Analysis of Reflection Electron Energy Loss Spectra (REELS) for Determination of the Dielec

合集下载

物理专业英语词汇(R)_数学物理英语词汇

物理专业英语词汇(R)_数学物理英语词汇

r process r 过程r product r 积r ratio r 比r ray apparatus x 光机racah algebra 拉卡代数racah coefficient 拉卡系数racemic form 消旋体rad 拉德radar 雷达radar beacon 无线电信标radar echo 雷达回波radar system 雷达系统radial distribution function 径向分布函数radial quantum number 径向量子数radial velocity 径向速度radian 弧度radiance 发光度radiant 辐射点radiant density 辐射密度radiant energy 辐射能量radiant energy density 辐射能密度radiant flux 辐射通量radiant flux density 辐射通量密度radiant heat 辐射热radiant heat exchange 辐射热交换radiant heating 辐射热取暖radiant intensity 发光度radiant point 辐射点radiant total absorptance 总辐射吸收比radiating surface 辐射面radiation 辐射radiation balance 辐射平衡radiation belt 范艾伦辐射带radiation camera 辐射照相机radiation chemical reaction 辐射化学反应radiation chemistry 辐射化学radiation control 辐射管理radiation cooling 辐射冷却radiation damage 辐射损伤radiation damping 辐射衰减radiation density 辐射密度radiation detector 辐射探测器radiation dominated universe 辐射为诸宙radiation dose 辐射剂量radiation energy 辐射能量radiation equilibrium 辐射平衡radiation field 辐射场radiation flux 辐射通量radiation formula 辐射公式radiation injury 辐射伤害radiation intensity 辐射强度radiation law 辐射定律radiation length 辐射长度radiation loss 辐射损失radiation measurement 辐射测量radiation monitor 辐射监测器radiation physics 射线物理学radiation pressure 辐射压radiation protection 辐射防护radiation pyrometer 辐射高温计radiation shield 辐射屏蔽层radiation shielding material 辐射屏蔽材料radiation streaming 辐射冲流radiation temperature 辐射温度radiation thermometer 辐射温度计radiation thickness gage 辐射测厚计radiationless transition 无辐射跃迁radiative capture 辐射俘获radiative heat exchange 辐射热交换radiative transfer 辐射转移radiator 辐射体radio 无线电radio beacon 无线电信标radio detecting and ranging 雷达radio direction finding 无线电定向radio emission 射电辐射radio frequency 射频radio frequency acceleration 高频加速radio frequency amplification 射频放大radio frequency amplifier 射频放大器radio frequency capture 射频俘获radio frequency confinement 射频约束radio frequency discharge 射频放电radio frequency heating 射频加热radio frequency probe 射频探针radio frequency source 射电源radio frequency spectroscopy 射频谱学radio galaxy 射电星系radio interferometer 射电干涉仪radio noise 无线电噪声radio observation 射电观测radio observatory 射电天文台radio pulsar 射电脉冲星radio quasar 射电类星体radio radiation 射电辐射radio receiver 收音机radio source 射电源radio spectroscopy 无线电频谱学radio star 无线电星radio telescope 射电望远镜radio wave holography 无线电波全息学radio wave propagation 无线电波传插radio wave spectrum 无线电波谱radio waves 无线电波radioactivation 放射化radioactivation analysis 放射化分析radioactive collector 放射式集电器radioactive decay 放射性衰变radioactive decay law 放射性衰变定律radioactive disintegration 放射性衰变radioactive displacement law 放射性位移定律radioactive element 放射性元素radioactive equilibrium 放射性平衡radioactive fall out 放射性沉降物radioactive family 放射族radioactive gaseous waste 放射性气态废物radioactive isotope 放射性同位素radioactive liquid waste 放射性液态废物radioactive material 放射性物质radioactive nuclide 放射性核素radioactive product 放射性产物radioactive rays 放射线radioactive standard 放射性标准radioactive tracer 放射性指示剂radioactive transformation 放射性转换radioactive unit 放射性单位radioactive waste 放射性废物radioactivity 放射性radioanalysis 放射性分析radioastrometry 射电天体测量学radioastronomy 射电天文学radioastronomy observatory 射电天文台radioastrophysics 射电天体物理学radioautography 放射自显影法radiocarbon 14 dating method 放射性碳14 测定年龄法radiochemistry 放射化学radiocontamination 放射性沾污radioelement 放射性元素radiogeophysics 放射地球物理学radiogram 无线电报radiography 射线照相法radioheliograph 射电日光仪radiointerferometer 射电干涉仪radioisotope 放射性同位素radioisotope assay 放射性同位素成分的定量分析radiolocation 无线电定位radiology 放射学radioluminescence 放射发光radiometer 辐射计radiometric force 辐射力radiomicrometer 微量辐射计radiomicrometry 微量辐射法radionuclide 放射性核素radiophotoluminescence 辐射光致发光radiophysics 无线电物理学radioresistance 抗辐射性radiosensitivity 放射敏感性radiosonde 无线电探空仪radiosonde observation 无线电探空仪观测radiospectrograph 无线电频谱仪radiospectrometer 射电光谱仪radiothorium 放射性钍radiotracer 放射性指示剂radium 镭radium standard 镭标准源radius 半径radius of gyration 回转半径radius vector 位置矢量radon 氡rail gun 轨炮rain 雨rain gauge 雨量器rainbow 虹rainbow hologram 虹全息图rainbow scattering 虹散射ram 随机存取存储器raman active 喇曼激活的raman effect 喇曼效应raman laser 喇曼激光器raman microprobe 喇曼微探针raman microscope 喇曼显微镜raman nath diffraction 喇曼纳什衍射raman scattering 喇曼散射raman shift 喇曼位移raman spectroscopy 喇曼光谱学raman spectrum 喇曼谱ramsauer effect 冉邵尔效应ramsauer townsend effect 冉邵尔汤森效应ramsden eyepiece 冉斯登目镜ramsey resonance 拉姆齐共振random coincidence 偶然符合random error 随机误差random function 随机函数random matrix 随机矩阵random numbers 随机数random phase approximation 随机相位近似random process 随机过程random variable 随机变数random vibration 随机振动random walk 无规行走randomness 随机性range 列range finder 测距仪range straggling 射程岐离rankine cycle 兰金循环rankine hugoniot relations 兰金雨贡纽关系rapidity 快度rare earth elements 稀土元素rare earth nuclei 稀土核rare earths 稀土族rare gas 稀有气体rare gas excimer laser 稀有气体激元激光器rarefied gas dynamics 稀薄气体动力学rate 比率rate meter 剂量率测量计rate of combustion 燃烧率rated output 额定输出ratio 比rationalized system of units 有理化单位制rationalized unit 核理单位ray 半直线ray of light 光线ray optics 光线光学ray representation 射线表示ray surface 光线速度面ray velocity 光线速度rayleigh criterion 瑞利判据rayleigh disc 瑞利圆板rayleigh distribution 瑞利分布rayleigh jeans' law of radiation 瑞利琼斯的辐射定律rayleigh number 瑞利数rayleigh refractometer 瑞利折射计rayleigh scattering 瑞利散射rayleigh taylor instability 瑞利泰勒不稳定性rayleigh wave 瑞利波rayleigh's radiation formula 瑞利辐射公式rbe dose rbe 剂量re emission 再发射reactance 