2018年秋浙教版七年级数学上册《1.1.1从自然数到分数》同步练习含答案
秋七年级数学上册 第一章 有理数 1.1 从自然数到分数同步练习 (新版)浙教版-(新版)浙教版初中

1.1 从自然数到有理数第1课时从自然数到分数知识点自然数的意义和作用在小学就已经广泛接触的自然数可以用于计数和表示______结果,还可用于给事物______或______等.下列用波浪线标注的数,属于计数的是________,属于测量的是________,属于标号或排序的是________.(填序号)①今年某区参加中考的人数有8861人;②小明坐156路公交车去上学;③为迎接国庆节,某校七年级240名学生参加了广播操比赛;④G20峰会期间钱塘江两岸壮观绚烂,变幻多姿的灯光描绘出一幅长逾10千米的“钱江夜曲”璀璨长卷;⑤李春晖在2017某某马拉松上获得了男子第10名的好成绩.类型一分数与小数的意义和作用例1 教材补充例题(1)3个苹果6个小朋友平分,每人能分到多少个苹果?(2)一节课40分钟,如果改用小时作单位,应怎样表示?(3)小刚家买了一辆新型家庭轿车,价格为106800元,如果改用“万元”作单位,应怎样表示?【归纳总结】再识分数与小数:分数和小数是由于测量和分配等实际需要而产生的,分数可以看做两个整数相除,分数都可以化为小数,有限小数和无限循环小数都可以化为分数.类型二数的运算在实际问题中的应用例2 教材补充例题某商场在销售旺季时将某种商品的价格上调10%,旺季过后又将其下调10%,则下调后的商品比上调前贵了还是便宜了?小结◆◆◆)反思 ◆◆◆)在销售问题中,销售价减去成本得到利润.当销售价低于成本时,利润又该如何表示呢?详解详析【学知识】知识点 测量 标号 排序[答案]①③ ④ ②⑤[解析] 计数的结果没有规律,测量的结果是用刻度尺或温度计等工具测量得到的数,标号或排序的数是按一定的规律或规定排列的顺序数.【筑方法】例1 解:(1)每人能分到12个苹果. (2)60分钟为1小时,所以40分钟为1小时的4060,即23小时. (3)106800=10.68×10000,所以106800元=万元.例2 [解析] 上调10%变为原来的110%,又下调10%,即在110%的基础上下调10%. 解:(1+10%)(1-10%)=110%×90%=99%.因为99%<1,所以下调后的商品比上调前便宜了.【勤反思】[反思] 利润仍然可以用销售价减去成本来表示,不过由于销售价低于成本,此时利润的值小于0.。
新浙教版数学七年级上册同步练习(全册分章节)含答案

1.1从自然数到有理数第1课时从自然数到分数知识点1自然数的意义1.小亮在看报纸时,收集到下列信息,你认为其中没有用到自然数标号或排序的是()A.某地的国民生产总值列全国第五位B.某城市有16条公共汽车线路C.小刚乘T32次火车去旅游D.小风在校运动会上获得跳远比赛第一名2.小明体重45千克,其中数“45”属于________.(①计数和测量;②标号或排序.在横线上填序号即可)3.下面关于河姆渡遗址的描述用了很多自然数,说说它们哪些表示计数和测量,哪些表示标号或排序.河姆渡遗址,位于宁波城西北25千米处的余姚河姆渡镇.1973年发现,遗址总面积为4万平方米,堆积厚度为4米,由相互叠压的4个文化层组成.经两期考古发掘,共出土文物7000余件,早期文化遗存距今已有6900多年的历史.知识点2分数的意义4.下列各题:①6天看完一本300页的书,求平均每天看书的页数;②小明的身高是146 cm,请问小明的身高为多少米;③2个人均分14支铅笔,求每个人分得的铅笔数占铅笔总数的比例.其中需要用分数表示的有()A.0个 B.1个 C.2个 D.3个5.高铁G7302次列车从杭州到嘉兴历时36分钟,如果改用小时作单位,应表示为________小时.6.林林手中有22元钱,买文具用了2.5元,买水果用了3元,在回家路上遇到爷爷,爷爷给了他15元钱,现在他手中共有多少钱?7.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京.根据以上规定,杭州开往北京的某一直快列车的车次号可能是()A.200 B.119 C.120 D.3198.某商店销售某种商品,因到了旺季,价格上调10%,旺季过后又下调10%,则价格下调后的商品比调价前是贵了,还是便宜了?9.“假日旅行社”推出“西湖风景区一日游”的两种价格方案(如图1-1-1).(1)10名成人,5名儿童,怎样购票合算?(2)5名成人,10名儿童,怎样购票合算?图1-1-1教师详解详析1.B [解析] B 中的数据是自然数的计数结果. 2.①3.解:计数和测量:25千米,4万平方米,4米,4个,7000余件,6900多年. 标号或排序:1973年.4.C [解析] ②③需要用分数表示.5.35 [解析] 时、分、秒之间是60进制,1小时=60分钟,所以36分钟应该是3660小时,即35小时. 6.[解析] 原有22元钱,买了文具、水果,后来爷爷给了他15元,其中减少部分为买文具和水果的钱,增加部分为爷爷给他的钱,减少部分应相减,增加部分应相加.解:22-2.5-3+15=31.5(元). 答:现在他手中共有31.5元.7.C [解析] 根据题意,双数表示开往北京,101~198次为直快列车,由此可以确定答案为101~198中的一个偶数,所以杭州开往北京的某一直快列车的车次号可能是120.故选C.8.[解析] 上调10%变为原来的110%,又下调了10%,即在110%的基础上下调了10%.解:(1+10%)×(1-10%)=110%×90%=99%,所以价格下调后的商品比调价前便宜了.9.解:(1)方案一:150×10+60×5 =1500+300 =1800(元); 方案二:100×(10+5) =100×15=1500(元);方案三:可以让10名成人购买团体票,5名儿童购买儿童票,100×10+60×5=1000+300=1300(元).因为1300<1500<1800,所以10名成人购买团体票,5名儿童购买儿童票最合算.(2)方案一:150×5+60×10=750+600=1350(元);方案二:100×(10+5)=100×15=1500(元);方案三:可以让5名成人购买团体票,10名儿童购买儿童票,100×5+60×10=500+600=1100(元).因为1100<1350<1500,所以5名成人购买团体票,10名儿童购买儿童票最合算.1.1从自然数到有理数第2课时有理数知识点1 具有相反意义的量1.在下列选项中,具有相反意义的量是( ) A .收入20元和支出30元 B .上升6米和后退7米 C .卖出10千克米和盈利10元 D .向东行30米和向北行30米2.2018·绍兴 若向东走2 m 记为+2 m ,则向西走3 m 可记为( ) A .+3 m B .+2 m C .-3 m D .-2 m3.如果运进大米40千克记为+40千克,那么-45千克表示的实际意义是__________________________.知识点2 有理数的分类4.下列各数中不是有理数的是( ) A .-3.14 B .0 C.227 D .π5.下列说法正确的是( ) A .整数包括正整数和负整数 B .分数包括正分数和负分数C .正有理数和负有理数组成全体有理数D .0既是正整数也是负整数6.把下列各数填入相应的横线内:5,-12,-0.4,8.6,-1000,-3.14,113,0,-6,103.正整数:___________________________________________________________________;负分数:__________________________________________________________________; 正有理数:__________________________________________________________________;负有理数:__________________________________________________________________.7.某品牌味精的包装袋上标有“质量:500±20 g ”的字样,抽检了四袋味精,其中不合格的是( )A .510 gB .499 gC .479 gD .518 g 8.在数-3,0,-1.2,12中,属于非负整数的有( )A .1个B .2个C .3个D .4个9.体育课上,老师对某班男生进行了单杠引体向上的测验,以能做8次为标准,超过的次数用正数表示,不足的次数用负数表示,该班男生的成绩如下表:10.如图1-1-2,将一串有理数按下图中的规律排列,回答下列问题:图1-1-2(1)在A 处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2019个数是正数还是负数?排在对应于A,B,C,D中的什么位置?教师详解详析1.A 2.C 3.运出大米45千克4.D [解析] A 项,-3.14是有理数,故本选项不符合题意; B 项,0是整数,是有理数,故本选项不符合题意; C 项,227是分数,是有理数,故本选项不符合题意;D 项,π不是有理数,故本选项符合题意.故选D. 5.B6.[解析] 正整数要求既是正数又是整数;负分数要求既是负数又是分数;正有理数既可以是正整数,也可以是正分数;负有理数既可以是负整数,也可以是负分数.解:正整数:5,103; 负分数:-12,-0.4,-3.14;正有理数:5,8.6,113,103;负有理数:-12,-0.4,-1000,-3.14,-6.7.C8.A [解析] 只有0符合要求.故选A.9.60% [解析] 根据题意可知成绩为非负数的是达标的,可得达标人数为4+3+4+ 5+2=18(人),所以达标率为1818+3+5+4×100%=60%.10.解:(1)A 是向上箭头的上方对应的数,与4的符号相同,故在A 处的数是正数. (2)观察不难发现,向下箭头的上方的数是负数,下方的数是正数,向上箭头的下方的数是负数,上方的数是正数,所以,B 和D 的位置是负数.(3)第2019个数是负数,排在D 的位置.第1章 有理数 1.2 数轴知识点1 数轴的定义和在数轴上表示数 1.关于数轴,下列说法最准确的是( ) A .一条直线B .有原点、正方向的一条直线C .有单位长度的一条直线D .规定了原点、正方向、单位长度的直线 2.如图1-2-1所示,所画数轴正确的是( )图1-2-13. 以下四个数分别是图1-2-2所示的数轴上A ,B ,C ,D 四个点所表示的数,其中错误的是( )图1-2-2A. -3.5B. -123C. 0D. 1134.在原点左侧,且到原点的距离是4个单位长度的点表示的数是________. 5.在数轴上表示下列各数:2,-412,-1.5,312,1.6,0,-2.知识点2 相反数的意义6.[2018·湖州]2018的相反数是( )A .2018B .-2018 C.12018 D .-120187.[2018·东阳模拟]如图1-2-3,数轴上有A ,B ,C ,D 四个点,其中表示-2的相反数的点是( )图1-2-3A .点AB .点BC .点CD .点D 8.下列说法正确的是( ) A .符号不同的两个数互为相反数 B .互为相反数的两个数一定是一正一负 C .相反数等于本身的数只有零D .互为相反数的两个数的符号一定不同9.若数轴上表示互为相反数的两个点的距离为10,则这两个数分别是________.10.在数轴上表示下列各数及它们的相反数:312,-3,0,-1.5.11.在数轴上,原点及原点右边的点表示的数是()A.正数 B.整数C.非负数 D.非正数12.数轴上A,B两点所表示的数如图1-2-4所示,则点A与点B之间表示整数的点有()图1-2-4A.5个 B.6个 C.7个 D.8个13.[2017·义乌]四校月考数轴上到表示-2的点的距离是3的点所表示的数是________.14.邮递员骑车从邮局出发,先向西骑行2 km到达A村,继续向西骑行3 km到达B 村,然后向东骑行9 km到达C村,最后回到邮局.(1)以邮局为原点,向东骑行为正方向,用1个单位长度表示1 km,画出数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑行了多少千米?教师详解详析1.D 2.C 3.B 4.-45.[解析] 先画出数轴,然后根据数的正、负及它们到原点的距离标出各点,一般在相应位置加小黑点,以便显示清楚.解:画出数轴,如图所示.[点评] 画数轴常见的几种错误:①没有方向;②没有原点;③单位长度不统一;④负数的排列错误.6.B7.D [解析] -2的相反数是2,在数轴上表示2的点是D .故选D. 8.C [解析] A 项,只有符号不同的两个数互为相反数,故本选项错误; B 项,0的相反数是0,0既不是正数,也不是负数,故本选项错误; C 项,相反数等于本身的数只有零,本选项正确; D 项,0的相反数是0,故本选项错误. 故选C. 9.5和-510.解:312的相反数是-312,-3的相反数是3,0的相反数是0,-1.5的相反数是1.5.在数轴上表示各数如图:11.C 12.A13.1或-5 [解析] 数轴上到表示-2的点的距离是3的点有2个,在-2左边的点所表示的数是-5,在-2右边的点所表示的数是1.所以答案为1或-5.14.解:(1)画图如下.(2)C 村离A 村9-3=6(km).(3)邮递员一共骑行了2+3+9+4=18(km).1.3 绝对值知识点1 绝对值的意义1.(1)数轴上表示2的点到原点的距离是________,所以|2|=________; (2)数轴上表示-2的点到原点的距离是________,所以|-2|=________; (3)数轴上表示0的点到原点的距离是________,所以|0|=________. 2.2018·杭州余杭区一模 2018的绝对值是( ) A .-2018 B .2018 C .-12018 D.120183.若数轴上的点A 到原点的距离是3,则点A 表示的数为( ) A .3或-3 B .6 C .-6 D .6或-64.绝对值等于本身的数是________;绝对值最小的有理数是________. 知识点2 绝对值的计算5.若|a -2|=0,则a =________. 6.分别写出下列各数的绝对值: -135,+6.3,-32,12,312.7.计算:(1)⎪⎪⎪⎪-43-⎪⎪⎪⎪-12; (2)|-49|×17;(3)|-3|-|-1|+|-3|.8.绝对值相等的两个数在数轴上对应的两点之间的距离为4,则这两个数分别是________.9.在-3.5~2.5之间的所有整数的绝对值的积是________. 10.下列说法正确的是________.