=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,即∠BAD+∠CAE=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴BD-CE=AE-AD=DE.【解析】(1)易证∠EAC=∠ABD,即可求证△ABD≌△CAE,根据全等三角形相等的性质即可解题;(2)先根据垂直的定义得到∠AEC=∠BDA=90°,再根据等角的余角相等得到∠ABD=∠CAE,则可利用“AAS”判断△ABD≌△CAE,所以AD=CE,BD=AE,于是有BD-CE=AE-AD=DE.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等,本题中求证△ABD≌△CAE是解题的关键.28.【答案】解:(1)∵在Rt△ABC中,∠BAC=90°,D为BC的中点,∴CD=BD=AD,即点D到三个顶点的距离相等;(2)△DMN为等腰直角三角形,证明如下:如图,连接AD,由(1)可知CD=AD,∵AC=AB,∴AD⊥BC,且∠DAB=∠CAD=45°,∴∠C=∠DAM,∵AN=BM,∴CN=AM,在△ADM和△CDN中∴△ADM≌△CDN(SAS),∴DM=DN,且∠ADM=∠CDN,∴∠ADM+∠ADN=∠ADN+∠NDC=90°,∴△DMN为等腰直角三角形.【解析】(1)根据直角三角形的性质可知CD=BD=AD;(2)连接AD,可证明△ADM≌△CDN,则可证得DM=DN,∠CDN=∠ADM,再利用AD⊥BC,可求得ND⊥MD,可判定△DMN为等腰直角三角形.本题主要考查等腰直角三角形、全等三角形的判定和性质,在(1)中掌握直角三角形斜边上的中线等于斜边的一半是解题的关键,在(2)中证明△ADM≌△CDN是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市第十三中学2015-2016学年度 初二数学期中测试 2015年11月一、选择题(每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是( )A .B .C .D . 2. 下列因式分解中,正确的个数为( )①x 3+2xy+x=x (x 2+2y );②x 2+4x+4=(x+2)2;③﹣x 2+y 2=(x+y )(x ﹣y ) A . 3个 B .2个 C . 1个 D . 0个 3. 若分式的值为零,则x 的值为( )A. 0B. 1C. -1D. ±1 4. 已知图中的两个三角形全等,则∠1等于( )A .50°B .58°C .60°D .72°5. 如图,△ABC ≌ΔADE ,若∠B =80°,∠C=30°, ∠DAC =35°,则∠EAC 的度数为 ( ) A .40° B .35°C .30° D .25°6.分式方程的解是( )A. x= -2B. x=2C. x=1D. x=1或x=27. 下列运算错误的是( ) A .22()1()a b b a -=- B. 1a ba b--=-+C.0.55100.20.323a b a ba b a b ++=-- D.a b b aa b b a--=++ 8. 用直尺和圆规作一个角等于已知角,如图,能得出'''A O B AOB ∠=∠的依据是( ) A .SSSB .SASC .ASAD .AAS9. 如图,在△ABC 中,AD 是 ∠BAC 的角平分线,DE⊥AB 于点E ,S △ABC =7,DE=2,AB=4,则AC 长是( ) A. 3 B. 4 C. 5 D. 610. 张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+x1(x >0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是x 1,矩形的周长是2(x+x 1);当矩形成为正方形时,就有x=x1(x >0),解得x=1,这时矩形的周长2(x+x 1)=4最小,因此x+x1(x >0)的最小值是2.模仿张华的推导,你求得式子(x >0)的最小值是( )A. 2B. 3C. 6D. 10 二、填空题(每空2分,共24分)11.计算:2)3-(-=_____________. 12. 约分:22515mn m n-=_____________. 13. 用科学记数法表示000614.0-为___ ___. 14.分解因式:244x y xy y -+= .D 'DAB COO ' A 'B 'C '15. 若分式有意义,则实数x 的取值范围是 _______________ .16. 化简﹣的结果是 ________ .17. 如图,已知∠1=∠2,AC=AD ,添加一个条件 使△ABC ≌△AED ,你添加的条件是 . (填一种即可),根据 .18. 某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快了20米,结果提前2天完成任务.若设原计划每天修建道路x 米,则根据题意可列方程为_________________________________________.19.已知如图点D 是△ABC 的两外角平分线的交点,下列说法: ①AD=CD ②D 到AB 、BC 的距离相等③D 到△ABC 的三边所在直线的距离相等 ④点D 在∠B 的平分线其中正确的说法的序号是_____________________.20. 观察下列等式: 第一个等式:a 1= = ﹣; 第二个等式:a 2= = ﹣; 第三个等式:a 3= = ﹣; 第四个等式:a 4==﹣.则式子a 1+a 2+a 3+…+a 20= __________________ ;用含n 的代数式表示第n 个等式:a n =_______________________________________________ ; 三、解答题(每小题5分,共25分) 21.分解因式:)2(9)2(22m y m x -+- 22.计算:1231621222+-+÷-+-+x x x x x x xFDCBAE23. 解分式方程 31122xx x +=--24.已知:如图,点、、、在同一条直线上,,,.求证:.25.