电抗reaction 反应reaction cross section 反应截面reactive current 无功电流reactive power 无效功率reactivity 反应性reactivity coefficient 反应性系数reactivity control 反应性控制reactor 反应堆reactor components 反应堆组元reactor control 反应曝制reactor lifetime 反应堆寿命reactor materials 反应堆材料reactor period 反应堆周期reactor physics 反应堆物理学reactor poison 反应堆毒物reactor simulator 反应堆仿真器反应堆模拟器reactor time constant 反应堆寿命reactor vessel 反应堆容器real gas 真实气体real image 实象real time hologram 实时全息图realistic nuclear force 真实核力rearrangement collision 重排碰撞rearrangement scattering 重排散射receiver 接收机receiving antenna 接收天线reciprocal lattice 倒易点阵reciprocal lattice vector 倒易晶格矢量reciprocal linear dispersion 逆线性色散reciprocal shear ellipsoid 倒切变椭球reciprocal space 倒易空间reciprocal strain ellipsoid 倒应变椭球reciprocity 互易性reciprocity law 倒易律reciprocity theorem 倒易律recoil 反冲recoil atom 反冲原子recoil effect 反冲效应recoil electron 反冲电子recoil force 反冲力recoil momentum 反冲动量recoil nucleus 反冲核recoil particle 反冲粒子recoilless transition 无反冲跃迁recombinant dna technology 重组 dna 工艺recombination 复合recombination center 复合中心recombination coefficient 复合系数recorder 录音机;记录器记录仪recording anemometer 风速计recording device 记录装置recording instrument 记录器recording thermometer 温度自动记录器自记温度计recovery time 恢复时间recrystallization 再结晶rectangular prism 直角棱镜rectification 整流检波;精馏rectifier 整流rectifier tube 整淋rectilinear motion 直线运动recurrence formula 递推公式recurrence phenomenon 重复现象red dwarf 红矮星red giant star 红巨星red shift 红移red spot 红斑reduced equation 还原方程reduced equation of state 简化物态方程reduced eye 简约眼reduced mass 约化质量reduced pressure 换算压力reduced transition probability 约化跃迁几率reduced viscosity 约化粘滞度reduced wave number 约化波数reduced wave number zone 约化波数带reduced width 约化宽度reduction of area 断面收缩率reduction of cross sectional area 断面收缩率reduction to sea level 海平面归算redundancy 多余度reed relay 簧片继电器reentrant cavity 再入式谐振腔reference electrode 参考电极reference frame 参考系reference line 参考线reference star 定标星reference stimulus 参考剌激reference system 参考系reference temperature 参考温度reference thermoelectromotive force 参考温差电动势reference wave 参考波reflectance 反射率reflected light 反射光reflected ray 反射线reflected wave 反射波reflecting goniometer 反射测角计reflecting layer 反射层reflecting losses 反射损失reflecting material 反射物质reflecting medium 反射介质reflecting microscope 反射显微镜reflecting power 反射因数reflecting surface 反射表面reflecting telescope 反射望远镜reflection 反射reflection coefficient 反射系数reflection effect 反射效应reflection electron beam holography 反射电子束全息术reflection electron microscopy 反射式电子显微术reflection factor 反射因数reflection grating 反射光栅reflection nebula 反射星云reflection profile 反射曲线reflectivity 反射率reflectometer 反射计reflector 反射器反射镜reflex camera 反射摄影机refracting medium 折射介质refraction 折射refraction law 折射定律refraction method 折射法refractive error 折射误差refractive index 折射率refractivity 折射本领refractometer 折射计refractometry 量折射术refractor 折射望远镜refractoscope 折射检验仪refrigerant 致冷剂refrigerating effect 致冷效应refrigeration 致冷refrigeration cycle 致冷循环regelation 复冰regeneration 再生regeneration of energy 能量再生regeneration of k k 的再生regenerative detection 再生检波regenerative feedback 正反馈regenerator 回热器regge pole 雷其极点regge theory 雷其理论regge trajectory 雷其轨迹register 寄存器计数器regression analysis 回归分析regular multiplet 正常多重态regular reflection 单向反射regularization 正规化regulator 正规化函数regulator gene 第基因relative acceleration 相对加速度relative aperture 口径比relative atomic weight 相对原子量relative biological effectiveness 相对生物学效应relative biological effectiveness dose rbe 剂量relative error 相对误差relative humidity 相对湿度relative measurement 相对测量relative motion 相对运动relative permeability 相对磁导率relative refractive index 相对折射率relative stopping power 相对阻止本领relative velocity 相对速度relativistic astrophysics 相对论天体物理学relativistic cosmology 相对论宇宙学relativistic dynamics 相对论力学relativistic effect 相对论性效应relativistic electron beam 相对论性电子束relativistic field 相对论性场relativistic formula 相对论性公式relativistic invariance 相对论性不变性relativistic mass equation 相对论性质量方程relativistic mechanics 相对论力学relativistic quantum mechanics 相对论性量子力学relativistic quantum theory 相对论性量子论relativistic velocity 相对论性速度relativity 相对性relativity principle 相对性原理relativity theory 相对论relaxation 张弛relaxation effect 张弛效应relaxation function 弛豫函数relaxation modulus 张弛模量relaxation oscillation 张弛振荡relaxation spectrum 弛豫谱relaxation time 张弛时间relay 继电器reliability 可靠性reliability factor 可靠性因子reluctance 磁阻reluctivity 磁阻率rem 雷姆remanence 顽磁remanent field 剩余磁场remote batch processing 远程成批处理remote control 遥控remote measuring 遥测remote metering 遥测remote synchronization technology 遥测同步技术renormalization 重正化renormalization group 重正化群renormalization of mass and charge 质量与电荷重正化renormalization theory 重正化理论repeated stress 重复应力repetitive error 重复误差replica 复制replica grating 复制光栅replica method 复制方法representation 表现representation of group 群表示representation of the rotation group 转动群的表示reprocessing 后处理reprocessing of spent fuel 烧过的核燃料后处理reproduction factor 增殖比repulsion 推斥;斥力repulsive force 斥力repulsive potential 排斥势research laboratory 研究室research reactor 研究用堆residual charge 剩余电荷residual field 剩余磁场residual gas 残留气体residual gas analyser 剩余气体分析器residual heat 残留热residual image 余象residual induction 剩余感应residual intensity 剩余强度residual interaction 剩余相互酌residual magnetization 剩余磁化强度residual nucleus 剩余核residual rays 剩余射线residual resistance 剩余电阻residual stress 剩余应力residue class group 剩余群resilience 回弹能resistance 阻力resistance attenuator 电阻衰减器resistance box 电阻箱resistance