(填序号)①-|a |一定是负数;②两个数只有相等时,它们的绝对值才相等;③若|a |=|b |,则a 与b 互为相反数;④有理数的绝对值不小于0.11.若|x -1|+|y -2|=0,则2x +3y 的值为________.12.正式比赛时乒乓球的尺寸有严格的规定.现有四个乒乓球,超过规定的尺寸记为正数,不足规定的尺寸记为负数.为选用一个乒乓球进行比赛,裁判对四个乒乓球进行测量,得到结果:A 球:+0.2 mm ,B 球:-0.1 mm ,C 球:+0.3 mm ,D 球:-0.2 mm.你认为应选哪个乒乓球用于比赛?为什么?13.已知a,b,c为有理数,且它们在数轴上的对应点的位置如图1-3-1所示.图1-3-1(1)试判断a,b,c的正负性;(2)在数轴上标出a,b,c的相反数对应的点;(3)根据数轴化简:①|a|=________,②|b|=________,③|c|=________,④|-a|=________,⑤|-b|=________,⑥|-c|=________.(4)若|a|=5.5,|b|=2.5,|c|=5,求a,b,c的值.教师详解详析1.(1)2 2 (2)2 2 (3)0 0 2.B 3.A4.非负数(或0和正数) 0 5.26.解:⎪⎪⎪⎪-135=135, |+6.3|=6.3, |-32|=32, |12|=12,⎪⎪⎪⎪312=312.7.[解析] 先根据绝对值的意义去掉绝对值符号,再计算. 解:(1)原式=43-12=56.(2)原式=49×17=7.(3)原式=3-1+3=5. 8.2和-29.0 [解析] 在-3.5~2.5之间的所有整数为-3,-2,-1,0,1,2,它们的绝对值分别为3,2,1,0,1,2,它们的乘积为0.故答案为0.10.④ [解析] ①-|a |不一定是负数,当a 为0时,结果还是0,故错误;②互为相反数的两个数的绝对值也相等,故错误;③当|a |=|b |时,a 与b 相等或互为相反数,故错误.11.812.[解析] 分别求出+0.2,-0.1,+0.3,-0.2的绝对值,选用绝对值最小的.解:应选B球用于比赛.因为根据绝对值的意义,绝对值越小,说明它与规定的尺寸偏差越小,所以应选绝对值最小的B球.13.解:(1)由数轴可得a是负数,b是正数,c是正数.(2)如图.(3)①|a|=-a,②|b|=b,③|c|=c,④|-a|=-a,⑤|-b|=b,⑥|-c|=c.故答案为-a,b,c,-a,b,c.(4)因为|a|=5.5,|b|=2.5,|c|=5,且a为负数,b为正数,c为正数,所以a=-5.5,b=2.5,c=5.第1章有理数1.4有理数的大小比较知识点1利用数轴比较有理数的大小1. 如图1-4-1,数轴上有A,B,C,D四个点,其中所对应的数最小的点是()1-4-1A.点A B.点B C.点C D.点D2.有理数a,b,c在数轴上所对应的点的位置如图1-4-2,则下列关系正确的是()图1-4-2A .c >a >0>bB .a >b >0>cC .b >0>a >cD .b >0>c >a 3.在数轴上表示下列各数,并比较大小. 2,-34,0,12,-1.5.知识点2 利用法则比较有理数的大小 4.用“>”或“<”填空.(1)-5________-4;(2)-78________-89;(3)-π________-3.14.5.[2018·宁波]在-3,-1,0,1这四个数中,最小的数是( ) A .-3 B .-1 C .0 D .16.[2018·台州]温岭一模在0.5,0,-1,-2这四个数中,绝对值最大的数是( ) A .0.5 B .0 C .-1 D .-27.[2018·台州乐清模拟]请写出一个比-π大的负整数:________.8. 比较下列各组数的大小: (1)1与-100; (2)-43与0;(3)-56与-45; (4)-58与-0.618.9.有关数轴上的数,下面说法正确的是()A.两个有理数,绝对值大的离原点远B.两个有理数,绝对值大的在右边C.两个负有理数,绝对值大的离原点近D.两个有理数,绝对值大的离原点近10.[2017·杭州滨江区期中]大于-π而小于2的整数共有()A.6个 B.5个 C.4个 D.3个图1-4-311.已知a,b是有理数,它们在数轴上的对应点的位置如图1-4-3所示,则a,b,-a,-b这四个数中最小的是()A.a B.b C.-a D.-b12.数轴上有A,B,C,D四个点,它们与原点的距离分别为1,2,3,4个单位长度,且点A,C在原点左边,点B,D在原点右边.(1)请写出点A,B,C,D分别表示的数;(2)比较这四个数的大小,并用“>”连接.13.比较a与-a的大小.教师详解详析1.A 2.C3. 解:画数轴略,-1.5<-34<0<12<2.4.(1)< (2)> (3)<5.A [解析] 由“正数都大于0,负数都小于0,正数大于负数”及“两个负数比较大小,绝对值大的数反而小”,得-3<-1<0<1,所以最小的数是-3.故选A.6.D [解析] |-2|=2,|-1|=1,|0|=0, |0.5|=0.5. ∵0<0.5<1<2,∴在0.5,0,-1,-2这四个数中,绝对值最大的数是-2.故选D. 7.答案不唯一,如-3 8.解:(1)1>-100. (2)-43<0.(3)∵⎪⎪⎪⎪-56=56=2530,⎪⎪⎪⎪-45=45=2430,2530>2430, ∴-56<-45.(4)∵-58=-0.625,0.625>0.618,∴-0.625<-0.618,即-58<-0.618.9.A10.B [解析] 大于-π而小于2的整数有:-3,-2,-1,0,1,共5个.故选B. 11.B [解析] 由数轴可知:b <0<a ,|b |>|a |,∴-b >a >0,-a <0,b <-a ,∴b<-a <a <-b ,即最小的数是b .12.解:(1)A :-1,B :2,C :-3,D :4. (2)4>2>-1>-3.13.解:当a >0时,a >-a ;当a =0时,a =-a ; 当a <0时,a <-a .2.1 有理数的加法第1课时 有理数的加法法则知识点1 有理数的加法法则 1.计算:(1)(+3)+(+2)=+(︱3︱____︱2︱)=5; (2)(-3)+(-2)=____(︱3︱+︱2︱)=____; (3)3+(-2)=____(︱3︱-︱-2︱)=____; (4)(-3)+(+2)=-(︱-3︱-︱2︱)=____. 2.[2018·温州一模]计算-5+2的结果是( ) A .-3 B .-1 C .1 D .33.[2018·绍兴上虞区模拟]若□+(-3)=0,则“□”内可填的数是( ) A .-3 B .3 C .-13 D.134.下列运算中,正确的是________.(填序号) ①(-5)+5=0;②(-10)+(+7)=3;③0+(-4)=-4;④⎝⎛⎭⎫-27+⎝⎛⎭⎫+57=-37; ⑤(-3)+2=-1. 5.用“>”或“<”填空:(1)如果a >0,b >0,那么a +b ______0; (2)如果a <0,b <0,那么a +b ______0; (3)如果a >0,b <0,|a |>|b |,那么a +b ______0; (4)如果a <0,b >0,|a |>|b |,那么a +b ______0. 6.在数轴上表示下列有理数的运算,并求出结果. (1)(-3)+5; (2)(-4)+(-3).7.计算:(1)(-3)+(-5); (2)(+6)+(-16);(3)(-23)+23; (4)0+(-0.8);(5)(+2.7)+(-6.7); (6)(-12)+(-13).知识点2有理数加法的简单应用8.若收入记为正,支出记为负,则收入8元,又支出5元,可用算式表示为()A.(+8)+(+5) B.(+8)+(-5)C.(-8)+(-5) D.(-8)+(+5)9.A为数轴上表示-1的点,将点A沿数轴向右移动2个单位长度后得到点B,则点B所表示的数为()A.-3 B.3 C.1 D.1或-310.某市某天早晨6点的气温是-1 ℃,到了中午气温比早晨6点时上升了8 ℃,这时该市的气温是________℃.11. 列式计算:(1)比-18大-30的数;(2)75的相反数与-24的和.12. 已知A地的海拔为-53米,而B地比A地高30米,求B地的海拔是多少.13.绝对值大于1且小于4的所有整数和是()A.6 B.-6C.0 D.414.如果两个有理数的和是负数,那么这两个数()A.都是负数B.一个为零,一个为负数C.一正一负,且负数的绝对值较大D.以上三种情况都有可能15.某天股票A的开盘价为18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元 B.16.2元C.16.8元 D.18元16. 在0,-2,1,12这四个数中,最大数与最小数的和是________.17.若|a |=7,|b |=2,则a +b 的值是________. 18.按下列要求分别写出一个含有两个加数的算式: (1)两个加数都是负数,和是-13; (2)至少一个加数是正整数,和是-13.19. 下表是某水位站记录的潮汛期某河流一周内的水位变化情况(单位:m .“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周日的水位恰好达到警戒水位,警戒水位是0 m ).(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周日相比,本周日河流的水位是上升了还是下降了?20.如图2-1-1所示,在没有标出原点的数轴上有A,B,C,D四个点,这四个点对应的有理数都是整数,且其中一个点在原点处,数轴的单位长度为1.若A,B对应的有理数a,b满足a+b=-5,则数轴的原点只能是A,B,C,D四点中的哪个点?为什么?图2-1-1教师详解详析1.(1)+ (2)- -5 (3)+ 1 (4)-1 2.A [解析] -5+2=-(|5|-|2|)=-3.故选A. 3.B 4.①③⑤5.(1)> (2)< (3)> (4)<6.解:在数轴上表示略. (1)(-3)+5=2. (2)(-4)+(-3)=-7. 7.(1)-8 (2)-10 (3)0 (4)-0.8 (5)-4 (6)-568.B 9.C 10.711.解:(1)∵(-18)+(-30)=-48, ∴比-18大-30的数是-48. (2)∵(-75)+(-24)=-99, ∴75的相反数与-24的和为-99. 12.解:(-53)+30=-23(米). 答:B 地的海拔是-23米.13.C [解析] 绝对值大于1且小于4的所有整数是:-2,-3,2,3,共有4个,这4个数的和是0.14.D15.C [解析] 18+(-1.5)+(+0.3)=16.8(元).16.-1 [解析] 在有理数0,-2,1,12中,最大的数是1,最小的数是-2,它们的和为(-2)+1=-1.17.±5或±9[解析] ∵|a|=7,∴a=±7.∵|b|=2,∴b=±2,∴a+b=±5或±9.18.解:答案不唯一,如:(1)(-1)+(-12)=-13.(2)1+(-14)=-13.19.解:(1)星期一的水位是0.20 m;星期二的水位是0.20+0.81=1.01(m);星期三的水位是1.01+(-0.35)=0.66(m);星期四的水位是0.66+0.13=0.79(m);星期五的水位是0.79+0.28=1.07(m);星期六的水位是1.07+(-0.36)=0.71(m);星期日的水位是0.71+(-0.01)=0.70(m).则星期五河流水位最高,星期一河流水位最低,均高于警戒水位,与警戒水位的距离分别是1.07 m,0.20 m.(2)与上周日相比,本周日河流的水位上升了.20.解:①若A为原点,则点A表示的数为0,点B表示的数为5,则a+b=5,不符合题意;②若B为原点,则点A表示的数为-5,点B表示的数为0,则a+b=-5,符合题意;③若C为原点,则点A表示的数为1,点B表示的数为6,则a+b=7,不符合题意;④若D为原点,则点A表示的数为-2,点B表示的数为3,则a+b=1,不符合题意.故点B为原点.第2课时有理数的加法运算律知识点1 有理数的加法运算律1.(1)3+(-2)=________+3,即a +b =________;(2)(-5)+(-31)+(+31)=(-5)+[(-31)+________],即(a +b )+c =____________. 2. 下列变形,运用加法运算律正确的是( ) A .3+(-2)=2+3B .4+(-6)+3=(-6)+4+3C .[5+(-2)]+4=[5+(-4)]+2 D.16+(-1)+⎝⎛⎭⎫+56=⎝⎛⎭⎫16+56+(+1) 3.小磊解题时,将式子⎝⎛⎭⎫-16+(-7)+56+(-4)先变成⎣⎡⎦⎤⎝⎛⎭⎫-16+56+[(-7)+(-4)]再计算结果,则小磊运用了( )A .加法交换律B .加法交换律和加法结合律C .加法结合律D .无法判断4.下面运用加法运算律计算⎝⎛⎭⎫+613+(-18)+⎝⎛⎭⎫+423+(-6.8)+18+(-3.2),最恰当的是( )A.⎣⎡⎦⎤⎝⎛⎭⎫+613+⎝⎛⎭⎫+423+18+[(-18)+(-6.8)+(-3.2)]B.⎣⎡⎦⎤⎝⎛⎭⎫+613+(-6.8)+⎝⎛⎭⎫+423+[(-18)+18+(-3.2)]C.⎣⎡⎦⎤⎝⎛⎭⎫+613+(-18)+[⎝⎛⎭⎫+423+(-6.8)]+[18+(-3.2)]D.⎣⎡⎦⎤⎝⎛⎭⎫+613+⎝⎛⎭⎫+423+[(-18)+18]+[(-3.2)+(-6.8)] 5.计算(-1.387)+(-3.617)+(+2.387)时,应先把________和________这两个数相加较为简便.6.下列各式中,能用加法运算律简便计算的是________.(填序号)①(-16)+(-23);②(-325)+(-513)+(+7);③(-834)+(-17)+(-14)+(-567);④(+23)+(-12)+(+34)+(-23).7.在算式相应步骤后面填上这一步所运用的运算律. (+7)+(-22)+(-7)=(-22)+(+7)+(-7)____________ =(-22)+[(+7)+(-7)]____________ =(-22)+0 =-22.8.用简便方法计算,并说明有关理由. (1)12+(-18)+4;(2)⎝⎛⎭⎫-312+(-8)+⎝⎛⎭⎫+712;(3)8+(-6)+5+(-8);(4)(-2.4)+4.56+(-5.6)+(-4.56);(5)(-37)+(+15)+(+27)+(-115).知识点2有理数加法运算律的应用9.