时间序列计量经济学模型概述

合集下载

《计量经济学》3.3时间序列分析

《计量经济学》3.3时间序列分析

3.3时间序列分析3.3.1时间序列概述1.基本概念(1)一般概念:系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。

它是系统中某一变量受其它各种因素影响的总结果。

(2)研究实质:通过处理预测目标本身的时间序列数据,获得事物随时间过程的演变特性与规律,进而预测事物的未来发展。

它不研究事物之间相互依存的因果关系。

(3)假设基础:惯性原则。

即在一定条件下,被预测事物的过去变化趋势会延续到未来。

暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。

近大远小原理(时间越近的数据影响力越大)和无季节性、无趋势性、线性、常数方差等。

(4)研究意义:许多经济、金融、商业等方面的数据都是时间序列数据。

时间序列的预测和评估技术相对完善,其预测情景相对明确。

尤其关注预测目标可用数据的数量和质量,即时间序列的长度和预测的频率。

2.变动特点(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不等。

(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。

(3)随机性:个别为随机变动,整体呈统计规律。

(4)综合性:实际变化情况一般是几种变动的叠加或组合。

预测时一般设法过滤除去不规则变动,突出反映趋势性和周期性变动。

3.特征识别认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法。

(1)随机性:均匀分布、无规则分布,可能符合某统计分布。

(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。

)(2)平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数。

样本序列的自相关函数只是时间间隔的函数,与时间起点无关。

其具有对称性,能反映平稳序列的周期性变化。

特征识别利用自相关函数ACF:ρk =γk/γ其中γk是y t的k阶自协方差,且ρ0=1、-1<ρk<1。

时间序列计量经济模型

时间序列计量经济模型

时间序列计量经济模型时间序列计量经济模型是经济学中常用的一种统计方法,它通过对时间序列数据进行建模和分析,帮助经济学家研究经济现象并做出预测。

本文将对时间序列计量经济模型进行详细介绍,包括模型的基本概念、建模方法和应用领域等。

时间序列计量经济模型的基本概念是指对于一组按时间顺序排列的经济数据,通过建立数学模型来描述变量之间的关系和变化趋势。

时间序列数据是对同一经济变量在不同时间点上的观察结果,通常用于反映经济变量的长期走势和季节性变化等特征。

时间序列计量经济模型的建模方法主要有两种,即参数估计法和非参数估计法。

参数估计法通过估计模型中的参数,来确定变量之间的关系和影响程度。

常见的参数估计方法包括最小二乘法、极大似然法和广义矩估计法等。

非参数估计法则不对模型中的参数进行具体估计,而是通过对数据进行平滑处理和插值操作来求解模型。

常用的非参数估计方法有核密度估计法、局部加权回归法和样条插值法等。

时间序列计量经济模型的应用领域非常广泛,包括经济增长分析、商业周期研究、金融市场预测等。

在经济增长分析中,可以利用时间序列计量经济模型来研究经济发展的长期趋势和周期性波动。

在商业周期研究中,可以利用时间序列计量经济模型来识别和预测经济的周期性波动,以便制定相应的经济政策。

在金融市场预测中,可以利用时间序列计量经济模型来分析和预测金融市场的走势,以便投资者做出合理的投资决策。

总结起来,时间序列计量经济模型是经济学中重要的统计方法,它能够帮助经济学家研究经济现象并做出预测。

通过对时间序列数据进行建模和分析,时间序列计量经济模型可以揭示经济变量之间的关系和变化趋势,为经济政策制定和投资决策提供参考依据。