minimum 电阻最小resistance thermometer 电阻温度计resistive attenuator 电阻衰减器resistive state 有阻力状态resistivity 电阻率resistor 电阻器电阻resolution 分解resolving power 分辨率resolving time 分辨时间resonanance curye 共振曲线resonance 共振resonance absorption 共振吸收resonance absorption cross section 共振吸收截面resonance accelerator 共振加速器resonance box 谐振箱resonance capture 共振俘获resonance circuit 共振电路resonance condition 共振条件resonance curve 共振曲线resonance energy 共振能resonance excitation 共振激发resonance fluorescence 共振荧光resonance formula 共振公式resonance frequency 共振频率resonance integral 共振积分resonance level 共振能级resonance line 共振线resonance method 共振法resonance neutron 共振中子resonance peak 共振峰resonance potential 共振电势resonance radiation 共振辐射resonance raman spectroscopy 共振喇曼光谱学resonance reaction 共振反应resonance region 共振区resonance scattering 共振散射resonance spectrum 共振光谱resonant accelerator 共振加速器resonant cavity 共振腔resonant interaction 共振相互酌resonant particle 共振粒子resonator 谐振器共振器resonoscope 共振示波器respect 关系response 响应response function 响应函数response time 响应时间rest energy 静能rest mass 静质量restitution coefficient 恢复系数restoring force 恢复力restricted problem of three bodies 限制三体问题restriction 限制restrictor 节流节力result 结果resultant 合成resultant acceleration 合加速度resultant force 合力retardation 减速;延迟retardation phenomenon 滞后现象retardation spectrum 滞后谱retarded green function 推迟格林函数retarded potential 推迟势retentivity 顽磁性reticular structure 网状结构reticule 分度线reticulum 网座reverberant chamber 混响室reverberation 混响reverberation time 混响时间reverse feedback 负反馈reverse osmosis 逆渗透reverse temperature 转换温度reverse x ray effect 逆 x 射线效应reversed field pinch 反向场箍缩reversibility 可逆性reversible cell 可逆电池reversible change 可逆变化reversible cycle 可逆循环reversible engine 可逆机reversible pendulum 可倒摆reversible permeability 可逆磁导率reversible process 可逆过程reversible reaction 可逆反应reversible system 可逆系统reversible transducer 可逆变换器reversing prism 道威棱镜revolution 旋转;公转revolution ellipsoid 回转椭面revolution paraboloid 回转抛物面revolving field type motor 旋转磁场型电动机reynolds' law of similitude 雷诺相似律reynolds' number 雷诺数rf ion source rf 离子源rgb system of color representation rgb 彩色显示系统rhenium 铼rheogoniometer 锥板龄测角器rheology 龄学rheometer 龄计rheopexy 笼性rheostat 变阻器rheostatatic brake 变阻破动器rho meson 介子rho type doublet 型二重态rhodium 铑rhodium iron resistance thermometer 铑铁电阻温度计rhombic antenna 菱形天线rhombic lattice 斜方晶格rhombic system 斜方系rhombohedral system 菱形系ribonucleic acid 核糖核酸ricci tensor 里奇张量riemann christoffel tensor 黎曼克里斯托菲张量riemann space 黎曼空间riemann tensor 黎曼张量rietveld method 里德伯尔德法righi leduc effect 里齐勒杜克效应right angled coordinates 直角坐标right ascension 赤经right hand rule 右手定则rigid body 刚体rigid dynamics 刚体动力学rigid plastic body 刚性塑料体rigidity 刚性ring counter 环形计数器ring current 环形电流ring cyclotron 环形回旋加速器ring discharge 环形放电ring laser 环形激光器ring laser gyroscope 环形激光陀螺仪ring nebula 环状星云ripple 波纹ripple current 波纹电流弱脉动电流ripple voltage 脉动电压rise time 上升时间risk 危险度ritz combination principle 里兹并合定则ritz formula 里兹公式rms error 均方根误差rna 核糖核酸roberts micromanometer 罗伯兹压力计robertson walker metric 罗伯森沃克度规robinson anemometer 罗宾逊风速计robot 机扑roche limit 洛希极限roche lobe 洛希瓣rochelle salt 罗谢耳盐rock crystal 水晶rocket 火箭rocking curve 摆动曲线rockwell hardness 洛氏硬度roentgen 伦琴roentgen apparatus x 光机roentgen radiation 伦琴辐射roentgen rays 伦琴射线roentgen tube x射线管roentgenmeter x射线计roentgenogramm x 射线照相roentgenography x 射线照相法roentgenoluminescence x 射线发光roentgenometer x 射线计roentgenoscope x 射线透视机roentgenoscopy x 射线透视法rogowski coil 罗果夫斯基线圈rolling 横摇rolling friction 滚动摩擦room temperature 室温root mean square error 均方根误差roots pump 罗茨泵rosenbluth formula 罗森布拉思公式rosenthal oscillation 罗森塔尔振动rosette motion 蔷薇花形运动rossby wave 罗斯贝波rotameter 转子量计rotary power 旋光本领rotary pump 回转泵rotary reflection 旋转反射rotary switch 转动式开关rotary vacuum pump 回转真空泵rotating anode x ray generator 转动阳极 x 射线发生器rotating crystal method 旋转晶体法rotating fluid 旋转铃rotating magnetic field 旋转磁场rotation 转动rotation group 转动群rotation invariance 转动不变性rotation vibration band 转动振动光谱带rotation vibration spectrum 转动振动光谱rotational absorption line 转动吸收线rotational band 转动谱带rotational brownian motion 转动布朗运动rotational constant 转动常数rotational coupling 转动耦合rotational energy 转动能rotational excitation 转动激发rotational excited level 转动激发能级rotational fine structure 转动精细结构rotational isomer 转动同质异构体rotational level 转动能级rotational line 转动谱线rotational partition function 转动配分函数rotational perturbation 转动微扰rotational quantum number 旋转量子数rotational relaxation 转动弛豫rotational spectrum 转动能谱rotational speed 转动速度rotational structure 转动结构rotational temperature 转动温度rotational term 转动项rotational transform angle 转动变换角rotational transition 转动跃迁rotational velocity 转动速度rotational viscosimeter 旋转粘度计rotator 旋转体rotatory dispersion 旋转色散rotatory polarization 转动偏振rotatory power 旋光本领rotatory reflection 旋转反射roton 旋子rotor 转子roughening transition 粗化跃迁roughness coefficient 粗糙系数roundoff error 舍入误差rouse model 劳斯模型routine 程序rowland circle 罗兰圆rowland ghost 罗兰鬼线rubber elasticity 橡胶弹性rubbery state 橡胶态rubidium magnetometer 铷磁强计rubidum 铷ruby laser 红宝石激光器rule 规则ruled diffraction grating 刻线式衍射光栅run of rays 光路rupture 断裂russell saunders coupling 罗素桑德斯耦合rutgers formula 拉特格斯公式ruthenium 钌rutherford 卢瑟福rutherford scattering 卢瑟福散射rutherford scattering spectroscopy 卢瑟福散射光谱学rutile structure 金红石结构rvb rvbrydberg constant 里德伯常数rydberg correction 里德伯校正rydberg potential 里德伯势rydberg series 里德伯系列rydberg series formula 里德伯公式rydberg state 里德伯状态。