水池中的水位在某天八个不同时间测得的记录如下(规定与上一时刻相比上升为正,下降为负,单位:cm):+3,-6,-1,+5,-4,+2,-3,-2.那么这天水池中水位的最终变化情况是()A.上升6 cm B.下降6 cmC.没升没降 D.下降26 cm10. 有一架直升机从海拔2500米的高原上起飞,第一次上升了2100米,第二次上升了-1200米,第三次上升了-1700米,求此时这架直升机离海平面多少米.11.若a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a ,b ,c 三数的和为( )A .1B .-1C .0D .不确定12.用简便方法计算,并说明有关理由. (1)1.75+⎝⎛⎭⎫-612+338+⎝⎛⎭⎫-134+258;(2)⎝⎛⎭⎫-318+(-2.16)+814+318+(-3.84)+(-0.25)+45.13.小虫从点O 出发,在一条直线上来回爬行,若向右爬行记为正,向左爬行记为负,则其爬行情况记录如下(单位:厘米):+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到出发点O? (2)小虫离开出发点O 最远是多少厘米?(3)在小虫爬行过程中,若它每爬行1厘米奖励它1粒芝麻,则小虫一共得到多少粒芝麻?14.阅读下面的解题过程:计算:(-556)+⎝⎛⎭⎫-923+1734+⎝⎛⎭⎫-312. 解:原式=⎣⎡⎦⎤(-5)+⎝⎛⎭⎫-56+[(-9)+⎝⎛⎭⎫-23]+[(+17)+⎝⎛⎭⎫+34]+[(-3)+⎝⎛⎭⎫-12]=[(-5)+(-9)+(+17)+(-3)]+⎣⎡⎦⎤⎝⎛⎭⎫-56+⎝⎛⎭⎫-23+⎝⎛⎭⎫+34+⎝⎛⎭⎫-12=0+⎝⎛⎭⎫-114=-114. 上面这种解题方法叫拆项法.仿照上述解题过程计算:-201956+(-201823)+4039+(-112).教师详解详析1.(1)(-2) b +a (2)(+31) a +(b +c )2.B [解析] A .3+(-2)=(-2)+3,本选项错误;B.4+(-6)+3=(-6)+4+3,本选项正确;C.[5+(-2)]+4=[5+(+4)]+(-2),本选项错误;D.16+(-1)+⎝⎛⎭⎫+56=⎝⎛⎭⎫16+56+(-1),本选项错误.故选B.3.B 4.D5.-1.387 +2.387 6.③④ 7.加法交换律 加法结合律 8.解:说明有关理由略.(1)原式=12+4+(-18)=16+(-18)=-2. (2)原式=⎝⎛⎭⎫-312+⎝⎛⎭⎫+712+(-8)=4+(-8)=-4. (3)原式=8+(-8)+(-6)+5=(-6)+5=-1.(4)原式=[(-2.4)+(-5.6)]+[4.56+(-4.56)]=(-8)+0=-8. (5)原式=⎣⎡⎦⎤(-37)+(+27)+[(+15)+(-115)]=⎝⎛⎭⎫-17+(-1)=-87. 9.B [解析] 根据题意,得(+3)+(-6)+(-1)+(+5)+(-4)+(+2)+(-3)+(-2)=-6 cm ,则这天水池中水位的最终变化情况是下降6 cm ,故选B.10.解:2500+2100+(-1200)+(-1700) =(2500+2100)+[(-1200)+(-1700)] =4600+(-2900) =1700(米).答:此时这架直升机离海平面1700米.11.C [解析] 依题意,得a =1,b =-1,c =0,则a +b +c =1+(-1)+0=0.故选C.12.解:说明有关理由略.(1)1.75+⎝⎛⎭⎫-612+338+⎝⎛⎭⎫-134+258=⎣⎡⎦⎤1.75+⎝⎛⎭⎫-134+⎝⎛⎭⎫-612+(338+258)=0+⎝⎛⎭⎫-612+6=-12.(2)原式=⎝⎛⎭⎫-318+318+[(-2.16)+(-3.84)]+⎣⎡⎦⎤814+⎝⎛⎭⎫-14+45=0+(-6)+8+45=245. 13.[解析] (1)小虫是否回到出发点O ,即看各爬行记录的代数和是不是0;(2)计算出每次爬行后距点O 的距离,然后比较;(3)实质是求各段路程绝对值的和.解:(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0(厘米),所以小虫最后回到出发点O .(2)小虫距点O 的距离依次为5厘米,|(+5)+(-3)|=2(厘米),|2+10|=12(厘米),|12+(-8)|=4(厘米),|4+(-6)|=2(厘米),|(-2)+12|=10(厘米),|10+(-10)|=0(厘米),所以小虫离开出发点O 最远是12厘米.(3)|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54(厘米),故小虫一共得到54粒芝麻.14.解:原式=⎣⎡⎦⎤(-2019)+(-56)+[(-2018)+(-23)]+4039+⎣⎡⎦⎤(-1)+(-12)=[(-2019)+(-2018)+4039+(-1)]+[(-56)+(-23)+(-12)]=1+(-2) =-1.2.2 有理数的减法第1课时 有理数的减法法则知识点1 有理数的减法法则 1.填空:(1)(-7)-(-3)=(-7)+________=________; (2)(-5)-4=(-5)+________=________; (3)0-(-2.5)=0+________=________.2.[2018·湖州三模]计算(-2)-(-3)的结果为( ) A .1 B .-1 C .5 D .-5 3.在(-5)-( )=-7中的括号里应填( ) A .-12 B .2 C .-2 D .12 4.计算:(1)(+5)-(-3); (2)0-(-34);(3)(-16)-(-13);(4)(+18.5)-(-18.5).5.计算:(1)(-5)-(+1)-(-6);(2)11-(-9)-(+3);(3)-6-(-5)-9.知识点2有理数减法的简单应用6.某市2018年的最高气温为39 ℃,最低气温为零下7 ℃,记零上温度为正,零下温度为负,则计算该市2018年温差的算式为()A.(+39)-(-7) B.(+39)+(+7)C.(+39)+(-7) D.(+39)-(+7)7.[2018·台州]比-1小2的数是()A.3 B.1 C.-2 D.-38.陆上最高处是珠穆朗玛峰的峰顶,海拔是8844.43 m,最低处是位于亚洲西部名为死海的湖,海拔是-415 m ,则这两处的高度差为________m.9.从-1中依次减去-112,-78,所得的差是______.10.列式计算:(1)412与-314的差的相反数;(2)一个加数是-7,和是-11,则另一个加数是多少?11.甲地的海拔是40 m ,乙地的海拔是-30 m ,丙地比甲地低50 m ,回答下列问题: (1)丙地的海拔是多少? (2)哪个地方的海拔最高? (3)哪个地方的海拔最低? (4)最高的比最低的高多少?12.下列说法正确的是()A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差一定大于被减数D.0减去任何数,差都是负数13.数轴上与表示-2的点的距离等于3个单位长度的点表示的数是________.14.计算:(1)|-4|-|-7|;(2)-|-3|-(-3)-2;(3)|-2|-(-2.5)-|1-4|.15.-4,5,-7这三个数的和比这三个数绝对值的和小多少?16.[2017·杭州萧山区期末]点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=|a-b|.回答下列问题:(1)数轴上表示2和5的两点之间的距离是________,数轴上表示2和-3的两点之间的距离是________;(2)数轴上表示x和-2的两点之间的距离为________;(3)若x表示一个有理数,且-4≤x≤-2,则|x-2|+|x+4|=________;(4)若|x+3|+|x-5|=8,求出x的整数值.教师详解详析1.(1)3 -4 (2)(-4) -9 (3)2.5 2.5 2.A [解析] (-2)-(-3)=(-2)+3=1.故选A. 3.B [解析] 括号里的数=(-5)-(-7)=(-5)+7=2. 4.(1)8 (2)34 (3)16(4)375.解:(1)原式=(-6)-(-6)=(-6)+6=0. (2)原式=20-(+3)=17. (3)原式=-1-9=-10. 6.A7.D [解析] (-1)-2=-3,故选D.8.9259.43 [解析] 8844.43-(-415)=8844.43+415=9259.43 (m).9.-124 [解析] 根据题意,可列式子为:(-1)-⎝⎛⎭⎫-112-⎝⎛⎭⎫-78=-1+112+78=-1+⎝⎛⎭⎫112+78=-1+2324=-124.10.解:(1)-⎣⎡⎦⎤412-(-314)=-(412+314)=-734. (2)(-11)-(-7)=(-11)+7=-4. 11.解:(1)40-50=-10(m). 答:丙地的海拔是-10 m.(2)∵甲地的海拔是40 m ,乙地的海拔是-30 m ,丙地的海拔是-10 m , 且40>-10>-30,∴甲地的海拔最高.(3)∵甲地的海拔是40 m ,乙地的海拔是-30 m ,丙地的海拔是-10 m , 且-30<-10<40,∴乙地的海拔最低.(4)40-(-30)=70(m).答:最高的比最低的高70 m.12.B[解析] A.两个数的差不一定小于被减数,如3-(-1)=4>3,故本选项错误;B.减去一个负数,差一定大于被减数,正确;C.减去一个正数,差一定小于被减数,如6-3=3<6,故本选项错误;D.0减去负数,差是正数,如0-(-1)=1,故本选项错误.13.1或-5[解析] 数轴上与表示-2的点的距离等于3个单位长度的点表示的数是-2+3=1或-2-3=-5.14.解:(1)原式=4-7=-3.(2)原式=-3-(-3)-2=-3+3+(-2)=-2.(3)原式=2-(-2.5)-3=2+2.5-3=1.5.15.解:(-4)+5+(-7)=-6,|-4|+|5|+|-7|=16,16-(-6)=16+6=22,所以-4,5,-7这三个数的和比这三个数绝对值的和小22.16.解:(1)数轴上表示2和5的两点之间的距离是5-2=3,数轴上表示2和-3的两点之间的距离是2-(-3)=5.(2)数轴上表示x和-2的两点之间的距离为|x+2|.(3)若x表示一个有理数,且-4≤x≤-2,则|x-2|+|x+4|=6.(4)因为|x+3|+|x-5|=8,所以-3≤x≤5,所以x的整数值为-3,-2,-1,0,1,2,3,4,5.2.2有理数的减法第2课时有理数的加减混合运算知识点1 有理数的加减混合运算1.计算:(+5)-(+2)-(-3)+(-9)=(+5)+(________)+(________)+(-9)=________.2.把(+3)-(+5)-(-1)+(-7)写成省略括号和加号的和的形式是( ) A .-3-5+1-7 B .3-5-1-7 C .3-5+1-7 D .3+5+1-7 3.下列交换加数位置的变形,正确的是( ) A .-5+34-2=34-5-2B .5-3+9=3-5+9C .3-4+6-7=4-3+7-6D .-8+12-16-23=-8-16+23-124.在下列计算过程中,开始出现错误的一步是( ) (+145)-(+23)-(-15)-(+113)=145+(-23)+(+15)+(-113)……① =(145+15)-(23-113)……②=2-(-23)……③=2+23……④=223. A .① B .② C .③ D .④5.计算:(1)(-14)+56+23-12;(2)4.7-(-8.9)-7.5+(-6);(3)0-(-6)+2-(-13)-(+8);(4)13-(+0.25)+(-34)-(-23).知识点2 有理数加减混合运算的简单应用6.一架飞机在空中做特技表演,起飞后的高度变化情况如下:上升4.5 km ,下降3.2 km ,上升1.1 km ,下降1.4 km.此时飞机比起飞点高________km.7.列式计算:(1)-25与-35的和减去-415的差是多少?(2)-3.6与234的和减去一个数的差为-2,求这个数.8.小明家某月的收支情况如下:爸爸、妈妈的工资分别为8000元和6500元,水电费190元,买菜、米等花去1000元,煤气费110元,更换冰箱3000元.只看这个月,小明家是收入还是支出?如果是收入,收入多少钱?如果是支出,支出多少钱?9.若x wy z 表示运算x +z -(y +w ),则3 -5-2 -1的结果是( ) A .5 B .7 C .9 D .1110.计算:1-2+3-4+5-6+…+99-100=________. 11.计算:(1)(+1.75)+⎝⎛⎭⎫-13+⎝⎛⎭⎫+45+(+1.05)+⎝⎛⎭⎫-23+(+2.2);(2)-2-⎝⎛⎭⎫+712+⎝⎛⎭⎫-715-⎝⎛⎭⎫-14-⎝⎛⎭⎫-13+715.12.兴华粮食中转站仓库在9月1日至9月10日的时间内运进、运出粮食情况如下表(运进记为“+”,运出记为“-”):(1)求9月3日仓库内共有粮食多少吨;(2)哪一天仓库内的粮食最多?最多是多少?(3)若每吨粮食的运费(包括运进、运出)是10元,则从9月1日到9月10日仓库共需付运费多少元?13.高速公路养护小组乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?。
2018年浙教版初一七年级数学上册全册同步分层训练学案含答案