同时,时间序列计量经济模型也有一定的局限性,例如无法考虑实际经济环境中的各种不确定因素。

因此,在实际应用中需综合考虑不同的经济模型和方法,以获得更准确和可靠的分析结果。

继续写:时间序列计量经济模型是经济学中非常有用的工具,可以帮助我们理解和解释经济现象,并做出相应的预测。

计量经济学--时间序列计量模型

计量经济学--时间序列计量模型

(1)均值 E(Yt ) ,μ为与时间t 无关的常数 。
(2)方差 Var(Yt ) 2 , 2 为与时间t无关的常数。
(3)协方差 Cov(Yt ,Yth ) h ,只与时间间隔h有 关,与时间t无关。
则称{Yt}为弱平稳过程。在时间序列计量 分析中,平稳过程通常指的是弱平稳。
如果一个时间序列是不平稳的,就称它
Yt Yt1 vt
(8.1)
其中,vt为经典误差项,也称之为白噪声。
如果式(8.1)中ρ=1,则
Yt Yt1 vt (8.2) 式(8.2)中Yt称为随机游走序列。随机 游走序列的特征为: Yt以前一期的Yt-1为 基础,加上一个均值为零且独立于Yt-1的 随机变量。随机游走的名字正是来源于它 的这个特征。
令γ=ρ-1,则
Yt Yt1 vt
(8.16) (8.17)
同理,可得另外两种模型为
Yt Yt1 vt
(8.18)
Yt t Yt1 vt (8.19)
对于式(8.17)、(8.18)、(8.19)而言 ,对应的原假设和备择假设为
H0 : 0 (非平稳)
H0 : 0 (平稳)
二、平稳性的单位根检验
时间序列的平稳性可通过图形和自相关函数 进行检验。在现代,单位根检验方法为时间 序列平稳性检验的最常用方法。
1.单位根检验(unit root test)
时间序列中往往存在滞后效应,即前后 变量彼此相关。对于时间序列Yt而言,最 典型的状况就是一阶自回归形式AR(1) ,即Yt与Yt-1 相关,而与Yt-2 , Yt-3 ,…无 关。其表达式为
DF检验的判别规则是:DF≥临界值,则Yt 非平稳,D<临界值,Yt则是平稳的。
3.ADF检验

计量经济学中的时间序列分析

计量经济学中的时间序列分析

计量经济学中的时间序列分析时间序列分析是计量经济学中的重要内容之一,它主要研究特定变量随时间变化的规律性和趋势。

通过时间序列分析,我们可以更好地理解经济现象,预测未来变化趋势,制定合适的政策和策略。

本文将从时间序列的概念入手,介绍时间序列分析的基本原理、方法和应用。

一、时间序列的概念时间序列是按照时间顺序排列的一系列数据观测值的集合。

在计量经济学中,时间序列通常用来观察和研究某一经济变量在不同时间点上的变化情况。

时间序列数据可以是连续的,也可以是间断的,常见的时间单位包括年、季、月、周等。

通过对时间序列数据的分析,我们可以揭示出其中的规律性和特征。

二、时间序列分析的基本原理时间序列分析的基本原理是利用过去的数据来预测未来的发展趋势。

在时间序列分析中,常用的方法包括趋势分析、周期性分析、季节性分析和不规则波动分析。

趋势分析主要用来观察时间序列数据的长期变化趋势,周期性分析则是研究数据是否存在固定长度的周期性波动,季节性分析则是研究数据是否呈现出固定的季节性变化规律,而不规则波动分析则是研究一些随机因素对数据的影响。

三、时间序列分析的方法时间序列分析的方法有很多种,其中常用的包括移动平均法、指数平滑法、回归分析法、ARIMA模型等。

移动平均法通过计算连续几个期间的平均值来平滑数据,达到去除数据波动的目的;指数平滑法则是通过计算加权平均来对数据进行平滑处理,使得预测值更加准确;回归分析法则是通过建立经济模型来研究时间序列数据之间的关系,进行预测和分析;ARIMA模型则是一种时间序列的自回归与移动平均模型,可以对时间序列数据进行拟合和预测。

四、时间序列分析的应用时间序列分析在经济学、金融学、管理学等领域有着广泛的应用。

在经济学中,时间序列分析可以用来研究经济增长、通货膨胀、失业等经济现象的发展趋势;在金融学中,时间序列分析可以用来预测股票价格、汇率、利率等金融变量的变化情况;在管理学中,时间序列分析可以用来制定企业的生产计划和销售策略,提高企业的运营效率。