球差校正透射电镜技术探究SrTiO3

球差校正透射电镜技术探究SrTiO3

第 62 卷第 5 期2023 年9 月Vol.62 No.5Sept.2023中山大学学报(自然科学版)(中英文)ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI球差校正透射电镜技术探究SrTiO3/SrTiO3 同质薄膜导电起源*宋海利1,黄荣21. 中山大学化学学院/生物无机与合成化学教育部重点实验室,广东广州 5100062. 华东师范大学物理与电子科学学院 / 极化材料与器件教育部重点实验室,上海 200062摘要:通过脉冲激光沉积方法沿着SrTiO3 衬底(001)方向生长了SrTiO3/SrTiO3(001)同质外延薄膜,薄膜退火前为导电状态,在氧气气氛中退火后变为绝缘态。

运用环形高角暗场像、环形明场像和能量损失谱等多种先进的球差校正透射电镜技术,从原子尺度分析薄膜表面和界面处的原子占位、电子结构以及氧空位等。

研究发现,退火前薄膜表面存在TiOx(1<x<2)重构层,退火后重构层仍然存在,但Ti的价态有所升高。

同时,通过原子分辨率的能量损失谱分析对比了退火前后Ti和O的价态变化,发现:退火前薄膜表面和界面附近存在氧空位,薄膜表面的氧空位更多,退火后氧空位消失。

因此,对于SrTiO3/SrTiO3同质薄膜来说,薄膜导电的起源主要为薄膜表面和界面附近氧空位的共同作用。

关键词:钙钛矿氧化物;球差校正透射电镜;电子能量损失谱;氧空位中图分类号:O73;O766 文献标志码:A 文章编号:2097 - 0137(2023)05 - 0101 - 06Exploring the conductive origin of SrTiO3/ SrTiO3homogeneous films byspherical aberration-corrected transmission electron microscopySONG Haili1, HUANG Rong21. School of Chemistry, Sun Yat-sen University/Key Laboratory of Bioinorganic and SyntheticChemistry of Ministry of Education, Guangzhou 510006, China2. School of Physics and Electronic Science, East China Normal University / Key Laboratory of PolarMaterials and Devices, Ministry of Education,Shanghai 200062, ChinaAbstract:A SrTiO3 /SrTiO3homogeneous epitaxial film was grown along the SrTiO3substrate (001)by PLD method. The film was conductive before annealing, and became insulating states after anneal‐ing. A variety of advanced spherical aberration-corrected transmission microscopy techniques like annu‐lar high-angle darkfield image,annular brightfield image and atomic-resolution energy loss spectro‐scope (EELS) was used to explore the atomic occupancy, electronic structure and oxygen vacancies in the film. A TiOx (1<x<2) reconstruction layer was found on the surface of the film. And the valence state of Ti in the reconstruction layer increases slightly after annealing. According to EELS analysis,oxygen vacancies existed in the whole film including the surface and interface before annealing, anddisappeared after annealing. Therefore, for non-polar films SrTiO3/SrTiO3, oxygen vacancies near thefilm surface and interface maybe the origin of electrical conduction.Key words:perovskite oxides; spherical aberration-corrected transmission electron microscope;energy loss spectroscope; oxygen vacancyDOI:10.13471/ki.acta.snus.2023B021*收稿日期:2023 − 05 − 10 录用日期:2023 − 05 − 23 网络首发日期:2023 − 06 − 30基金项目:广东省基础与应用基础研究基金(2020A1515110178)作者简介:宋海利(1989年生),女;研究方向:功能纳米材料微结构;E-mail:*****************第 62 卷中山大学学报(自然科学版)(中英文)2004年,Ohtomo 和Hwang (2004)在(100)面的SrTiO 3(STO)衬底上外延生长出高质量LaAlO 3(LAO )薄膜,并发现在n 型界面(LaO )+/(TiO 2)0处形成了高迁移率的二维电子气(2DEG ,two-dimen ‐sional electron gas )。

地理专业词汇英语翻译Q-R.

地理专业词汇英语翻译Q-R.