2018年浙教版初一七年级数学上册全册同步分层训练学案含答案目录《1.1从自然数到有理数》(第1课时)《1.1从自然数到有理数》(第2课时)《1.2数轴》分层训练含答案《1.3绝对值》分层训练含答案《1.4有理数大小比较》分层训练含答案《2.1有理数的加法》(第1课时)《2.1有理数的加法》(第2课时)《2.2有理数的减法》(第1课时)《2.2有理数的减法》(第2课时)《2.3有理数的乘法》(第1课时)《2.3有理数的乘法》(第2课时)《2.4有理数的除法》分层训练含答案《2.6有理数的混合运算》分层训练含答案《2.7近似数》分层训练含答案《3.1平方根》分层训练含答案《3.2实数》分层训练含答案《3.3立方根》分层训练含答案《3.4实数的运算》分层训练含答案《4.1用字母表示数》分层训练含答案《4.2代数式》分层训练含答案《4.3代数式的值》分层训练含答案《4.4整式》分层训练含答案《4.5合并同类项》分层训练含答案《4.6整式的加减》(第1课时)《4.6整式的加减》(第2课时)《5.1一元一次方程》分层训练含答案《5.2等式的基本性质》分层训练含答案 《5.3一元一次方程的解法》(第1课时) 《5.3一元一次方程的解法》(第2课时) 《5.4一元一次方程的应用》(第1课时) 《5.4一元一次方程的应用》(第2课时) 《5.4一元一次方程的应用》(第3课时) 《5.4一元一次方程的应用》(第4课时) 《6.1几何图形》分层训练含答案《6.2线段、射线和直线》分层训练含答案 《6.3线段的长短比较》分层训练含答案 《6.4线段的和差》分层训练含答案《6.5角和角的度量》分层训练含答案《6.6角的大小比较》分层训练含答案《6.7角的和差》分层训练含答案1.1从自然数到有理数(第1课时)1.自然数是人类历史上最早出现的数.自然数在____________和____________中有着广泛的应用,人们还常常用自然数来给事物____________或____________.2.在小学阶段,小数(π除外)都可以转化为____________,而分数也都可以转化为____________.3.分数在化成小数时,结果可能是____________,也可能是____________.A组基础训练1.2017年2月10日,浙江省某地今明天气预报:”今天:晴转多云,偏北风2~3级,2℃~6℃;明天:多云转晴,0℃~5℃”,其中2月10日,2~3级,0℃~5℃分别属于() A.排序、测量、测量B.排序、测量、计数C.排序、计数、测量D.计数、测量、排序2.生产同样的产品,小王三分钟可生产五个,小李五分钟可生产三个.则下列说法正确的是() A.小王的工作效率高B.小李的工作效率高C.两人的工作效率一样高D.无法比较两人的工作效率3.四个同学每两个人握一次手,一共握手()A.8次B.4次C.6次D.10次4.拃是拇指和食指在平面上伸直时,两者端点之间的距离,则以下估计正确的是()第4题图A.课本的宽度约为4拃B.课桌的宽度约为4拃C.黑板的宽度约为4拃D.字典的厚度约为4拃5.纸店有三种纸,甲种纸4角买11张,乙种纸5角买13张,丙种纸7角买17张,则三种纸中最贵的是( )A .甲种B .乙种C .丙种D .三种一样贵6.(厦门中考)如图所示的6个数是按一定规律排列的,根据这个规律,括号内的数是( ) 16 27 4329 40 ( ) 第6题图A.27 B .56 C .43 D .307.如图,将一张正方形纸片分割成四张面积相等的小正方形纸片,然后将其中一张小正方形纸片再分割成四张面积相等的小正方形纸片.如此分割下去,第10次分割后,正方形纸片共有( )第7题图A .31张B .32张C .33张D .34张8.小亮在看报纸时,收集到以下信息:(1)某地的国民生产总值列全国第五位;(2)某城市有16条公共汽车线路;(3)小刚乘T32次火车去北京;(4)小风在校运会上获得跳远比赛第一名.你认为其中用到自然数排序的有____________.9.计算3.69÷6.15,结果用分数表示是____________,用小数表示是____________.10.如图是某宾馆的台阶侧面示意图,若要在台阶上铺地毯,那么至少要买长为____________米的地毯.第10题图11.瑞士中学教师巴尔末成功地从光谱数据95,1612,2521,3632,…中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出接下来的两个数据分别是____________.12.林林手中有22元钱,买文具用了2元5角,买水果用了3元,在回家路上遇到爷爷,爷爷给了他15元钱,现在他手中共有多少钱?B组自主提高13.小慧同学不但会学习,而且也很会安排时间干家务活,煲饭、炒菜、擦窗等样样都行,是爸妈的好帮手.某一天放学回家后,她完成各项家务活及所需时间如下表:小慧同学完成以上各项家务活,至少需要____________分钟(各项家务活转接时间忽略不计).14.一本书有200页,小英计划三天看完,第一天看了全书的40%,第二天与第三天看的页数之比是5∶7.(1)题中200是用于表示计数还是测量的?(2)第二天、第三天分别看了第一天看完后剩下的页数的几分之几?你能求出第二天、第三天各看了多少页吗?15.”假日旅行社”推出”西湖风景区一日游”的两种出游价格方案,如图:方案一成人每人150元,儿童每人60元.方案二团体5人及以上,每人100元.第15题图(1)成人10人,儿童5人.怎样购票合算?(2)成人5人,儿童10人.怎样购票合算?C 组 综合运用16.一个纸环链,纸环按红、黄、绿、蓝、紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( )第16题图A .2018B .2017C .2016D .201517.古希腊人常用小石子在沙滩上摆成各种形状来研究数的规律.例如:第17题图由图1中的小石子围成三角形,其颗数3,6,10,…称为三角形数.类似地,称图2中的4,9,16,…这样的数为正方形数.下列数中,既是三角形数又是正方形数的是( )A .15B .25C .55D .1225参考答案1.1 从自然数到有理数(第1课时)【课堂笔记】1.计数 测量 标号 排序 2.分数 小数 3.有限小数 无限循环小数【分层训练】1.A 2.A 3.C 4.B 5.C 6.B 7.A 8.(1)(3)(4) 9.350.6 10.6.5 11.4945,646012.31.5元 13.33 14.(1)题中200是用于表示计数的.(2)5+7=12,故第二天看了第一天看完后剩下的页数的512,第三天看了第一天看完后剩下的页数的712.200×(1-40%)=120(页),120×512=50(页),120×712=70(页). ∴第二天看了50页,第三天看了70页.15.(1)10个成人买团体票,5个儿童购买儿童票合算. (2)5个成人买团体票,10个儿童购买儿童票合算.16.A 【解析】一个基础纸环链共5个环,左边配上蓝、紫可形成一个基础纸环链,右边配上红即可,中间少了n 个基础纸环链.故截去部分纸环个数必为5n +3,所以选A .17.D 【解析】三角形数的规律s 1=1+2+…+n =n (n +1)2,正方形数的规律s 2=n 2,故既是三角形数又是正方形数的数必是某一个数的平方,并且是相邻两个自然数乘积的一半,故选D .1.1 从自然数到有理数(第2课时)1.大于零的数叫做____________,小于零的数叫做____________.2.零既不是____________,也不是____________.3.有理数的分类:分类一:有理数⎩⎪⎨⎪⎧整数⎩⎨⎧⎭⎪⎬⎪⎫正整数零自然数负整数分数⎩⎪⎨⎪⎧正分数负分数 分类二:有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数A 组 基础训练1.下列各组中,互为相反意义的量是( )A .上升和下降B .篮球比赛胜5场与负3场C .向东走3千米,再向东走2千米D .增产10吨粮食与减产-10吨粮食2.如果水位升高3m 时,水位变化记做+3m ,那么水位下降3m 时,水位的变化记做( )A .-3mB .3mC .6mD .-6m3.某天中午的气温为零上2℃,晚上的气温下降了3℃,则这天晚上的气温为( )A .3℃B .1℃C .-3℃D .-1℃4.给出下列说法:①0是正数;②0是整数;③0是自然数;④0是最小的自然数;⑤0是最小的正数;⑥0是最小的非负数;⑦0是偶数;⑧0就表示没有.其中正确的说法有( )A .3个B .4个C .5个D .6个5.下列说法正确的是( )A .整数就是正整数和负整数B .分数包括正分数、负分数C .正有理数和负有理数组成全体有理数D .一个数不是正数就是负数6.-1,0,0.2,17,3中,正数一共有____________个. 7.在下列横线上填上恰当的词,使前后构成意义相反的量.(1)收入2000元,____________1800元;(2)____________180m ,下降80m ;(3)向北1000m ,____________500m.8.(1)小张向东走了200m 记为+200m ,然后他向西走了-300m ,这时小张的位置与最初的位置比较是在____________.(2)2017年第二季度某商城的交易总额比第一季度增长7.5%,记做+7.5%,第三季度比第二季度下降1.2%,可记做____________.(3)在一次数学测验中,某班同学的平均分为85分,如果明明得94分,记做+9分,那么婷婷得80分,记做____________分.(4)已知一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),那么内径尺寸为29.89毫米的零件属于____________产品(填”合格”或”不合格”).(5)在时钟上,把时针从钟面数字”12”按顺时针方向拨到”6”,记做拨+12周,那么把时针从”12”开始,拨-14周后,该时针所指的钟面数字是____________. 9.把下列各数填入相应的大括号里:-3.14,4.3,+72,0,13,-6,-7.3,-12,0.4,-56,227,26. (1)正数集:{____________…}(2)负数集:{____________…}(3)正整数集:{____________…}(4)负整数集:{____________…}(5)非负数集:{____________…}10.某水库的标准水位记做0m ,如果用正数表示水面高于标准水位的高度,那么:(1)0.08m 和-1.25m 分别代表什么?(2)水面高于标准水位2.26m和水面低于标准水位1.44m分别如何表示?11.如图所示,欢欢、花花、芳芳三家在同一栋楼里,若以花花家的位置为基准,记为0米,规定高出为正,请问:其他两家的位置分别应为多少米?第11题图B组自主提高12.观察下面一列数:-1,2,-3,4,-5,6,-7,…,将这列数排成下列形式:…按照上述规律排下去,那么第10行从左边数第9个数是____________;数-201是第____________行从左边数第____________个数.13.体育课上,老师对七年级男生进行了引体向上的测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示.其中8名男生的成绩如下:3,-1,0,-3,-2,-1,2,0.问:这8名男生有百分之几达到标准?14.仔细观察下列数的规律后回答问题:-1,+2,-3,+4,-5,+6,…(1)数2016前面的符号是”+”还是”-”?(2)第2016个数可表示成什么?C 组 综合运用15.室内有4盏电灯在照明,每盏电灯都有且只有一个开关控制,现请你每次只拉动其中3盏电灯的开关,问:能否拉动有限次将这4盏灯关闭?如果不能,请说明理由;如果能,请写出最少的次数.参考答案1.1 从自然数到有理数(第2课时)【课堂笔记】1.正数 负数 2.正数 负数【分层训练】1.B 2.A 3.D 4.C 5.B 6.37.(1)支出 (2)上升 (3)向南8.(1)原位置的东面500m 处 (2)-1.2% 【解析】由题意可知增长记为正,则下降记为负. (3)-5 (4)不合格 (5)9 【解析】∵顺时针方向记为正,∴负表示逆时针方向.∴拨-14周后,该时针所指的钟面数字是9.9.(1)4.3,+72,13,0.4,227,26 (2)-3.14,-6,-7.3,-12,-56(3)+72,26 (4)-6,-12 (5)4.3,+72,0,13,0.4,227,26 10.(1)水面高于标准水位0.08m ,水面低于标准水位1.25m . (2)+2.26m ,-1.44m .11.欢欢家:-4米,芳芳家:+12米.12.90 15 5 【解析】根据题意得:每一行最末的数字的绝对值是行数的平方,且奇数前带有负号,偶数前是正号.如第4行最末的数字是42,第9行最后的数字是-92.∴第10行从左边数第9个数是81+9=90.∵-201=-1×(142+5),∴是第15行从左边数第5个数.13.因为8名男生中有4人达到标准,所以达到标准的百分率为48×100%=50%. 14.(1)“+” (2)+201615.能,至少四次,下面是一种可能(其中“+”表示打开,“-”表示关闭):、1.2 数轴1.规定了____________、____________和____________的直线叫做数轴.2.如果两个数只有____________不同,那么我们称其中一个数为另一个数的____________,也称这两个数互为相反数.特别地,零的相反数为____________.3.在数轴上,表示互为____________(零除外)的两个点,位于____________的两侧,并且到____________的距离____________.A 组 基础训练1.(宜宾中考)-15的相反数是( ) A .5 B.15 C .-15D .-5 2.下列各图中,表示的数轴正确的是( )3.下列数1,4,0,-12,-3在数轴上表示的点中不在原点右边的点的个数为( ) A .2 B .3 C .4 D .54.如图,数轴的单位长度为1,如果点A ,B 表示的数互为相反数,那么点A 表示的数是( )第4题图A .-4B .-2C .0D .45.数轴上的动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C.若点C 表示的数为1,则点A 表示的数为( )A .7B .3C .-3D .-26.有下列说法:①0的相反数是0;②a 的相反数不是正数就是负数;③若a ,b 互为相反数,则a b =-1;④若a b=-1,则a ,b 互为相反数;⑤若a ,b 互为相反数,则a +b =0;⑥若a +b =0,则a ,b 互为相反数.其中正确的有____________.7.(1)如果一个数的相反数是它本身,那么这个数是____________;a 的相反数是____________;若2x +3与x -6互为相反数,则x =____________.(2)数轴上表示-13的点在表示-1的点的____________;数轴上点P 距原点5个单位长度,且在原点的左侧,则点P 表示的数是____________;数轴上点Q 距原点3.5个单位长度,且在原点的右侧,那么点Q 表示的数是____________.(3)若x 表示到原点距离最小的点所对应的数,则x =____________;在数轴上距原点512个单位长度的点有____________个,它们表示的数是____________,它们互为____________.(4)如图,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度得到点P′,则点P′表示的数是____________.