时间序列计量经济学模型概述

时间序列计量经济学模型概述

时间序列计量经济学模型概述时间序列计量经济学模型是在经济学研究中广泛使用的一种方法,用于分析经济变量随时间的变化。

该模型基于时间序列数据,即经济变量在一段时间内的观测值。

时间序列计量经济学模型的核心是建立经济变量之间的关系,以解释和预测经济现象的变化。

其中最常用的模型是自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)和季节性时间序列模型。

自回归移动平均模型(ARMA)是一个包含自回归项和移动平均项的线性模型。

该模型以过去的观测值和随机项为输入,预测当前观测值。

ARMA模型基于假设,即经济变量的行为受到历史观测值的影响。

自回归条件异方差模型(ARCH)是一种考虑了随时间变化方差的模型。

该模型通过引入一个条件异方差项,模拟经济变量中的波动性。

ARCH模型的应用范围广泛,特别是在金融市场波动性分析中。

季节性时间序列模型用于分析具有明显季节性特征的经济变量,如销售额、就业人数等。

这些模型通常基于季节、趋势和随机成分的组合,以预测未来观测值。

在建立时间序列计量经济学模型时,常常需要进行模型识别、参数估计和模型诊断等步骤。

识别模型的目标是确定适当的模型结构,参数估计则是利用历史数据估计模型的参数值。

模型诊断用于检验模型的拟合程度和误差分布是否符合模型假设。

时间序列计量经济学模型在经济研究中有广泛的应用,例如预测未来经济指标、分析经济周期和波动性、评估政策效果等。

它提供了一种量化的方法,使经济学家可以更好地理解和解释经济变量的演变。

时间序列计量经济学模型是经济学研究中一种重要的统计工具,广泛应用于宏观经济、金融市场和企业经营等领域。

它可以帮助我们理解和解释经济变量随时间的变化规律,进行预测和政策分析。

本文将进一步探讨时间序列计量经济学模型的相关概念和应用。

在构建时间序列计量经济学模型之前,首先需要了解时间序列数据的特点。

时间序列数据是按照时间顺序排列的一系列观测值,通常具有趋势性、季节性、周期性和随机性等特征。

计量经济学时间序列

计量经济学时间序列

计量经济学中的时间序列是指按照时间顺序排列的一系列数据,这些数据可以是同一指标在不同时间点的观测值,也可以是多个指标在不同时间点的观测值组合。

时间序列数据的分析主要涉及两个方面:一是数据平稳性检验,二是数据建模与分析。

数据平稳性检验是时间序列分析中非常重要的一个步骤。

平稳性是指时间序列数据的统计特性不随时间推移而发生变化。

如果数据不满足平稳性条件,那么传统的回归分析方法可能会出现问题。

因此,在利用回归分析方法讨论经济变量有意义的经济关系之前,必须对经济变量时间序列的平稳性与非平稳性进行判断。

如果数据是非平稳的,可能需要采用适当的处理方法,如差分、对数转换等,使其满足平稳性条件。

在数据平稳性检验通过后,接下来需要进行数据建模与分析。

在计量经济学中,自回归模型(AR模型)是一种常用的时间序列模型。

自回归模型是统计上一种处理时间序列的方法,它用同一变数例如x 的之前各期,亦即x 1至x t-1来预测本期x t的表现,并假设它们为一线性关系。

除了自回归模型外,还有其他的模型可用于时间序列分析,如移动平均模型(MA模型)、自回归移动平均模型(ARMA模型)等。

这些模型的参数估计与假设检验方法也是计量经济学中研究的重点内容之一。

总之,计量经济学中的时间序列分析是一个相对独立且完整的领域,它为经济学、金融学等领域的研究提供了重要的方法论支持和实践指导。

时间序列计量经济学模型

时间序列计量经济学模型

时间序列计量经济学模型经济分析中所用到的三大类重要数据中,时间序列数据是其中最常见,也是最重要的一类数据。

迄今为止,对时间序列的分析是通过建立因果关系为基础的结构模型。

时间序列模型反映动态特征,通常是运用时间序列的过去值、当期值及滞后扰动项的加权和建立模型来“解释”时间序列的变化规律。

时间序列资料具有相关性,大部分资料具有非平稳性,而无论是单方程计量经济学模型还是联立方程计量经济学模型,这种分析背后有一个隐含的假设,即这些数据是平稳的(stationary)。