地理专业词汇英语翻译Q-RQuackgrassmeadow 冰草草甸quadtree 象限四分树quadranglenet 四边形网quadran t象限quagmire 沼泽地qualitativeanalysisofelement 元素定性分析qualitativeanalysisoforganicfunctionalgroup 有机功能基定性分析qualitativeinterpretation 定性判读qualitativerepresentation 质量表示法quality 品质qualityclass 地位级qualitycontrol 品质管理qualitycontroloperation 品质管理操作qualitycontrolsystem 品质管理系统qualityengineering 品质工程qualityofgroundwater 地下水水质qualityofsoil 土壤地位级quantification 量化quantifiedsystemanalysis 定量系统分析quantitativeanalysis 定量分析quantitativeinterpretation 定量判读quantitativerepresentation 数量表示法quantitativespectralanalysis 定量光谱分析quantity 量quantityfactor 定量参数quantometer 光量计quarry 采石场quarrying 露天开采quartel 林班quarternary 第4纪quarternaryeustaticmovement 第四纪海面升降运动quarternaryexogeneticoredeposits 第四纪外生矿床quarternaryplacerdeposit 第四纪砂矿床quarternaryvolcanicoredeposit 第四纪火山矿床quarternaryweatheringoredeposit 第四纪风化矿床quartz 石英quartzandesite 英安岩quartzbasalt 石英玄武岩quartzdiorite 石英闪长岩quartzdolerite 石英粗玄岩quartzporphyry 石英斑岩quartzschist 石英片岩quartzspectrograph 石英摄谱仪quartztrachyte 疗岩quartzipsamment 石英砂新成土quartzite石英岩quartzysandstone 石英砂岩quasigeoid 似大地水准面quaternarygeochronology 第四纪地质年代学quaternarygeologicalmap第四纪地质图quaternarygeology 第四纪地质学quaternaryglacialperiod 第四纪冰期quaternaryilluviatedoredeposi 第四纪淋积矿床quaternarypaleogeography 第四纪古地理quaternaryperiod 第四纪quaternaryresearch 第四纪研究quaternarysedimentaryoredeposit 第四纪沉积矿床quicklime 生石灰quicksand 脸quiescence 休眠quisqueite 硫沥青quota 定额radar 雷达radaraltimeter 雷达测高计radarecho 雷达回波radarimage 雷达图像radarimagescale 雷达图像比例尺radarimagetexture 雷达图像纹理radarindicator 雷达显示器radarlevelling 雷达高程测量radarmap 雷达图radarmeteorology 雷达气象学radarnavigation 雷达导航radarphotogrammetry 雷达摄影测量radarreflectedimages 雷达反射图象radarreflectivity 雷达反射率radarreflectivityfactor 雷达反射率因子radarremotesensing 雷达遥感radarshadow 雷达阴影radarsignature 雷达标记radarsonde 雷达测风仪radarstereoviewing 雷达立体观测radarwavelength雷达波长radarweatherequation雷达气象方程radargrammetry雷达摄影测量radialdrainagepattern 放射状水系radialfracture 射状断裂radialrift放射断裂radialsymmetry 辐射对称radian 弧度radiantenergy 辐射能radiantexitance 辐射出射度radiantflux 辐射流radiantintensity 辐射强度radiation 辐射radiationbalance 辐射平衡radiationbalancemeter 辐射平衡表radiationbalanceofatmosphere 大气辐射平衡radiationbelts 辐射带radiationbiology 放射生物学radiationchemicalprocess 放射化学过程radiationchemicalreaction 放射化学反应radiationchemistry 放射化学radiationcoefficient 辐射系数radiationcounter 辐射计数管radiationdamage 放射线损伤radiationdetector 辐射探测器radiationdose 放射剂量radiationfog 辐射雾radiationfromseasurface 海面辐射radiationinjury 放辐射性伤害radiationinversion 辐射逆温radiationradiosonde 辐射探空仪radiationresolution 辐射分辨率radiationshielding 辐射防护radiativetransferequatio n辐射传递方程radical l基radicelle 小根radioaltimeter 无线电测高仪radioatmometer 辐射蒸发计radiobeacon 无线电信标radioobservation 无线电观测radioactivationanalysis 放射化分析radioactiveanomaly 放射性异常radioactivecontaminant 放射性污染物radioactivecontamination 放射性污染radioactivedecay 放射性衰变radioactivedecontamination 放射性去污radioactivedeposit 放射性沉淀物radioactivedisplacementlaw 放射性位移定律radioactiveelement 放射性元素radioactiveequilibrium 放射平衡radioactiveiron 放射性铁radioactiveisotope 放射性同位素radioactivelogging 放射性测井radioactivematerial 放射性物质radioactivemineral 放射矿物radioactivemineralspring 放射能矿泉radioactivepollution 放射性污染radioactiveprospecting 放射性勘探radioactiveradiation 放射性辐射radioactiveseries 放射系radioactivewastes 放射性废弃物radioactivewater 放射性水radioactivity 放射能radioactivitylog 放射性测井记录radiobiology 放射生物学radiocarbon 放射性碳radiocarbonage 放射性碳年龄radiocarbondating 放射性碳年代测定法radiochemicalanalysis 放射化学分析radiochemicalpurity 放射化学纯度radiochemistry 放射化学radiogenicheat 放射性热radiogeochemistry 放射地球化学radiogeodesy 无线电测地学radiographiccontrast 射线照像对照radiography 射线照相术radiohydrology 放射水文学radioisotope 放射性同位素radiolarian 放射虫radiolarianooze 放射虫软泥radiology 放射学radiometeorograph 无线电气象记录仪radiometeorography 无线电气象测量学radiometeorology 无线电气象学radiometer 辐射计radiometricage 绝对年龄radiometricanalysis 放射分析radiometricdating 放射性测定年代radionuclide 放射性核素radiosonde 无线电探空仪radiosondeobservation 无线电探空仪观测radiosoundingsystem 无线电高空测候技术radium 镭radiumage 镭龄radiumseries 镭系radiumspring 镭泉radius 半径radiusofaction 酌半径radiusofcurvature 曲率半径radiusofcurvatureoftheearth 地球曲率半径radiusofgyration 旋转半径radiusofinfluence影响半径radiusratio 半径比radon 氡radonsurvey 射气测量rafaelite 钒地沥青railway 铁道railwayaerosurveying 铁道航空勘测railwayjunction 铁路交叉点railwaymap 铁路路线图railwaytransport 铁路运输rainrainattenuatio n雨滴衰减raincapacity 降雨量rainchannel 水蚀沟raincloud 雨云rainday 雨日raindropimpression 雨痕rainfactor 降水因素rainfrequency 降水频率raingage 雨量器raingush 暴雨rainintensity 降雨强度rainrill 雨沟rainseason 雨季rainshadow 雨影rainwash 雨水冲刷rainbow 虹rainfallarea 降雨区rainfalldepth 雨量rainfalldistribution 雨量分布rainfallduration 降雨持续时间rainfallflood 降雨洪水rainfallintensity 降雨强度rainstorm 阵雨rainwater 雨水rainydays 降水日数rainygreenforest 雨绿林raisedbeach 滨岸淤积阶地raisedbog 高地沼泽ramification 分枝randomdistortion 随机畸变randomdistribution 随机分布randomerror 随机误差randomerrorofmeasurement 测量偶然误差randomevent 随机事件randommixedlayermineral 不规则混层矿物randomnoise 无秩序杂音randomnumber 随机数randomprocess 随机过程randomsampling 随机抽样randomvariable 随机变量randomvector 随机向量randomization 随机化range 区域rangeelevationindicator 距离仰角显示器rangefinder 测距仪rangeheightindicator 距离高度显示器rangenormalization 距离标准化rangeofvisibility 能见距离rangepole 视距尺rangeresolution 距离分辨率ranging 测距rangingpole 测杆rankers 薄层土rapakivi 奥环斑花岗岩rapid 急流急滩rapidflow 急流rareearthelements 稀土元素raregas 稀有气体raregaselements 惰性气体元素rarespecies 稀有种rarefaction 稀疏酌raspberrybrake 十丛林rateofstocking 载畜量ratingcurve 率定曲线ratiomethod 比值法ratioofionicradii 离子半径比ratiovegetationindex 比值植被指数rationalanalysis 示构分析ravine 沟壑rawhumus 粗腐殖质rawmaterial 原料rawore 未选的矿石raworganicsoil 粗有机质土壤rawsoil 生土rawwater 原水reach 河区reactioncurrent 逆流reactionforce 反酌力reactionisotherm 反应等温式reactionmechanism 反应机制reactionprinciple 反应原理reactionproduct 反应产物reactionrate 反应速度reactionrim 