第7题图8.(1)点A 在数轴上所表示的数是m ,将点A 向右移动7个单位后所表示的数是3,则m =____________.(2)已知数轴上的点A 表示+7,B ,C 两点所表示的数互为相反数,且点C 与点A 的距离为2个单位长度,则点B 和点C 表示的数分别是____________.9.(1)如图,写出数轴上的点A ,B ,C ,D ,E 所表示的数.第9题图(2)写出下列各数的相反数,并将这些数与它们的相反数在数轴上表示出来.3,-112,0,12,-210.小明在写作业时,不慎将两滴墨水滴在数轴上,根据图中数据,你能确定墨迹盖住的整数是哪几个吗?第10题图B组自主提高11.七年级(3)班在一次联合活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)把每个队的得分标在数轴上,并将代表该队的字母标上(一个单位为50分);(2)从数轴上看A队与B队相差多少分?C队与E队相差多少分?12.有理数a,b在数轴上的位置如图所示.第12题图(1)在数轴上分别用A、B两点表示-a,-b;(2)若数b与-b表示的点相距20个单位长度,则b与-b表示的数分别是什么?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,则a与-a表示的数是多少?13.如图,图中数轴的单位长度为1.第13题图(1)如果点B ,E 表示的两个数互为相反数,那么点A ,B ,C ,D ,E 所表示的数分别是多少?(2)如果点C ,E 表示的两个数互为相反数,那么点A ,B ,C ,D ,E 所表示的数分别是多少?C 组 综合运用14.已知在纸面上有一数轴如图,折叠纸面.第14题图(1)若1表示的点与-1表示的点重合,则-3表示的点与数____________表示的点重合;(2)若5表示的点与-1表示的点重合,回答以下问题:①数3表示的点与数____________表示的点重合;②若数轴上A ,B 两点之间的距离为9(点A 在点B 左侧),且A ,B 两点经折叠后重合,求A ,B 两点所表示的数.参考答案1.2 数轴【课堂笔记】1.原点 单位长度 正方向 2.符号 相反数 零 3.相反数 原点 原点 相等【分层训练】1.B 2.C 3.B 4.B 5.D 6.①④⑤⑥7.(1)0 -a 1 (2)右边 -5 +3.5 (3)0 2 +512,-512相反数 (4)2 8.(1)-4 (2)-5,5或-9,99.(1)A 表示0,B 表示-212,C 表示-1,D 表示212,E 表示4. (2)它们的相反数分别为-3,112,0,-12,2,画图略.10.-5,-4,-3,-2,1,2,3.11.(1)画数轴略;(2)A队与B队相差200分,C队与E队相差400分.12.(1)如图:第12题图(2)数b与其相反数相距20个单位长度,则b表示的点到原点的距离为20÷2=10,所以b表示的数是-10,-b表示的数是10;(3)因为-b表示的点到原点的距离为10,而数a表示的点与数b的相反数表示的点相距5个单位长度,所以a表示的点到原点的距离为10-5=5,所以a表示的数是5,-a表示的数是-5.13.(1)由图可知:点B,E之间相距8个单位长度,又因为它们互为相反数,所以线段BE的中点是原点.而点D恰好距点B,E各4个单位长度,故点D表示的数为0.所以点A表示的数为-6,点B表示的数为-4,点C表示的数为-2,点E表示的数为+4.(2)由图可知:点C,E之间相距6个单位长度,因此点C表示的数为-3,点E表示的数为+3.所以点A表示的数为-7,点B表示的数为-5,点D表示的数为-1.14.(1)3(2)①1②点A表示-2.5,点B表示6.5.1.3绝对值1.把一个数在数轴上对应的点到____________的____________叫做这个数的____________.2.一般地,一个正数的绝对值是它____________;一个负数的绝对值是它的____________;零的绝对值是____________.互为相反数的两个数的绝对值____________,即任何数的绝对值是____________.3.绝对值等于本身的数是____________.A组基础训练1.(绍兴中考)-2的绝对值是()A.2 B.-2 C.0 D.1 22.有理数中,绝对值最小的数是()A.-1 B.0 C.1 D.没有3.有四包真空小包装火腿,每包以标准克数(450g)为基准,超过的克数记做正数,不足的克数记做负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是() A.+2 B.-3 C.+3 D.+44.下列说法正确的是()A.任何有理数的绝对值一定是正数B.互为相反数的两个数的绝对值也互为相反数C.绝对值相等的两个数一定相等D.绝对值等于它本身的数是非负数5.(1)若|x|=-x,则x满足的条件是()A.x>0 B.x=0 C.x<0 D.x≤0(2)若|x|=|y|,则x与y之间的关系是()A.相等B.互为相反数C.相等或互为相反数D.无法判断6.下列说法:①绝对值是它本身的数有两个:0和1;②一个有理数的绝对值必为正数;③0.5的倒数的相反数的绝对值是2;④任何有理数的绝对值都不是负数.其中错误的个数是____________个.7.(1)-212的绝对值是____________;绝对值等于12的数是____________,它们是一对____________.(2)如图,图中数轴的单位长度为1,如果点B ,C 所表示的数的绝对值相等,那么点A 表示的数是____________.第7题图(3)若数轴上表示数a 的点位于-3和2之间,则|a +3|+|a -2|的值是____________.8.有甲、乙两只蚂蚁分别在数轴上的A ,B 两点处,A ,B 两点表示的数分别为1和-1110,它们同时发现原点处有一食物,于是以相同的速度爬过去,先得到食物的是____________蚂蚁.(填”甲”或”乙”)9.计算:(1)|-10|+|8|;(2)|-6.25|×|-4|;(3)⎪⎪⎪⎪-345-⎪⎪⎪⎪-45+⎪⎪⎪⎪-312.10.正式排球比赛对所用排球的质量有严格的规定,允许有0.02kg 的误差,下面是6个排球的质量检测结果(用正数记超过规定质量的千克数,用负数记不足规定质量的千克数):(单位:kg )(1)请你指出几号排球合乎要求;(2)请你对6个排球按照质量最好到最差排名;(3)用学过的绝对值知识来说明以上问题.B 组 自主提高11.(1)若|a|=2,|b|=5,a 与b 同号,则|a +b|=____________;已知|x|=3,则x =____________;已知|-x|=2,则x =____________;已知|a|=4,那么a -1=____________.(2)已知|x -3|=0,则x =____________;已知|x -3|=2,则x =____________.(3)已知|a|=3,|b|=5,则a ,b 两数在数轴上所表示的点之间的距离是____________.12.一辆货车从货场A 出发,向东行驶了2km 到达批发部B ,继续向东行驶了1.5km 到达商场C ,又向西行驶了5.5km 到达超市D ,最后回到货场.(1)用一个单位长度表示1km ,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场A ,批发部B ,商场C ,超市D 的位置;(2)超市D 距货场A 多远?(3)货车一共行驶了多少千米?C 组 综合运用13.(1)计算下列各式,将结果直接写在横线上:⎪⎪⎪⎪12-1=____________,1-12=____________; ⎪⎪⎪⎪15-13=____________,13-15=____________; ⎪⎪⎪⎪34-45=____________,45-34=____________. 将(1)中每行计算结果进行比较,利用你发现的规律计算(2)(3)题.(2)计算:|3.14-π|=____________;(3)计算:⎪⎪⎪⎪12017-12016+⎪⎪⎪⎪12016-12015+⎪⎪⎪⎪12015-12014+…+⎪⎪⎪⎪13-12+⎪⎪⎪⎪12-1.参考答案 1.3 绝对值【课堂笔记】1.原点 距离 绝对值 2.本身 相反数 零 相等 非负数(正数和0) 3.非负数(正数和0) 【分层训练】1.A 2.B 3.A 4.D 5.(1)D (2)C6.2 7.(1)212 ±12 相反数 (2)-5 (3)5 8.甲 9.(1)18 (2)25 (3)61210.(1)2号和6号(2)从好到差为6号,2号,4号,5号,3号,1号.(3)|-0.011|<|-0.017|<|-0.021|<|+0.022|<|+0.023|<|+0.031|. 11.(1)7 ±3 ±2 3或-5 (2)3 1或5 (3)2或8 12.(1)如图.第12题图(2)由数轴可知超市D 距货场A 有2km . (3)货车一共行驶了2+1.5+5.5+2=11(km ). 13.(1)12 12 215 215 120 120(2)π-3.14 (3)20162017专题提升一 数轴、相反数、绝对值 等的综合运用 1.C 2.A3.(1)由题意得,x -2=0,y +3=0,解得x =2,y =-3; (2)|x|+|y|=|2|+|-3|=2+3=5. 4.(1)如图所示:第4题图(2)-x <y <0<︱y ︱<x(3)根据题意和图示分析可知:x +y >0,y -x <0,y <0,所以|x +y|-|y -x|+|y|=x +y -x +y -y =y.5.D 6.-4 -3 37.(1)点S 表示0,点P 表示-4,点T 表示4. (2)点S 表示5,4,1,3,0或-1. 8.D 9.-9798>-9899>-9910010.(1)点A 表示-1,点B 表示2,点C 表示-3,点D 表示4. (2)4>2>-1>-3. 11.C 12.4 13.第44行,左起第9个数.1.4 有理数的大小比较1.在数轴上表示的数,正数位于原点的____________,负数位于原点的____________. 2.在数轴上表示的两个数,右边的数总比左边的数____________.3.正数都____________零,负数都____________零,正数____________负数.4.两个正数比较大小,绝对值大的数____________,两个负数比较大小,绝对值大的数____________.A 组 基础训练1.下表是四个城市二月份某一天的平均气温:其中平均气温最低的城市是( )A .阿勒泰B .喀什C .吐鲁番D .乌鲁木齐 2.大于-5的负整数的个数是( )A .3B .4C .5D .6 3.下列说法正确的是( ) A .有最大的负数,没有最小的正数 B .有最小的负数,没有最大的正数 C .没有最大的有理数和最小的有理数 D .有最小的负整数和最大的正整数4.-34,-56,-78这三个数的大小关系是( )A .-78<-56<-34B .-78<-34<-56C .-56<-78<-34D .-34<-56<-785.比较大小:(1)0____________-2.5; (2)-π____________-3.14;(3)|+2.1|____________|-2.1|; (4)⎪⎪⎪⎪+18____________⎪⎪⎪⎪-17; (5)-⎝⎛⎭⎫+57____________-⎪⎪⎪⎪-67; (6)-|-2|____________-(-2).6.已知一组数:4,-3,-12,5.1,-412,0,-2.2.在这组数中:(1)绝对值最大的数是____________,绝对值最小的数是____________; (2)相反数最大的数是____________,相反数最小的数是____________. 7.(1)在数1,0,-1,-2中,最小的数是____________. (2)写出三个大于-2.5的负有理数:____________.(3)最大的负整数是____________,绝对值最小的数是____________,绝对值最小的正整数是____________.(4)大于-2的最小整数为____________,小于-3.56的最大整数为____________. (5)写出绝对值不大于3的整数:____________. (6)大于-3.5且小于2.5的整数共有____________个.8.(1)已知a ,b 都是有理数,在数轴上的位置如图所示,则a ,-b ,|a|,|b|的大小关系是____________.第8题图(2)若a<b<0,将1,1-a ,1-b 这三个数按从小到大的顺序用”<”连接起来是____________. (3)若a 是小于1的正数,用”<”将-a ,-1a ,1a ,0,-1,1连接起来是____________.9.比较下列各组数的大小,并说明理由. (1)2与-10;(2)-0.003与0;(3)-12与14.10.在数轴上标出下列各数,并用”<”把各数连接起来:-4,2,-(+12),-1.5,112,⎪⎪⎪⎪-12.11.有5袋小麦,以每袋25千克为基准,超过的千克数记做正数,不足的千克数记做负数,各袋大米的千克数如下表:(1)第一袋大米的实际质量是多少千克? (2)把表中各数用”<”连接;(3)把各袋的袋号按袋中大米的质量从小到大排列,这一排列与(2)题中各数排列的顺序是否一致?B 组 自主提高12.(1)a ,b 两数在一条隐去原点的数轴上的位置如图所示(表示数a 的点与表示数-1的点的距离大于表示数b 的点与表示数-1的点的距离).第12题图有下列式子:①a -b <0;②a +b <0;③ab <0;④(a +1)(b +1)<0.其中一定成立的是____________(填序号).(2)若a <0,b <0,|a|<|b|,则a 与b 的大小关系是____________.13.若用点A ,B ,C 分别表示有理数a ,b ,c ,它们在数轴上的位置如图所示.第13题图(1)比较a ,b ,c 的大小;(2)化简:2c +|a +b|+|c -b|-|c -a|.14.如图,图中数轴的单位长度是1,请回答下列问题:(1)如果点A ,B 表示的数互为相反数,那么点D 表示的数是多少?(2)如果点B ,E 表示的数的绝对值相等,那么点A 表示的数是多少?图中表示的5个点中,哪一个点表示的数的绝对值最小?最小的绝对值是多少?第14题图C 组 综合运用15.已知a<6,试比较|a|与3的大小.参考答案1.4 有理数的大小比较【课堂笔记】1.右侧 左侧 2.大 3.大于 小于 大于 4.