------目录-------一.简介1.时间序列数据处理二.时间序列的平稳性及其检验1.非平稳时间序列简介2.单位根检验3.非平稳时间序列的平稳化三.平稳时间序列模型1.AR(P)过程2.MA(q)过程3.ARIMA模型四.协整与误差修正模型五.条件异方差六.向量自回归模型(VAR)一、简介1时间序列数据的处理1.1cd C:\stata10\Net_course\ B6_TimeS1)声明时间序列:tsset 命令use gnp96.dta, clearlist in 1/20gen Lgnp = L.gnptsset datelist in 1/20gen Lgnp = L.gnp2)检查是否有断点:tsreport, reportuse gnp96.dta, cleartsset datetsreport, reportdrop in 10/10list in 1/12tsreport, reporttsreport, report list /*列出存在断点的样本信息*/3)填充缺漏值:tsfilltsfilltsreport, report listlist in 1/124)追加样本:tsappenduse gnp96.dta, cleartsset datelist in -10/-1sumtsappend , add(5) /*追加5个观察值*/list in -10/-1sum5)应用:样本外预测: predictreg gnp96 L.gnp96predict gnp_hatlist in -10/-16)清除时间标识: tsset, cleartsset, clear1.2变量的生成与处理1)滞后项、超前项和差分项 help tsvarlistuse gnp96.dta, cleartsset dategen Lgnp = L.gnp96 /*一阶滞后*/gen L2gnp = L2.gnp96gen Fgnp = F.gnp96 /*一阶超前*/gen F2gnp = F2.gnp96gen Dgnp = D.gnp96 /*一阶差分*/gen D2gnp = D2.gnp96list in 1/10list in -10/-12)产生增长率变量: 对数差分gen lngnp = ln(gnp96)gen growth = D.lngnpgen growth2 = (gnp96-L.gnp96)/L.gnp96gen diff = growth - growth2 /*表明对数差分和变量的增长率差别很小*/ list date gnp96 lngnp growth* diff in 1/101.3日期的处理日期的格式 help tsfmt基本时点:整数数值,如 -3, -2, -1, 0, 1, 2, 3 .... 1960年1月1日,取值为 0;显示格式:1)使用 tsset 命令指定显示格式use B6_tsset.dta, cleartsset t, dailylistuse B6_tsset.dta, cleartsset t, weeklylist2)指定起始时点cap drop monthgenerate month = m(1990-1) + _n - 1format month %tmlist t month in 1/20cap drop yeargen year = y(1952) + _n - 1format year %tylist t year in 1/203)自己设定不同的显示格式日期的显示格式 %d (%td) 定义如下:%[-][t]d<描述特定的显示格式>具体项目释义:“<描述特定的显示格式>”中可包含如下字母或字符c y m l nd j h q w _ . , : - / ' !cC Y M L ND J W定义如下:c and C 世纪值(个位数不附加/附加0)y and Y 不含世纪值的年份(个位数不附加/附加0)m 三个英文字母的月份简写(第一个字母大写)M 英文字母拼写的月份(第一个字母大写)n and N 数字月份(个位数不附加/附加0)d and D 一个月中的第几日(个位数不附加/附加0)j and J 一年中的第几日(个位数不附加/附加0)h 一年中的第几半年 (1 or 2)q 一年中的第几季度 (1, 2, 3, or 4)w and W 一年中的第几周(个位数不附加/附加0)_ display a blank (空格). display a period(句号), display a comma(逗号): display a colon(冒号)- display a dash (短线)/ display a slash(斜线)' display a close single quote(右引号)!c display character c (code !! to display an exclamation point)样式1:Format Sample date in format-----------------------------------%td 07jul1948%tdM_d,_CY July 7, 1948%tdY/M/D 48/07/11%tdM-D-CY 07-11-1948%tqCY.q 1999.2%tqCY:q 1992:2%twCY,_w 2010, 48-----------------------------------样式2:Format Sample date in format----------------------------------%d 11jul1948%dDlCY 11jul1948%dDlY 11jul48%dM_d,_CY July 11, 1948%dd_M_CY 11 July 1948%dN/D/Y 07/11/48%dD/N/Y 11/07/48%dY/N/D 48/07/11%dN-D-CY 07-11-1948----------------------------------clearset obs 100gen t = _n + d(13feb1978)list t in 1/5format t %dCY-N-D /*1978-02-14*/list t in 1/5format t %dcy_n_d /*1978 2 14*/list t in 1/5use B6_tsset, clearlisttsset t, format(%twCY-m)list4)一个实例:生成连续的时间变量use e1920.dta, clearlist year month in 1/30sort year monthgen time = _ntsset timelist year month time in 1/30generate newmonth = m(1920-1) + time - 1 tsset newmonth, monthlylist year month time newmonth in 1/301.4图解时间序列1)例1:clearset seed 13579113sim_arma ar2, ar(0.7 0.2) nobs(200)sim_arma ma2, ma(0.7 0.2)tsset _ttsline ar2 ma2* 亦可采用 twoway line 命令绘制,但较为繁琐twoway line ar2 ma2 _t2)例2:增加文字标注sysuse tsline2, cleartsset daytsline calories, ttick(28nov2002 25dec2002, tpos(in)) ///ttext(3470 28nov2002 "thanks" ///3470 25dec2002 "x-mas", orient(vert))3)例3:增加两条纵向的标示线sysuse tsline2, cleartsset daytsline calories, tline(28nov2002 25dec2002)* 或采用 twoway line 命令local d1 = d(28nov2002)local d2 = d(25dec2002)line calories day, xline(`d1' `d2')4)例4:改变标签tsline calories, tlabel(, format(%tdmd)) ttitle("Date (2002)")tsline calories, tlabel(, format(%td))二、时间序列的平稳性及其检验时间序列分析中首先遇到的问题是关于时间序列数据的平稳性问题,假定某个时间序列是由某一个随机过程(stochastic process)生成的,即假定时间序列{X_t}(t=1,2,3…)的每一个数值都是从一个概率分布中随机得到,如果X_T满足下列条件:(1)均值E(X_t)=μ,与时间t无关的常数;(2)方差Var(X_t)=б^2,与时间t无关;(3)协方差Cov(X_t X_t+k)只与时期间隔k有关,与时间t无关的常数。