先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a . 四、解答题(26题3分,27-29每题6分,本题共21) 26.尺规作图:已知:如图,A ∠与直线l .试在l 上找一点P ,使点P 到A ∠的两边的距离相等.要求:保留痕迹,不写作法.27.列方程解应用题: 从地到地的路程是千米.甲骑自行车从地到地先走,半小时后,乙骑自行车从地出发,结果二人同时到达.已知乙的速度是甲的速度的倍,求甲、乙二人骑车速度各是多少?28.阅读下列材料通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都 可化为带分数,如:86222223333+==+=. 我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于 分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221xx +这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:()12121111xxx x x+--==-+++;再如:22111(1)1111x x x)xx x x-++-+==---(111xx=++-.解决下列问题:(1)分式2x是分式(填“真分式”或“假分式”);(2)假分式12xx-+可化为带分式的形式;(3)如果分式211xx-+的值为整数,那么x的整数值为.29. 已知:如图,Rt△ABC中,∠BAC=90︒.(1)按要求作出图形:①延长BC到点D,使CD=BC;②延长CA到点E,使AE=2CA;③连接AD,BE.(2)猜想(1)中线段 AD与BE的大小关系, 并证明你的结论.解:(1)完成作图(2)AD与BE的大小关系是.证明:北京市第十三中学2015-2016学年度 初二数学期中测试标答 2015年11月一、选择题1.D 2.C 3.C 4.B 5.B 6.C 7.D 8.A 9.A 10.C 二、填空题 11.91 12. 3m n - 13. -6.14×10-4 14. y (2x-1)215. 5≠x1a 1-+ 17.答案不唯一,略18.2201200x 1200=+-x 19 .②③④ 20.;=三、解答题21.)2(9)2(22m y m x -+-解:原式=22(2)9(2)x m y m ---…………………………1分=………………………3分=…………………………5分22.1231621222+-+÷-+-+x x x x x x x=()()()()311132122+-∙-++-+x x x x x x x ………………………3分 121222+=++-=x x x x …………………………5分 23. 解分式方程 31122xx x +=--.FDCBAE24.已知:如图,点、、、在同一条直线上,,,.求证: . 证明:∵∴…………………………1分 在和中∴ …………………………3分∴ ………………………………………4分∴∴…………………………………………5分25.先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a . 解:原式=1211112++÷⎪⎭⎫⎝⎛+-++a a a a a a ……………………………………………1分 =121112++÷+-+a a aa a ………………………………………………………2分=()aa a a 211+⋅+……………………………………………………………3 =1+a ………………………………………………………………4分 当13-=a 时,原式=3113=+-.…………………………… 5分四、解答题 26.尺规作图:已知:如图,A ∠与直线l .试在l 上找一点P ,使点P 到A ∠的两边的距离相等.要求:保留痕迹,不写作法. 解:如下图画出角平分线给2分,标出点P 给1分.27.列方程解应用题: 从地到地的路程是千米.甲骑自行车从地到地先走,半小时后,乙骑自行车从地出发,结果二人同时到达.已知乙的速度是甲的速度的倍,求甲、乙二人骑车速度各是多少?解:设甲骑自行车每小时行驶千米,那么乙每小时行驶千米.………1分根据题意列方程,得xx 5.1302130=- ……………………………………………………3分 解得 20=x …………………………………………………………4分 经检验,20=x 是所列方程的解,并且符合实际问题的意义.……………5分 当20=x 时,有305.1=x .答:甲骑自行车每小时行驶千米,乙每小时行驶米. ……………… 6分28.解:(1) 真 分式;…………………………………………………………………1分 (2)13122x x x -=-++;……………………………………………………2分 (3)x 的可能整数值为0,-2,2,-4. …………………………………6分 29. 已知:如图,Rt △ABC 中,∠BAC =90︒.(1)按要求作图:(保留作图痕迹)①延长BC 到点D ,使CD=BC ;②延长CA 到点E ,使AE=2CA ;③连接AD ,BE, 并猜想线段 AD 与BE 的大小关系; (2)证明(1)中你对线段AD 与BE 大小关系的猜想.解:(1)按要求作图见图7,………………………………………………1分 猜想AD=BE ………………………………………………2分 (2)在AE 上截取AF=AC ,连结BF ,∵∠BAC=90°,∴∠BAF=180°-90°=90°, ∴∠BAC=∠BAF ,在△ABF 与△ABC 中,,,AB AB BAF BAC AF AC =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△ABC (SAS ), ∴∠2=∠1.初二数学 第 12 页 共 12 页∵∠BAF=90°,∴∠BAE=180°-90°=90°,∴∠BAF=∠BAE ,在△ABE 与△ABF 中,,,AB AB BAE BAF AE AF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ABF (SAS ),∴BE=BF ……………………………………………5分 ∴BE=AD ……………………………………………6分。

相关文档
最新文档