大 反而小 【分层训练】 1.A 2.B 3.C 4.A5.(1)> (2)< (3)= (4)< (5)> (6)< 6.(1)5.1 0 (2)-4125.17.(1)-2 (2)-2,-1.5,-1(答案不唯一) (3)-1 0 1 (4)-1 -4 (5)±3,±2,±1,0 (6)68.(1)a<-b<|b|<|a| (2)1<1-b<1-a (3)-1a <-1<-a <0<1<1a9.(1)2>-10,理由略. (2)-0.003<0,理由略. (3)-12<14,理由略.10.图略-4<-1.5<-(+12)<⎪⎪⎪⎪-12<112<2 11.(1)24.8千克 (2)-0.3<-0.2<-0.1<0.1<0.2 (3)三<一<四<二<五 与(2)中一致 12.(1)①②④ (2)a >b 13.(1)由数轴可知:a<c<b.(2)由数轴可知:b>0,a<c<0,且a +b<0,c -b<0,c -a>0,∴原式=2c -(a +b)-(c -b)-(c -a)=2c -a -b -c +b -c +a =0.14.(1)-6 (2)-2,点C ,最小绝对值为0. 15.利用数轴,如图.第15题图当3<a<6时,|a|>3;当a =3时,|a|=3;当-3<a<3时,|a|<3;当a =-3时,|a|=3;当a<-3时,|a|>3.综上所述:当3<a<6或a<-3时,|a|>3;当a =±3时,|a|=3;当-3<a<3时,|a|<3.2.1 有理数的加法(第1课时)1.同号两数相加,取与____________相同的符号,并把____________相加.2.异号两数相加,取绝对值____________的加数的符号,并用较大的绝对值____________较小的绝对值.3.互为相反数的两个数相加得____________;一个数同零相加,仍得____________.A 组 基础训练1.计算-2+1的结果是( )A .1B .-1C .3D .-3 2.两个有理数的和等于零,则这两个有理数( )A .都是零B .一正一负C .有一个加数是零D .互为相反数 3.下列运算中,正确的个数有( )①(-5)+5=0 ②(-10)+(+7)=-3 ③3+(-4)=-7 ④(-3)+2=-1 ⑤(-1)+(+2)=-1A .1B .2C .3D .4 4.一个数是-4,另一个数比它大2,则另一个数是( )A .-2B .-6C .2D .6 5.如果两个数的和是负数,那么( ) A .这两个加数都是负数B .一个加数为负,另一个加数为0C .两个加数异号,且负数的绝对值大D .必属于以上三种情况之一 6.计算:(1)(-4)+(+2)=____________; (2)(-12)+(-13)=____________;(3)123+(-1013)=____________.7.比较下列各式的大小,用”>”、”<”或”=”连接. (-8)+(+8)____________0;(-8)+(-8)____________0;⎝⎛⎭⎫-25+⎝⎛⎭⎫+52____________0;0+(-4)____________0. 8.-113的相反数与-34的和是____________.9.小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为____________℃.10.数轴上有一只蚂蚁,从原点出发,先向右爬行5个单位,再向左爬行12个单位,最后这只蚂蚁在数轴上所在的位置表示的数是多少?并用算式表示出来.11.计算: (1)(-98)+85; (2)(-212)+(-113);(3)⎝⎛⎭⎫-227+⎝⎛⎭⎫-349; (4)(+51)+⎝⎛⎭⎫-2757.12.列式计算:(1)比-8大3的数是多少?(2)一个数是6,另一个数比6的相反数大2,求这两个数的和是多少?(3)某地气温不稳定,开始是6℃,2小时后升高4℃,再过2小时又下降11℃,求此时该地的气温是多少?13.已知a ,b ,c 的位置如图,化简|a -b|+|b +c|+|c -a|.第13题图B 组 自主提高14.下列说法正确的是( ) A .两个正数相加,和为正数 B .两个负数相加,绝对值相减C .两个数相加,等于它们的绝对值相加D .正数加负数,其和一定等于015.(1)已知a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a +b +|c|等于____________;(2)已知|x -4|与|y +5|互为相反数,则x +y 的值是____________;(3)已知a ,b ,c 三个数在数轴上的位置如图所示,则下列结论:①a +b<0;②b +c<0;③a +b +c>0;④a +c >0.正确的是____________.第15题图16.计算:(+1)+(-12)=____________;(+12)+(-13)=____________; (+13)+(-14)=____________; (+14)+(-15)=____________. 由此规律,请你完成下面计算: 12+16+112+120+130+142+156+172+190.C 组 综合运用17.(1)已知|a|=3,|b|=2,求a +b 的值.(2)已知|a|=4,|b|=2,且a>b ,求a +b 的值.参考答案2.1 有理数的加法(第1课时)【课堂笔记】1.加数 绝对值 2.较大 减去 3.零 这个数 【分层训练】1.B 2.D 3.C 4.A 5.D 6.(1)-2 (2)-56 (3)-8237.= < > < 8.7129.-1 10.-7 0+(+5)+(-12)=-7 11.(1)原式=-(98-85)=-13. (2)原式=-(212+113)=-(236+126)=-356.(3)原式=-⎝⎛⎭⎫227+349=-⎝⎛⎭⎫21863+32863=-54663. (4)原式=+⎝⎛⎭⎫51-2757=2327. 12.(1)-8+3=-5. (2)-6+2=-4,6+(-4)=2. (3)6+4+(-11)=-1(℃).13.由数轴可知a<c<0<b ,|c|>|b|,∴a -b<0,b +c<0,c -a>0,则|a -b|+|b +c|+|c -a|=-(a -b)+(-b -c)+(c -a)=-2a.14.A 15.(1)0 (2)-1 (3)①②④ 16.12 16 112 120原式=(+1)+(-12)+(+12)+(-13)+(+13)+(-14)+…+(+19)+(-110)=(+1)+(-110)=910.17.(1)∵|a|=3,|b|=2.∴a=±3,b=±2.①当a=3,b=2时,a+b=3+2=5;②当a=3,b=-2时,a+b=3-2=1;③当a=-3,b=2时,a+b=-3+2=-1;④当a=-3,b=-2时,a+b=-3-2=-5.(2)∵|a|=4,|b|=2,∴a=±4,b=±2,又∵a>b,∴a=4.∴a+b=6或2.专题提升一数轴、相反数、绝对值等的综合运用带字母的绝对值问题1.a为有理数,下列判断正确的是()A.-a一定是负数B.|a|一定是正数C.|a|一定不是负数D.-|a|一定是负数2.有理数a、b在数轴上位置如图所示,则|a|与|b|的关系是()第2题图A.|a|>|b|B.|a|≥|b|C.|a|<|b|D.|a|≤|b|3.若|x-2|+|y+3|=0,计算:(1)求x,y的值;(2)求|x|+|y|的值.4.有理数x、y在数轴上对应点如图所示:第4题图(1)在数轴上表示-x、|y|;(2)试把x、y、0、-x、︱y︱这五个数从小到大用”<”连接起来;(3)化简|x+y|-|y-x|+|y|.数轴相关的问题5.图中数轴的单位长度为1,若点A、B表示的数是互为相反数,则在图中A,B,C,D四个点中表示绝对值最小的数的点是()。
浙教版七年级数学上册同步练习:1.1从自然数到有理数2

1.1从自然数到有理数2一.选择题(共20小题)1.如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%2.四个数﹣3,0,1,2,其中负数是()A.﹣3 B.0 C.1 D.23.如果向右走5步记为+5,那么向左走3步记为()A.+3 B.﹣3 C.+D.﹣4.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.5.下列分数中,能化为有限小数的是()A.B.C.D.6.将分数﹣化为小数是﹣0.. 5714,则小数点后第2016位上的数是()A.8 B.7 C.4 D.27.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数 D.整数和分数统称为有理数8.下列说法:①﹣2.5既是负数、分数,也是有理数;②﹣22既是负数、整数,也是自然数;③0既不是正数,也不是负数,但是整数;④0是非负数.其中正确的有()A.1个B.2个C.3个D.4个9.下列说法错误的是()A.零不能做除数 B.零没有倒数C.零的相反数是零D.零除以任何数都得零10.下列各数中:+3、+(﹣2.1)、﹣、﹣π、0、﹣|﹣9|、﹣0.1010010001中,负有理数有()A.2个B.3个C.4个D.5个11.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元12.下列说法中,正确的是()A.0是最小的整数B.1是最小的正整数C.1是最小的整数D.一个有理数不是正数就是负数13.下列说法正确的是()A.有最小的正数 B.有最小的自然数C.有最大的有理数D.无最大的负整数14.某花卉的保存温度是(18±2)℃,则该花卉适宜保存的温度范围是()A.16℃~18℃B.16℃~20℃C.16℃~22℃D.18℃~22℃15.下列说法正确的是()A.零是最小的整数B.有理数中存在最大的数C.整数包括正整数和负整数D.0是最小的非负数16.下列关于零的说法,正确的有()①自然数;②正数;③非正数;④有理数.⑤最小的非负数⑥最小的整数⑦倒数等于它本身⑧绝对值最小的数.A.4 B.5 C.6 D.717.如果把某一天的中午12点记为0点,那么这一天的上午9点应记为()A.9点B.﹣9点C.3点D.﹣3点18.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个B.3个C.2个D.1个19.下列语句:①不带“﹣”号的数都是正数;②带“﹣”号的数一定是负数;③不存在既不是正数也不是负数的数;④0℃表示没有温度.其中正确的有()A.0个B.1个C.2个D.3个20.下列说法中正确的是()A.最小的正整数是零 B.自然数一定是正整数C.负数中没有最大的数D.自然数包括了整数二.选择题(共7小题)21.如果水库的水位高于标准水位3米时,记作+3米,那么低于标准水位2米时,应记米.22.如果将“收入50元”记作“+50元”,那么“﹣20元”表示.23.一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为,地下第一层记作,数﹣2的实际意义为,数+9的实际意义为.24.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.25.在有理数集合中,最小的正整数是,最大的负整数是.26.写出三个有理数,使它们满足:①是负数;②是整数;③能被2,3,5整除.27.和统称为有理数.四.解答题(共2小题)28.把下列各数填在相应的大括号里:+2,﹣3,0,﹣3,﹣1.414,17,.正整数:{ ,…}整数:{ ,,,…}负分数:{ ,…}1. A.2. A.3. B.4. C.5. A.6. D.7. D.8. C.9. D.10. C.11. B.12. B.13. B. 14. B.15. D.16. B.17. D.18. A.19. A20. C.21.﹣2 .22.支出20元.23.+1,﹣1,地下2层,地上10层.24. 310℃.25. 1;﹣126.﹣30 .27.整数,分数.28.解:正整数:{+2,17};整数:{+2,﹣3,0,17};负分数:{﹣3,﹣1.414}.初中数学试卷。
浙教版七年级上册1.1从自然数到有理数 同步训练(解析版)

初中数学浙教版七年级上册1.1从自然数到有理数同步训练一、正数和负数的认识(共8题)1.如果60m表示“向北走60m”,那么“向南走40m”可以表示________.2.在0,-2,5,,-0.3中,负数的个数是( )A. 1个B. 2个C. 3个D. 4个3.在数0.25,﹣,7,0,﹣3,100中,正数的个数是()A. 1个B. 2个C. 3个D. 4个4.王老师把数学测验成绩高于班级平均分8分的记为+8分,则低于平均分5分的可记为________分.5.超市出售的某种品牌的大米袋上,标有质量为(50±0.4)kg的字样,从超市中任意拿出两袋大米,它们的质量最多相差()A. 0.5kgB. 0.6kgC. 0.8kgD. 0.95kg6.某种品牌的八宝粥,外包装标明:净含量为330g 10g,表明了这罐八宝粥的净含量的范围是________7.数学考试成绩以80分为标准,王老师将某4名同学的成绩简记为+10,0,-8,+18,则这4名同学实际成绩最高的是________分.8.小明在超市买一食品,外包装上印有“总净含量(300±5)g”的字样,小明拿去称了一下,发现只有297g,则食品生产厂家________(填“有”或“没有”)欺诈行为.二、整数的认识(共5题)9.在下列数-,+1,6.7,-14,0,,-5 ,25% 中,属于整数的有()A. 2个B. 3个C. 4个D. 5个10.把下列各数分别填在相应的集合里:5,,0, 3.14,,2016,1.99, ( 6),⑴正数集合:{ };⑵负数集合:{ };⑶整数集合;{ };⑷分数集合:{ }.11.下列说法正确的是()A. 正整数、负整数统称为整数B. 正分数、负分数统称为分数C. 零既属于正整数又属于负整数D. 有理数是正数和负数的统称12.下列说法不正确的是()A. 有最小的正整数,没有最小的负整数B. 一个整数不是奇数,就是偶数C. 如果a是有理数,2a就是偶数D. 正整数、负整数和零统称整数13.下列说法正确的是()A. 非负数包括零和整数B. 正整数包括自然数和零C. 零是最小的整数D. 整数和分数统称为有理数三、0的定位(共3题)14.下列说法不正确的是( )A. 0是自然数B. 0是整数C. 0表示没有D. 0既不是正数也不是负数15.0是()A. 正有理数B. 负有理数C. 整数D. 负整数16.下列说法中正确的是()A. 整数又叫自然数B. 0是整数C. 一个实数不是正数就是负数D. 0不是自然数四、有理数的认识(共5题)17.下列各数中,属于有理数的是()A. B. π C. D. 0.1010010001…18.下列各数中:+5、-2.5、、2、、-(-7)、0、-|+3|负有理数有()A. 2个B. 3个C. 4个D. 5个19.在实数:﹣(﹣3.14159),1.010010001…,﹣(﹣1)2013,,,,中,分数有()A. 1个B. 2个C. 3个D. 4个20.下面关于有理数的说法正确的是()A. 整数和分数统称为有理数B. 正整数集合与负整数集合合在一起就构成整数集合C. 有限小数和无限循环小数不是有理数D. 正数、负数和零统称为有理数21.有理数中()A. 不是正有理数就是负有理数B. 有最小的整数C. 有最大的负数D. 有绝对值最小的数五、真题演练(共5题)22.如果温度上升2℃记作+2℃.那么温度下降3℃记作( )A. +2℃B. -2℃C. +3℃D. -3℃23.若海平面以上1045米,记做+1045米,则海平面以下155米,记做()A. ﹣1200米B. ﹣155米C. 155米D. 1200米24.在,0,1,-9四个数中,负数是()A. B. 0 C. 1 D. -925.下列关于0的说法正确的是()A. 0是正数B. 0是负数C. 0是有理数D. 0是无理数26.下列各数中,是有理数的是()A. πB. 1.2C.D.答案解析部分一、正数和负数的认识1. -40m解:+60m表示“向北走60m”,那么“向南走40m”可以表示-40m.故答案为:-40.【分析】由题意可知“向北走”记为+,则“向南走”记为-,由此可得出答案。