时间序列计量经济学建模简介

时间序列计量经济学建模简介

第八章 时间序列计量经济学建模简介第一节 时间序列计量经济学模型的基本概念 一、时间序列计量经济学的发展趋势1、上个世纪70年代中期世界复杂的经济格局对计量经济学方法的挑战。

计量经济学模型的主要应用之一就是经济预测,而且早年计量经济学就是通过利用模型的短期预测发展起来的。

在上个世纪50——60年代西方国家经济预测中不乏成功的实例。

但是,进入20世纪70年代以后,人们对计量经济学模型提出了质疑,表现在1973年和1979年,各种计量经济学模型都无法预测到“石油危机”对经济会造成什么影响(尽管当时能够对石油危机提出预报)。

2、传统计量经济学方法存在的主要问题。

传统计量经济学模型是以模拟历史、从已经发生的经济活动中找出变化规律的主要技术手段。

而对于非稳定发展的经济过程和缺乏规范行为理论的经济活动,传统计量经济学模型就显得无能为力。

同时,现实经济活动愈来愈复杂多变,对于社会经济的发展、体制的变迁、技术的创新,要用具有一定的计量经济学或动态多元非线性方程组对其加以描述并非易事。

因此,人们认为传统计量经济学的弱点是过分依赖先验理论,这种弱点一方面表现为缺乏动态的信息反馈;另一方面是所获得的理论与样本数据间满意的吻合结果往往要凭借建模者的艺术。

3、80年代初提出了与传统计量经济学完全不同的建模方法。

最初由萨甘(Sargan ,1964)提出,后经亨德里-安德森(Hendry-Anderson ,1977)和戴维森(Davidson ,1977)进一步完善的误差修正模型,以及由格兰杰(C.W.J.Granger ,1981)提出的协整理论,最终产生了Hendry 的“由一般到特殊”的建模方法。

时间序列的类型: (1)按时间是否连续分为一是离散型的随机过程或时间序列;二是连续型的随机过程或时间序列。

本章主要研究离散时间序列,并用t Y 或t X 表示。

对于连续时间序列,可通过等间隔采样使之转化为离散时间序列后加以研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 只要其中有一个模型的检验结果拒绝了零假设,就 可以认为时间序列是平稳的;
– 当三个模型的检验结果都不能拒绝零假设时,则认 为时间序列是非平稳的。
3、例:检验1978-2000年间中国支出法 GDP时间序列的平稳性
• 例8.1.6检验1978~2006年间中国实际支出法国 内生产总值GDPC时间序列的平稳性。
⒈问题的提出
• 经典计量经济模型常用到的数据有:
– 时间序列数据(time-series data); – 截面数据(cross-sectional data) – 平行/面板数据(panel data/time-series cross-section data)
• 时间序列数据是最常见,也是最常用到的数据。 • 经典回归分析暗含着一个重要假设:数据是平稳的
2、平稳性的定义
• 假定某个时间序列是由某一随机过程( stochastic process)生成的,即假定时间序列 {Xt}(t=1, 2, …)的每一个数值都是从一个概 率分布中随机得到,如果满足下列条件:
– 均值E(Xt)=是与时间t 无关的常数; – 方差Var(Xt)=2是与时间t 无关的常数; – 协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关,与
正确的。
时间T的t统计量小于ADF临界 值,因此不能拒绝不存在趋势
项的零假设。
需进一步检验模型2 。
• 检验模型2,经试验,模型2中滞后项取2阶:
LM检验表明模型残差不存在自相关性,因此该模型的设定 是正确的。 GDPt-1参数值的t统计量为正值,大于临界值,不能拒绝存在 单位根的零假设。 常数项的t统计量小于AFD分布表中的临界值,不能拒绝 不存常数项的零假设。 需进一步检验模型1。
• 由于t统计量的向下偏倚性,它呈现围绕小于零均 值的偏态分布。
• 如果t<临界值,则拒绝零假设H0: =0,认为 时间序列不存在单位根,是平稳的。
单尾检验
2、ADF检验(Augment Dickey-Fuller test