反应边缘reactionseries 反应系列reactionzone 反应区reactionalrim 反应边reactivity 反应性readilyavaiablefertilizer 速效肥料readingerror 读数误差readingonrod 标尺读数reafforestation 再造林realimage 实像realscale真比例尺realtimereconnaissance 实时侦察realgar 鸡冠石reallocationofland 土地规划receiver 接收机recentcrustalmevements 现代地壳运动recentsediments 新沉积物recentvegetation 现代植被reception 感受receptionbasin 集水盆recessioncurve 退水曲线recessionofglaciers 冰川减退酌recessionalmoraine 退缩碛rechargearea 补给区rechargewell 补水井reciprocallattice 倒易晶格reciprocalsightline 对向照准线reclaimedfensoi l耕种低位沼泽土壤reclamationofmarshland 沼泽开垦recognitionfeature 识别特征recombination 再化合recomputation 重新计算reconnaissance 踏勘reconnaissanceoffishshoal 鱼群侦察reconnaissancesoilmap 土壤概图reconnaissancesurvey 普查reconstruction 复原recorder 记录器recording 记录recordingdevice 记录装置recordinggauge 自记计recordingpen 记录笔recordingraingage 自记雨量计recovery再生recreation 休养recreationindustry 旅游产业recreationalgeography 旅游地理学recrystallization 重结晶酌rectangularcoordinate 直角坐标rectangularcoordinatesystem 直角坐标系rectangulardrainagepattern 矩状水系rectangularplanecoordinate 平面直角坐标rectangularweir 矩形堰rectifier 纠正仪rectilinearcoordinate 直角坐标recumbentanticcline 伏卧背斜recurrencehorizon 再现土层recurrentdeposition 叠次沉积redalgae 红藻redbrownmediterraneansoil 地中海赤褐色土redclay 红色粘土redfescuemeadow 羊茅甸地redhematite 红赤铁矿redmud 红泥redpodzolicsoil 灰化红壤redsnow 红雪redsoil 红壤redyellowpodzolicsoil 灰化红黄壤reddishbrownforestsoil 红棕色森林土reddishbrownlateritesoil 红棕色砖红壤性土reddishchestnutsoil 红栗钙土redeposition 再沉积redge 暗礁redoxequilibrium 氧化还原平衡redoxindicator 氧化还原指示剂redoxpotential 氧化还原电位redoxprocess 氧化还原过程redoxreaction 氧化还原反应redoxsystem 氧化还原系redoxtitration 氧化还原滴定reducedparameter 换算变量reducedzone 还原带reducers 还原剂reducibleness 可还原性reducingaction 还原酌reducingagent 还原剂reducingcalculus 归算reducingcapacity 还原能力reducingglass 缩小透镜reduction 还原reductioncoefficient 缩减系数reductionfactor 放大率reductiongeochemicalbarrier 还原地球化学障reductionofgravity 重力校正reductionpotential 还原电势reductionzone 还原区redactor 缩小仪redundancyofinformation 信息剩余度reduzate 还原产物reed 芦苇reedpeat 芦苇泥炭reedswamp 芦苇沼泽reedgrassmeadow 酚茅甸地reef 礁reefbuildingcorals 造礁珊瑚reefcap 礁帽reeflimestone 礁灰岩referencedata 参考数据referenceellipsoid 参考椭圆体referencelevel 高程基淮referencepoint 参考点referencesurface 参考面referencesystem 参考系refining 精制reflectancecoefficient 反射系数reflectancefactor 反射因子reflectancespectraofvegetation 植被反射波谱reflectedflux 反射流reflectedimage 反射影像reflectedlight 反射光reflectedray 反射线reflectedwave 反射波reflectingmicroscope 反射显微镜reflectingmirro r反光镜reflectingsurface 反射面reflectingtelescope 反射望远镜reflection 反射reflectioncoefficient 反射系数reflectionelectronmicroscope 反射电子显微镜reflectionmethod 反射法reflectionoflight 光反射reflectionpleochroism 反射多色性reflectiveopticalsystem 反射式光学系统reflectivepowe r反射功率reflectivity 反射能力reflectivityofseawater 海水反射率reflector 反射器reflex 反射reflexcenter 反射中枢reflexpaper 反光印象像纸reflexprinting 反光晒图reflux 逆流回流refoldedfold 复合褶皱reforestation 森林更新refraction 折射refractioncoefficient 折射系数refractionmethod 折射法refractionoflight 光折射refractiveandreflectiveopticalsystem折反射式光学系统refractiveindex折射率refractiveopticalsystem折射式光学系统refractoryclay耐火粘土refractorymaterial耐火材料refractorysand耐火砂refugium残遗种保护区refuse废石regelation复冰regeneratedflow回流回归水流regeneratedglacier再生冰川regeneration再生regenerationcutting更新伐regenerationofcyclon气旋再生regenerationofnaturalresources自然资源更新regime状况regimeofriver河灵况region地方regionofalimentation营养面积regionofescape逃逸区regionoflittlerelief小地形区域regionofrunoff径柳regionalgeochemicalanomaly区域地球化学异常regionalgeochemicalbackground区域地球化学背景regionalgeochemicaldifferentiation 区域地球化学分异regionalgeochemicalprospecting区域地球化学勘探regionalgeochemistry区域地球化学regionalgeologicalmap区域地质图regionalgeology区域地质学regionalgeomorphology区域地貌学regionalinformationsystem区域信息系统regionalmetamorphism区域变质regionalplanning区域规划regionalpollution地区性污染regionalremotesensing区域遥感regionalstructure区域构造regionaltrafficsurveys区域运输量甸regionaluplift区域抬升regionalization区划register套合registerdifferences套合差registerholes套印孔registering记录registration对准registrationpaper记录纸regolith表土regosols粗骨土regression海退regressionanalysis回归分析regressioncoefficient回归系数regressionequation回归方程regressivebedding海退层理regressiveerosion向源冲刷regressiveevolution后退演化regrowth再生植被regularbandmodel规则带模式regularsystem等轴晶系regulatedflow第径流regulation蝶regulationofmountainsteams山洪节制regulator第器rejuvenatedriver回春河rejuvenation回春酌rejuvenationofrelief地形复活relationship亲缘关系relativeabsorptioncoefficient相对吸收系数relativeabundance元素丰度relativeairhumidity相对空气湿度relativealtitude相对高度relativeaperture相对孔径relativeatomicweight相对原子量relativecontent百分数含量relativedensity相对密度relativeerror相对误差relativeevaporation蒸发率relativefrequency相对频数relativegeochronology相对地质年代学relativegravity相对重力relativegrowth相对生长relativeheight相对高度relativehue相对色调对比色调relativehumidity相对湿度relativeisotopicabundance同位素相对分布量relativemeasurement比较测量relativemoisture相对湿度relativeorientation相对定向relativereliefmap地貌量测图relativerepresentation相对值表示法releaseofpollutants污染物释放reliability可靠性reliabilitydiagram编图资料示意图relic遗物relicarea残遗分布区relicsoil残余土relicsinpeatbed泥炭层遗迹relict遗物relictelementsoflandscape景观残留成分relictlake残湖relictlandforms残余地形relictspecies残遗种relief地形reliefglobe立体地球仪reliefimage浮雕图像reliefinversion地形倒置reliefmap地势图reliefmodel地形模型reliefofendmoraine终碛地形reliefplate地貌版reliefprinting凸版印刷remotecontrol遥控remoteguidance遥控制导remotehybrid远缘杂种remoteobservation遥感remotesensing遥感remotesensingapplication遥感应用remotesensingapplicationinagriculture农业遥感remotesensingcamera遥感相机remotesensingcartography遥感制图学remotesensingforatmosphericpollution大气污染遥感remotesensingforplantprotection 植保遥感remotesensingimage遥感影像remotesensinginformation遥感信息remotesensingobservations遥感观测remotesensingofatmosphere大气遥感remotesensingofoilpollution油污染遥感remotesensingofsightseeingresource风景资源遥感remotesensingofsoil土壤遥感remotesensingofvegetation植被遥感remotesensingsurvey遥感测量remotesensingsystem遥感系统remotesensingtechnology遥感技术remotesensingusedinforestry林业遥感remotesensor 