浙教版数学七年级上册课时作业《1.1 从自然数到有理数(2)》

浙教版数学七年级上册课时作业第1章有理数1.1从自然数到有理数(2)1.如果80m表示向东走80m,那么-60m表示()A.向西走60m B.向东走60mC.向西走20m D.向东走20m2.下列各数中,是负数的为()A.23B.0C.-3D.23.在下列选项中,不是具有相反意义的量的是()A.收入200元与支出20元B.增长2岁与减少2千克C.超过0.05mm与不足0.03mD.上升10米与下降7米4.下列数227,-3.17,0,-0.4,0.7中,正有理数的个数是() A.2B.3C.4D.55.下列说法中,正确的是()A.非负数就是自然数B.正有理数和负有理数组成全体有理数C.0.7既不是整数也不是分数,因此它不是有理数D.0是最小的非负整数,它既不是正数,也不是负数6.在下列四组数:①-3,2.3,-14;②34,0,212;③113,0.3,7;④12,15,2中,三个数都不是负数的是() A.①②B.②④C.③④D.②③④7.某种零件,标明要求是Φ:(20+0.02-0.02)(Φ表示直径,单位:mm),经检查,一个零件的直径是19.9mm,该零件________________(填“合格”或“不合格”).8.用正负数表示下面的数量.(1)如果收入100元记做+100元,那么支出100元记做______________.(2)某企业生产一种产品,如果把增产10%记做+10%,那么减产20%记做______________.(3)规定海平面以上的海拔高度为正.中国最大的咸水湖——青海湖高于海平面3193米,记做______________米;太平洋的马里亚纳海沟最深处低于海平面11034米,记做______________米.9.有下列说法:①0是正数;②0是整数;③0是自然数;④0是最小的自然数;⑤0是最小的正数;⑥0是最小的非负数;⑦0是偶数;⑧0就表示没有.其中正确的说法有_______________(填序号).10.检查5个足球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如表:足球编号12345与标准质量的差/克+5+7-3-9+9则最接近标准质量的是__________号足球;质量最重的足球比质量最轻的足球多_______克.11.把下列各数相应的序号填入相应的横线内:①-12;②3;③63%;④-0.01;⑤114;⑥2020;⑦-15;⑧0;⑨-73.(1)自然数:______________.(2)分数:______________.(3)正有理数:______________.(4)非负数:______________.12.判断下表中的各数分别属于哪一类(在空格里打“√”)有理数正整数分数负整数非正数非负整数0.37-2016-4 3+813.下列各数中,哪些是分数但不是负数?哪些是分数但不是正数?哪些是整数但不是正数?哪些既是整数又是正数?7,-9.25,-910,-301,427,31.25,0,-3.5.14.有10筐苹果,以每筐30kg为标准,超过的质量记做正数,不足的质量记做负数,记录如下(单位:kg):2,-4,2.5,3.2,-0.5,1.5,3,-1,0,-2.5.(1)有几筐苹果的质量超过标准质量?有几筐苹果的质量不足标准质量?(2)哪一筐苹果的质量超过标准质量最多?超过多少?15.观察下面一列数:-1,2,-3,4,-5,6,-7,8,-9,….(1)请写出这一列数中的第100个数和第2022个数.(2)在前2022个数中,正数和负数分别有多少个?(3)2023和-2023是否都在这一列数中?若在,请指出它们分别是第几个数;若不在,请说明理由.【答案解析】1.如果80m表示向东走80m,那么-60m表示(A)A.向西走60m B.向东走60mC.向西走20m D.向东走20m2.下列各数中,是负数的为(C)A.23B.0C.-3D.23.在下列选项中,不是具有相反意义的量的是(B)A.收入200元与支出20元B.增长2岁与减少2千克C.超过0.05mm与不足0.03mD.上升10米与下降7米4.下列数227,-3.17,0,-0.4,0.7中,正有理数的个数是(A) A.2B.3C.4D.55.下列说法中,正确的是(D)A.非负数就是自然数B.正有理数和负有理数组成全体有理数C.0.7既不是整数也不是分数,因此它不是有理数D.0是最小的非负整数,它既不是正数,也不是负数6.在下列四组数:①-3,2.3,-14;②34,0,212;③113,0.3,7;④12,15,2中,三个数都不是负数的是(D) A.①②B.②④C.③④D.②③④7.某种零件,标明要求是Φ:(20+0.02-0.02)(Φ表示直径,单位:mm),经检查,一个零件的直径是19.9mm,该零件__不合格__(填“合格”或“不合格”).8.用正负数表示下面的数量.(1)如果收入100元记做+100元,那么支出100元记做__-100元__.(2)某企业生产一种产品,如果把增产10%记做+10%,那么减产20%记做__-20%__.(3)规定海平面以上的海拔高度为正.中国最大的咸水湖——青海湖高于海平面3193米,记做__+3_193__米;太平洋的马里亚纳海沟最深处低于海平面11034米,记做__-11_034__米.9.有下列说法:①0是正数;②0是整数;③0是自然数;④0是最小的自然数;⑤0是最小的正数;⑥0是最小的非负数;⑦0是偶数;⑧0就表示没有.其中正确的说法有__②③④⑥⑦__(填序号).10.检查5个足球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如表:足球编号12345与标准质量的差/克+5+7-3-9+9则最接近标准质量的是__3__号足球;质量最重的足球比质量最轻的足球多__18__克.11.把下列各数相应的序号填入相应的横线内:①-12;②3;③63%;④-0.01;⑤114;⑥2020;⑦-15;⑧0;⑨-73.(1)自然数:__②⑥⑧__.(2)分数:__①③④⑤⑨__.(3)正有理数:__②③⑤⑥__.(4)非负数:__②③⑤⑥⑧__.12.判断下表中的各数分别属于哪一类(在空格里打“√”)有理数正整数分数负整数非正数非负整数0.37-20160-43+8解:0.37属于有理数、分数;-2016属于有理数、负整数、非正数;0属于有理数、非正数、非负整数;-43属于有理数、分数、非正数;+8属于有理数、正整数、非负整数.故答案如下.有理数正整数分数负整数非正数非负整数0.37√√-2016√√√0√√√-43√√√+8√√√13.下列各数中,哪些是分数但不是负数?哪些是分数但不是正数?哪些是整数但不是正数?哪些既是整数又是正数?7,-9.25,-910,-301,427,31.25,0,-3.5.解:是分数但不是负数:427,31.25.是分数但不是正数:-9.25,-910,-3.5.是整数但不是正数:-301,0.既是整数又是正数:7.14.有10筐苹果,以每筐30kg 为标准,超过的质量记做正数,不足的质量记做负数,记录如下(单位:kg):2,-4,2.5,3.2,-0.5,1.5,3,-1,0,-2.5.(1)有几筐苹果的质量超过标准质量?有几筐苹果的质量不足标准质量?(2)哪一筐苹果的质量超过标准质量最多?超过多少?解:(1)有5筐苹果的质量超过标准质量,有4筐苹果的质量不足标准质量.(2)第4筐苹果的质量超过标准质量最多,超过3.2kg.15.观察下面一列数:-1,2,-3,4,-5,6,-7,8,-9,….(1)请写出这一列数中的第100个数和第2022个数.(2)在前2022个数中,正数和负数分别有多少个?(3)2023和-2023是否都在这一列数中?若在,请指出它们分别是第几个数;若不在,请说明理由.解:(1)由题意可得,奇数为负,偶数为正,∴第100个数是100;第2022个数是2022.(2)在前2022个数中,正数和负数均有1011个.(3)-2023在这一列数中,它是第2023个数.2023不在这一列数中,理由:∵第奇数个数均为负数,∴2023不在这一列数中,-2023在这一列数中,它是第2023个数.。
最新浙教版七年级数学上册《从自然数到有理数》同步训练及答案解析(精品试题).docx

1.1 从自然数到有理数同步训练一.选择题(共8小题)1.四个数﹣3,0,1,2,其中负数是()A.﹣3 B.0 C.1 D.22.在﹣2,+3.5,0,,﹣0.7,11中,负分数有()A.l个B.2个C.3个D.4个3.如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%4.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()A.﹣0.15 B.+0.22 C.+0.15 D.﹣0.225.一辆汽车从P站出发向东行驶40千米,然后再向西行驶30千米,此时汽车的位置是在()A.P站东70千米B.P站东10千米C.P站西10千米D.P站西70千米6.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ45.02 B.Φ44.9 C.Φ44.98 D.Φ45.017.下列说法正确的是()A.“黑色”和“白色”表示具有相反意义的量B.“快”和“慢”表示具有相反意义的量C.“向南100米”和“向北1000米”表示具有相反意义的量D.“+15米”就表示向东走了15米8.下列说法正确的是()A.零是最小的整数B.有理数中存在最大的数C.整数包括正整数和负整数D.0是最小的非负数二.填空题(共6小题)9.有理数中,最大的负整数是.10.在﹣1,0.2,,3,0,﹣0.3,中,负分数有,整数有.11.一运动员某次跳水的最高点离跳板2m,记作+2m,则水面离跳板3m可以记作m.12.某粮店出售三种品牌的大米,袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,其中任意拿出两袋,它们最多相差kg.13.某班5名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣4,+9,0,﹣1,+6,则他们的平均成绩是分.14.观察下面一列数:﹣1,2,﹣3,4,﹣5,6,﹣7,…将这列数排成下列形式:按照上述规律排下去,那么第10行从左边数第9个数是;数﹣201是第行从左边数第个数.三.解答题(共4小题)15.把下列各数填在相应的大括号里:1,﹣,8.9,﹣7,,﹣3.2,+1 008,﹣0.06,28,﹣9.正整数集合:{ …};负整数集合:{ …};正分数集合:{ …};负分数集合:{ …}.16.体育课上,了引体向上测试,以能做7个为标准,超过的次数记为正数,不足的次数记为负数,其中8名的成绩为+2,-1,+3,0,-2,-3,+1,0.(1)这8名百分之几达到标准?(2)他们共做了多少次引体向上?1.1 从自然数到有理数同步训练参考答案与试题解析一.选择题(共8小题)1.四个数﹣3,0,1,2,其中负数是()A.﹣3 B.0 C.1 D.2【分析】﹣3小于零,是负数,0既不是正数正数也不是负数,1和2是正数.【解答】解:∵﹣3<0,且小于零的数为负数,∴﹣3为负数.故选:A.A.l个B.2个C.3个D.4个【分析】根据负数的定义先选出负数,再选出分数即可.【解答】解:负分数是﹣,﹣0.7,共2个.故选:B.【点评】本题考查了对有理数的理解和运用,能理解分数的定义是解此题的关键.3.如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵盈利5%”记作+5%,∴﹣3%表示表示亏损3%.故选:A.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.4.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()A.﹣0.15 B.+0.22 C.+0.15 D.﹣0.22【分析】根据高于标准记为正,可得低于标准记为负.【解答】解:∵以4.00米为标准,若小东跳出了4.22米,可记做+0.22,∴小东跳出了3.85米,记作﹣0.15米,故选:A.【点评】本题考查了正数和负数,注意高于标准用正数表示,低于标准用负数表示.5.一辆汽车从P站出发向东行驶40千米,然后再向西行驶30千米,此时汽车的位置是在()A.P站东70千米B.P站东10千米C.P站西10千米D.P站西70千米【分析】根据题意,设向东为正,则向西为负,则向东行驶40千米,记为40;然后向西行驶30千米,记为﹣30;进而相加可得答案.【解答】解:根据题意,设向东为正,则向西为负,则向东行驶40千米,记为40;然后向西行驶30千米,记为﹣30;则汽车的位置是40+(﹣30)=10,此时汽车的位置是甲站的东边10千米处.故选B.【点评】本题考查正数与负数的意义,这是一对表示相反意义的量.解决此类问题的关键是根据题意正确的列出算式.