• 为什么将DF检验扩展为ADF检验?
• DF检验假定时间序列是由具有白噪声随机误差 项的一阶自回归过程AR(1)生成的。但在实际检 验中,时间序列可能由更高阶的自回归过程生 成,或者随机误差项并非是白噪声,用OLS法 进行估计均会表现出随机误差项出现自相关, 导致DF检验无效。
图示判断应用较少。 • 建议作为自学内容。
三、平稳性的单位根检验
(unit root test)
1、DF检验(Dicky-Fuller Test)
随机游走,非平稳
对该式回归,如果确实 发现ρ=1,则称随机变
量Xt有一个单位根。
等价是时间序列 平稳性的单位根检验。
时间序列计量经济学模 型概述
2020年4月22日星期三
• 经典时间序列分析模型:
– 包括MA、AR、ARMA模型 – 平稳时间序列模型 – 分析时间序列自身的变化规律
• 现代时间序列分析模型:
– 分析时间序列之间的结构关系 – 单位根检验、协整检验是核心内容 – 现代宏观计量经济学的主要内容
一、时间序列的平稳性 Stationary Time Series
• 随机游走的一阶差分(first difference)是平稳 的: Xt=Xt-Xt-1=t ,t~N(0,2)
• 如果一个时间序列是非平稳的,它常常可通过 取差分的方法而形成平稳序列。
二、平稳性的图示判断
说明
• 本节的概念是重要的,属于经典时间序列分析。 • 在实际应用研究中,一般直接采用单位根检验,
时间t 无关的常数;
• 则称该随机时间序列是平稳的(stationary), 而该随机过程是一平稳随机过程(stationary stochastic process)。 宽平稳、广义平稳
• 白噪声(white noise)过程是平稳的: Xt=t , t~N(0,2)
• 随机游走(random walk)过程是非平稳的: Xt=Xt-1+t , t~N(0,2) Var(Xt)=t2
• 下面演示的是检验1978~2000年间中国支出法 国内生产总值GDPC时间序列的平稳性。
• 方法原理和过程是一样的,例8.1.6可以作为同 学的练习。
• 首先检验模型3,经过偿试,模型3取2阶滞后:
系数的t>临界值, 不能拒绝存在单位根
的零假设。
LM(1)=0.92, LM(2)=4.16
小于5%显著性水平下自由度分别为 1与2的2分布的临界值,可见不存 在自相关性,因此该模型的设定是
• 如果时间序列含有明显的随时间变化的某种趋 势(如上升或下降),也容易导致DF检验中的 自相关随机误差项问题。
• ADF检验模型
零假设 H0:=0 备择假设 H1:<0
模型1 模型2 模型3
• 检验过程
–实际检验时从模型3开始,然后模型2、模型1。 –何时检验拒绝零假设,即原序列不存在单位根,为
• 一般检验模型
零假设 H0:=0 备择假设 H1:<0 可通过OLS法下的t检验完成。
• 但是,在零假设(序列非平稳)下,即使在大样 本下t统计量也是有偏误的(向下偏倚),通常的 t 检验无法使用。
• Dicky和Fuller于1976年提出了这一情形下t统计 量服从的分布(这时的t统计量称为统计量), 即DF分布。
平稳序列,何时停止检验。 –否则,就要继续检验,直到检验完模型1为止。
• 检验原理与DF检验相同,只是对模型1、2、3 进行检验时,有各自相应的临界值表。
• 检验模型滞后项阶数的确定:以随机项不存在 序列相关为准则。
• 一个简单的检验过程:
– 同时估计出上述三个模型的适当形式,然后通过 ADF临界值表检验零假设H0:=0。

• 数据非平稳,大样本下的统计推断基础——“一致 性”要求——被破怀。
• 数据非平稳,往往导致出现“虚假回归”(Spurious Regression)问题。
–表现为两个本来没有任何因果关系的变量,却有很高的 相关性。
–例如:如果有两列时间序列数据表现出一致的变化趋势 (非平稳的),即使它们没有任何有意义的关系,但进 行回归也可表现出较高的可决系数。
相关文档
最新文档