遥感器removechromewithbacteria用细菌除铬rendoll黑色石灰土rendzina腐殖质碳酸盐土rendzinalikebrownsoil黑色石灰土状棕色土rendzinification黑色石灰土形成renewableresources可更新资源renewedfault复活断层repetitionmeasurement复测repetitionofbeds地层重复replaceability置换能力replacement交代酌replacingpower置换力replicamethod复制法replicatechnique复制法replication复制reprecipitation再沉淀representation表现representationofdispersedphenomena离散表示法representationofdynamicphenomena动态表示法representationoffeaturesinplane平面图表示法representationofground地形表示法representationsymbol象形符号representativefraction数字比例尺representativesample代表样本representativespecies 代表种reprint再版reproducibility再生性reproduction复制reproductioncamera复照仪reproductionphotography照相制版reproductiveshoot 生殖苗reptiles爬虫类resection后方交会resectioninspace空间后方交会resequentriver复向河reservationpark自然保护区reserve保留地reservoir水库reservoircapacity水库容量reservoirrock贮油岩reservoirstructure 蓄水构造residencetime停留时间residentbirds留鸟residentialquarter居住区residualaffinity残留亲和力residualclay残积粘土residualdeformation剩余变形residualdeposit残留矿床residualelectriccharge剩余电荷residualhalos残积晕residualhill残丘residualmagma残余岩浆residualmagnetism剩磁residualmountain残余山residualplain残余平原residualsediment残积矿床residualshrinkage剩余收缩residualsoil原积土壤residualvalence剩余价residuarywater废水residue余渣resilification复硅resinousluster尸光泽resistance抵抗resistancethermometer电阻温度计resistancetoweathering抗风化性resistate残留产物resistivity电阻率resolutionoflens镜头分辨率resolutionofrealaperture直实孔径分辨率resolvingtime分辨时间resonance共振resonator共振器resorption再吸收resource资源resourcesinformationsystem资源信息系统resourcesremotesensing 资源遥感respiration呼吸respiratoryenzymesystem呼吸酶系统respiratorymetabolism呼吸代谢respirometer呼吸测定计rest休眠restarea休息场所restenergy静止能restperiod休眠期restitutionpoint纠正点restoration复原restorationofnaturalresources自然资源的恢复restoredplantcover 复原植被restoredspecies复原种retainedwater阻滞水retardation延时retention保留retentionwater支持水reticulatedmottles网纹reticulatedvein网状脉reticulecrossofmoon测月十字丝retinite尸石retouching修版retouchingmedium修版液retreatofmonsoon季风后退retrieval检索retroaction反酌retrogradation海蚀变狭酌retrogressivemetamorphism退化变质酌retrogressivesuccession倒退演替retting浸渍returnflow逆流回流returnstroke逆行reverberation反射reversal倒转reversalfilm反转片reversemechanism反转装置reverseposition倒转层位reversevisualangle反观测角reversedfault逆冲断层reversedfold倒转褶皱reversiblechemicalreaction可逆化学反应reversiblecolloid 可逆胶体reversibleprocess可逆过程reversiblereaction可逆反应reversiblerod双面水准尺reversingcurrent往复流reversingthermometer颠倒温度计reversion返祖遗传revisededition修订版revisioncycle更新周期revisionnote修订说明revolution公转revolutioncounter旋转计数器revolutionindicator转数指示器revolutionoftheearth地球公转revolvercamera转筒式摄影机revolvingdiaphragm回转光阑rhenium铼rheniumosmiummethod铼锇法rheologicalprocesses龄过程rheologymodel龄模型rheophyte廉植物rheotaxis窃rheotropism向猎rheumaticheartdisease风湿性心脏病rhizome根茎rhizopodium根足rhizosphere根圈rhodicferralsols暗红色铁铝土rhodium铑rhodochrosite菱锰矿rhodonite蔷薇辉石rhodophyta红藻门rhodopsinpigment视紫红色素rhombicsystem斜方晶系rhombohedralsystem菱形晶系rhombohedron菱面体rhumbline等角航线rhyodacite疗英安岩rhyolite疗岩rhyoliticstructure疗构造riascoast里亚式海岸ricecropping水稻栽培ricegrowing种稻riceplantation稻栽培riceseedlingbed水稻秧田richsoil肥沃土壤richetite水板铅铀矿rickets佝偻病rickettsia立克次体属ride区划线ridge岭ridgeofhighpressure高压背ridging培土riebeckite钠闪石riftvalley断层谷rightascension赤经rightbank右岸rightlateralfault右行断层rigidity刚性rill小河rilldrainage细僚水rillerosion带状沟蚀rillmarks鳞rime雾淞ring环ringcleavagereaction环破裂反应ringcompound环状化合物ringfracture环状断裂ringstructure环状构造ringstructureinterpretationmap环状构造判读图ripcurrent 离岸急流激流riparianpollution沿岸污染ripening成熟ripeningperiod成熟期ripeningprocess成熟过程ripeningsoil成熟土壤ripeningstage成熟期ripple波纹起rippleclouds波状云ripplemarks波痕ripples涟漪rise隆起river河riverbank河岸riverbasin硫riverbed河床riverbottom河底rivercapture河廉夺rivercrossing渡河riverdeposit 河亮积riverdevelopment河联发riverdischarge河量riverdrift河道漂溜rivererosion河蚀rivergravel河砾rivermarshsoil河滨沼泽土rivermouth河口riverport河港riverprofile河凛剖面riversand河拎沙riverstage河廉位riversystem河系riverterrace河成阶地rivertransport河运riverwidth河幅riverside河边riversidesoil河滨土rivulet小河roadpen双曲线笔roadreconnaissance道路侦察rock岩石rockbasin岩盆rockbreaking岩石破碎rockburst岩石破裂rockcreep岩石蠕动rockdebris岩屑rockdesert石漠rockdrawing石山表示rockexposure岩石露头rockfacies岩相rockfall岩崩rockfields石海rockflour岩粉rockformingelement造岩元素rockfragment岩屑rockgas天然气rockglacier冰川石流rockland石质地rockmass岩体rockoutcropsoil岩石露头土rockpillars岩柱rocksalt石盐rockseries岩系rockslide岩石崩塌rockstream石流rockterrace岩石阶地rocktype岩石类型rockvegetation岩石植物群落rocketsounding火箭探空rocketsonde火箭探空仪rockycoast岩石海岸rockydesert岩质沙漠rockysoil石质土rod棒rollfilm胶卷rollingcountry丘陵地区romer坐标格网尺roof顶板roofrock顶板岩石roofingslate瓦用板岩root根rootborers根茎天牛rootcrops块根植物rootfibril须根roothair根毛rootleaf根出叶rootnodule根瘤rootnodulebacteria根瘤菌rootpressure根压rootsystem根系roottubercrops块根罪rooting发根rootstockgrass根茎禾本科植物ropylava波纹熔岩roscoelite钒云母rosebayshrublet杜鹃灌丛rosette莲座丛rotarytidalstream旋转潮流rotatingcrystalmethod旋转晶体法rotatingmirror旋转镜rotation旋转rotationanemometer旋转风速表rotationofcrops轮作rotationofpasture轮牧rotationoftheearth地球自转rotationspectrum转动光谱rotationalgrazing轮牧rotatoryfault旋转断层roughness糙率roughnesscoefficient粗糙系数roundness圆度roundstone风刻石route航线routechart航线图routemap路线图routesurvey路线测量routinelibrary程序库row列rubberestate橡胶园rubble毛石rubbleland砂石田rubblestone毛石rubblysoil砾质土rubefication红壤化rubellite红电气石rubidium铷rubidiumstrontiummethod铷锶法rubrozem腐殖质红色土ruby红宝石ruggedlimestonerockyland石灰岩犬牙交错状裸露地段rule定律rulingpen绘图钢笔runoff瘤runoffforecast runner 纤匐枝 runningsand 脸 runningwater 径沥报怜水怜水水位runningwaterlevel runoffcoefficient 径恋数 runoffprocess runoffregime rupture 断裂ruralenvironment 农村环境 ruralhygiene 农村卫生 ruralsettle ments 村庄径笼程径链况 rushmarsh 灯心草沼泽 russianforestspringencephalitis rustcoloredforestsoil 潜育灰化土 rustfungus ruthenium rutherfordine rutile 金红石锈菌钌纤碳铀矿春季森林脑炎。