【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤5.03.∵44.9不在该范围之内,∴不合格的是B.故选:B.【点评】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.7.下列说法正确的是()A.“黑色”和“白色”表示具有相反意义的量B.“快”和“慢”表示具有相反意义的量C.“向南100米”和“向北1000米”表示具有相反意义的量D.“+15米”就表示向东走了15米【分析】根据相反意义的量就是两个数字,它们的正负符号相反,代表着相对于基准点(0点)处于不同的方位,而它们的绝对值是不是相等没有关系,可以判断A、B、C哪个选项是正确的,选项D中没有规定正方向,从而可以判断是否正确,本题得以解决.【解答】解:∵根据相反意义的量就是两个数字,它们的正负符号相反,代表着相对于基准点(0点)处于不同的方位,而它们的绝对值是不是相等没有关系,∴选项A、B错误,选项C正确;D中“+15米”就表示向东走了15米,没有规定向东走为正,故选项D错误,故选C.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的实际意义,明确什么是相反意义的量.8.下列说法正确的是()A.零是最小的整数B.有理数中存在最大的数C.整数包括正整数和负整数D.0是最小的非负数【分析】根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数).【解答】解:A、整数包括正整数、0、负整数,负整数小于0,且没有最小值,故A错误;B、有理数没有最大值,故B错误;C、整数包括正整数、0、负整数,故C错误;D、正确.故选D.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.二.填空题(共6小题)9.有理数中,最大的负整数是﹣1 .【分析】根据小于零的整数是负整数,再根据最大的负整数,可得答案.【解答】解:有理数中,最大的负整数是﹣1,故答案为:﹣1.【点评】本题考查了有理数,根据定义解题是解题关键.【分析】按照有理数的分类填写:有理数.【解答】解:负分数有﹣,﹣0.3;整数有﹣1,3,0.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别.0是整数,但不是正数.11.一运动员某次跳水的最高点离跳板2m,记作+2m,则水面离跳板3m可以记作﹣3 m.【分析】根据正数和负数表示相反意义的量,跳板面上记为正,可得答案.【解答】解:运动员某次跳水的最高点离跳板2m,记作+2m,则水面离跳板3m可以记﹣3 故答案为:﹣3.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.12.某粮店出售三种品牌的大米,袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,其中任意拿出两袋,它们最多相差0.6 kg.【分析】“+”表示在原来固定数上增加,“﹣”表示在原来固定数上减少.最多相差应该是原来固定数上增加最多的减去原来固定数上减少最多的.即为(25+0.3)﹣(25﹣0.3)=0.6kg.【解答】解:这几种大米的质量标准都为25千克,误差的最值分别为:±0.1,±0.2,±0.3.根据题意其中任意拿出两袋,它们最多相差(25+0.3)﹣(25﹣0.3)=0.6kg.【点评】本题考查正负数在实际生活中的应用,需注意应理解最值的含义.注意“任意拿出两袋”.13.某班5名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣4,+9,0,﹣1,+6,则他们的平均成绩是92 分.【分析】先求得这组新数的平均数,然后再加上90,即为他们的平均成绩.【解答】解:∵(﹣4+9+0﹣1+6)÷5=2,∴他们的平均成绩=2+90=92(分),故答案为:92.【点评】主要考查了平均数的求法.当数据都比较大,并且接近某一个数时,就可把数据都减去这个数,求出新数据的平均数,然后加上这个数就是原数据的平均数.14.观察下面一列数:﹣1,2,﹣3,4,﹣5,6,﹣7,…将这列数排成下列形式:按照上述规律排下去,那么第10行从左边数第9个数是90 ;数﹣201是第15 行从左边数第 5 个数.【分析】先从排列中总结规律,再利用规律代入求解.【解答】解:根据题意,每一行最末的数字的绝对值是行数的平方,且奇数前带有负号,偶数前是正号;如第四行最末的数字是42=16,第9行最后的数字是﹣81,∴第10行从左边数第9个数是81+9=90,∵﹣201=﹣(142+5),∴是第15行从左边数第5个数.故应填:90;15;5.【点评】主要考查了学生的综合数学素质,要求能从所给数据中找到规律并总结规律,会利用所找到的规律进行解题.三.解答题(共4小题)15.把下列各数填在相应的大括号里:1,﹣,8.9,﹣7,,﹣3.2,+1 008,﹣0.06,28,﹣9.【解答】解:正整数集合:{1,+1008,28,…};负整数集合:{﹣7,﹣9,…};正分数集合:{8.9,,…};负分数集合:{,﹣3.2,﹣0.06,…}.【点评】此题考查了有理数,熟练掌握各自的定义是解本题的关键.。
七年级数学上册(浙教版)练习:1.1从自然数到有理数1.docx

1.1 从自然数到有理数(1)1.小明体重55 kg ,其中用到的数属于(B )A .计数B .测量C .标号D .排序2.某校为庆祝建校60周年,举行了“班班有歌声”合唱比赛,其中自然数“60”属于(C )A .标号B .测量结果C .计数D .以上都可以3.纸店有三种纸,甲种纸4角买11张,乙种纸5角买13张,丙种纸7角买17张,则三种纸中最贵的是(C )A .甲种B .乙种C .丙种D .三种一样贵4.将1017,1219,1523,2033,3049这五个数按从大到小的顺序排列,那么排在中间的一个数应是(B ) A.1523 B.3049 C.2033 D.12195.找规律、填数字:2,6,12,20,30,42,__56__.6.人民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶.小聪发现当台阶数分别为1级、2级、3级、4级、5级、6级、7级……逐渐增加时,上台阶的不同方法的种数依次为1,2,3,5,8,13,21……这就是著名的斐波那契数列.那么小聪上这9级台阶共有__55__种不同方法.7.绕湖一周的长是24 km ,小张和小王从湖边某一地点同时出发,反向而行.小王以每小时4 km 的速度每走60 min 后休息5 min ;小张以每小时6 km 的速度每走50 min 后休息10 min ,则两人出发__160__min 后第一次相遇.8.一个纸环链,纸环按红、黄、绿、蓝、紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是(D )(第8题)A .2016B .2015C .2014D .2013【解】 一个基础纸环链共5个环,左边配上蓝、紫可形成一个基础环链,右边配上红即可,中间少了n 个基础纸环链.故截去部分纸环个数必为5n +3,所以选D.9.小明用如图所示的胶滚从左到右滚涂墙壁,下列平面图形中符合胶滚涂出的图案是(A ))【解】由胶滚的图形可得,最左边中间为一个小黑正方形,胶滚从左到右,则最先留下印记的即为中间有一个小黑正方形的图形.10.如图,某人从点A处到点B处有两种不同的走法:方法一是直接从楼梯走到点B处,方法二是先乘电梯到点C处,再从点C处走到点B处,则这两种方法中路程较短的是(C)(第10题)A.方法一B.方法二C.两种方法一样D.不确定,由梯楼的高度决定【解】根据题意,知方法一中所有竖直的路线的和一定是AC,所有水平的路线的和一定是BC.∵方法一的路程是AC+BC,∴两种方法一样.11.某商场因季节因素,将某品牌的空调的售价上涨了10%,后又因季节因素而重新下调了10%.问:下调后的空调售价与上涨前相比,是贵了还是便宜了?【解】上调价格后为(1+10%)×原价=1.1倍原价,下调后价格为1.1倍原价×0.9=0.99倍原价,∴下调后售价比上涨前便宜了.12.古希腊人常用小石子在沙滩上摆成各种形状来研究数的规律.例如:(第12题)由图①中的小石子围成三角形,其颗数3,6,10,…称为三角形数.类似地,称图②中的4,9,16,…这样的数为正方形数.下列数中,既是三角形数又是正方形数的是(D)A.15 B.25 C.55 D.1225【解】 三角形数的规律s 1=1+2+…+n =n (n +1)2,正方形数的规律s 2=n 2,故既是三角形数又是正方形数的数必是某一个数的平方,并且是相邻两个自然数乘积的一半,故选D.初中数学试卷鼎尚图文**整理制作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时 从自然数到分数
一、选择题
1.七年级(2)班有45人,其中45人属于( ) A .计数 B .测量 C .排序 D .标号
2.小亮在看报纸时收集到下列信息,你认为其中没有用到自然数排序的是( ) A .某地的国民生产总值位居全国第五名 B .韩国平昌冬奥会上中国代表团有82名运动员 C .阳光学校在人民路121号
D .德国足球队以小组第一的成绩进入下一轮比赛 3.汽车每小时行驶40 km ,行驶100 km 要用( ) A .25 h B .
2 h C .21
4
h D .2.5 h
4.在校园十佳小歌手比赛中,8位评委给某选手所评分数如下表:
计分方法是去掉一个最高分,去掉一个最低分,其余分数的平均数作为该选手的最后得分,则该选手的最后得分是( )
A .9.45分
B .9.36分
C .9.35分
D .9.28分
5.一组数1,1,2,x ,5,y ,…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为( )
A .8
B .9
C .13
D .15 二、填空题
6.请分别列举两个自然数:__________,两个分数:________,两个小数:__________. 7.沪杭甬高速公路的主要路段是248千米长的沪杭甬高速公路和142千米长的上三高速公路,这里的248属于________.(填“计数”“测量”“标号”或“排序”)
8.(1)用小数表示:75=________,2
3=________;
(2)用分数表示:1.25=______,2%=________.
9.七年级(2)班杨云同学的身高是147厘米,改用米作单位,是________米. 10.某商品标价120元,现以标价的8折出售,则售价为________元. 11.(1)3个百和3个百分之一组成的数是________,读作________;
(2)把75克改用“千克”作单位,是________千克,这个小数中,7在________位上; (3)将7.02,7.222,7.0202…,7.22,7.222…按从小到大的顺序排列:____________________. 12.观察下列一组数:13,25,37,49,5
11,…,根据该组数的排列规律,可推出第10个
数是________.
13.下表中的格子里都填上了数,其中每一行、每一列及两条对角线中所填数的和均相等,则x 的值是________.
三、解答题
14.下面的一段文字描述中用了很多自然数,请找出这些数,并说说它们哪些表示计数,哪些表示测量,哪些表示标号或排序.
小明今年14岁,身高为160厘米,他所在的学校共有36个班级,坐落在阳光大道168号,离小明家3千米,他每天乘坐729路公交车上下学.
15.身份证号是这样编码的:第7~14位表示出生日期,第17位表示性别,其中男性是奇数,女性是偶数.例:某人的身份证号码是372830************(X代表10),则这个人的出生时间为1969年5月21日,性别是女.若某人的身份证号码是441900************,你能知道这个人出生的时间和性别吗?
16.林林手中有50元钱,买文具用了5元5角,买水果用了13元,在回家路上遇到爷爷,爷爷给了他20元钱,现在林林手中共有多少钱?
17.今年暑假王老师家申请了峰谷电,其收费标准如下:峰电0.57元/度,谷电0.29元/度.7月份王老师家用电180度,其中峰电120度,则王老师家7月份应付电费多少?
18.假日旅行社推出“西湖风景区一日游”的两种价格方案,如图K-1-1.
(1)成人10人,儿童5人,怎样购票合算?
(2)成人5人,儿童10人,怎样购票合算?
图K-1-1
19.王大妈与张大妈相约一起去买大米,第一次大米的单价是2.5元/千克,第二次大米的单价是3元/千克,王大妈每次都买20千克大米,张大妈每次都买100元的大米.从单价看,两次买米是王大妈合算还是张大妈合算?
1.A
2 B 3. D 4. C 5. A
6. 答案不唯一,如:0,1 12,23
4
1.2,3.4 7. 测量
8. (1)1.4 0.6·
(2)114 150
9. 1.47 10. 96
11. (1)300.03 三百点零三 (2)0.075 百分
(3)7.02<7.0202…<7.22<7.222<7.222… 12.
1021
13. 9
14.解:计数:36;测量:160, 3;标号或排序:14,168,729.
15.解:这个身份证号码的第7~14位是19851213,说明这个人出生的时间是1985年12月13日;
第17位是1,是奇数,说明这个人的性别是男. 16.解:50-5.5-13+20=51.5(元). 答:现在林林手中共有51.5元钱.
17.解:120×0.57+(180-120)×0.29=68.4+17.4=85.8(元).
答:王老师家7月份应付电费85.8元.
18.解:(1)若按方案一购票花费150×10+60×5=1800(元); 若按方案二购票花费100×(10+5)=1500(元). 1800>1500, 故选方案二购票合算.
(2)若按方案一购票花费150×5+60×10=1350(元); 若按方案二购票花费100×(10+5)=1500(元). 1350<1500, 故选方案一购票合算.
19.解:王大妈买大米用的钱为20×2.5+20×3=110(元), 所以王大妈买的大米相当于每千克110÷(20+20)=2.75(元);
张大妈买大米两次分别买了100÷2.5=40(千克),100÷3=1003
(千克),
所以张大妈买的大米相当于每千克200÷⎝
⎛⎭⎫40+1003=3011≈2.73(元),所以两次买米张大妈比较合算.。