材料分析方法缩写

材料分析方法缩写

List of materials analysis methods~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- A -Analytical ultracentrifugation - Analytical ultracentrifugationAAS - Atomic absorption spectroscopyAED - Auger electron diffractionAES - Auger electron spectroscopyAFM - Atomic force microscopeAFS - Atomic Fluorescence SpectroscopyAPFIM - Atom probe field ion microscopyAPS - Appearance potential spectroscopyA TR - Attenuated total reflectanceAXRS - Anomalous X-ray scattering- B -BET - BET surface area measurement (BET from Brunauer, Emmett, Teller) BKD - Backscatter Kikuchi diffraction, see EBSDBiFC - Bimolecular fluorescence complementationBRET - Bioluminescence resonance energy transferBSED - Back scattered electron diffraction, see EBSD- C -CAICISS - Coaxial impact collision ion scattering spectroscopyCARS - Coherent anti-Stokes Raman spectroscopyCBED - Convergent beam electron diffractionCET - Cryo-electron tomographyCCM - Charge collection microscopyCL - CathodoluminescenceCLSM - Confocal laser scanning microscopyCDI - Coherent diffraction imagingCOSY - Correlation spectroscopyCryo-EM - Cryo-electron microscopyCV - Cyclic voltammetry- D -DE(T)A - Dielectric thermal analysisdHvA - De Haas-van Alphen effectDielectric spectroscopy - Dielectric spectroscopyDIC - Differential interference contrast microscopyDLS - Dynamic light scatteringDLTS - Deep-level transient spectroscopyDMA - Dynamic mechanical analysisDSC - Differential scanning calorimetryDVS - Dynamic vapour sorption- E -EBIC - Electron beam induced currentEBSD - Electron backscatter diffractionECOSY - Exclusive correlation spectroscopyECT - Electrical capacitance tomographyEDAX - Energy-dispersive analysis of x-raysEDNMR - Electrically detected magnetic resonance, see ESR or EPREDS - Energy dispersive spectroscopyEDX - Energy dispersive X-ray spectroscopyEELS - Electron energy loss spectroscopyEFTEM - Energy filtered transmission electron microscopyEID - Electron induced desorptionEIT and ERT - Electrical impedance tomography and Electrical resistivity tomographyEL - ElectroluminescenceElectron crystallography - Electron crystallographyELS - Electrophoretic light scatteringENDOR - Electron nuclear double resonance, see ESR or EPREPMA - Electron probe microanalysisESEM - Environmental scanning electron microscopyESCA - Electron spectroscopy for chemical analysis* see XPSESI-MS or ES-MS - Electrospray ionization mass spectrometry or Electrospray mass spectrometryESTM - Electrochemical scanning tunneling microscopeEPR - Electron paramagnetic resonance spectroscopyESD - Electron stimulated desorptionESR - Electron spin resonance spectroscopyEXAFS - Extended X-ray absorption fine structureEXSY - Exchange spectroscopy- F -FCS - Fluorescence correlation spectroscopyFCCS - Fluorescence cross-correlation spectroscopyFEM - Field emission microscopyFIB - Focused ion beam microscopyFIM-AP - Field ion microscopy–atom probeFlow birefringence - Flow birefringenceFluorescence anisotropy - Fluorescence anisotropyFLIM - Fluorescence lifetime imagingFluorescence microscopy - Fluorescence microscopyFRET - Fluorescence resonance energy transferFTICR or FT-MS - Fourier transform ion cyclotron resonance or Fourier transform mass spectrom etryFTIR - Fourier transform infrared spectroscopy- G -GC-MS - Gas chromatography-mass spectrometryGDMS - Glow discharge mass spectrometryGDOS - Glow discharge optical spectroscopyGISAXS - Grazing incidence small angle X-ray scatteringGIXD - Grazing incidence X-ray diffractionGIXR - Grazing incidence X-ray reflectivityGLC - Gas-liquid chromatography- H -HAADF - high angle annular dark-field imagingHAS - Helium atom scatteringHPLC - High performance liquid chromatographyHREELS - High resolution electron energy loss spectroscopyHREM - High-resolution electron microscopyHRTEM - High-resolution transmission electron microscopy- I -IAES - Ion induced Auger electron spectroscopyIBIC - Ion beam induced charge microscopyICP-MS - Inductively coupled plasma mass spectrometryImmunofluorescence - ImmunofluorescenceICR - Ion cyclotron resonanceIETS - Inelastic electron tunneling spectroscopyIGA - Intelligent gravimetric analysisIIX - Ion induced X-ray analysisINS - Ion neutralization spectroscopyInelastic neutron scatteringIRS - Infrared spectroscopyISS - Ion scattering spectroscopyITC - Isothermal titration calorimetryIVEM - Intermediate voltage electron microscopy- L -LALLS - Low-angle laser light scatteringLC-MS - Liquid chromatography-mass spectrometryLEED - Low-energy electron diffractionLEEM - Low-energy electron microscopyLEIS - Low-energy ion scatteringLIBS - Laser induced breakdown spectroscopyLOES - Laser optical emission spectroscopy- M -MALDI - Matrix-assisted laser desorption/ionizationMFM - Magnetic force microscopyMIT - Magnetic induction tomographyMRFM - Magnetic resonance force microscopyMRI - Magnetic resonance imagingMS - Mass spectrometryMS/MS - Tandem mass spectrometryMEIS - Medium energy ion scatteringMössbauer spectroscopy - Mössbauer spectroscopyMTA - Microthermal analysis- N -Nanovid microscopy - Nanovid microscopyND - Neutron diffractionNDP - Neutron depth profilingNAA - Neutron activation analysisNEXAFS - Near edge X-ray absorption fine structureNMR - Nuclear magnetic resonance spectroscopyNOESY - Nuclear Overhauser effect spectroscopyNSOM - Near-field optical microscopeNIS - Nuclear Inelastic Scattering/Absorption- O -OBIC - Optical Beam Induced CurrentODNMR - Optically detected magnetic resonance, see ESR or EPROES - Optical emission spectroscopyOsmometry - Osmometry- P -PAS - Positron annihilation spectroscopyPA T or PACT - Photoacoustic tomography or photoacoustic computed tomography PAX - Photoemission of adsorbed xenonPC or PCS - Photocurrent spectroscopyPD - PhotodesorptionPDEIS - Potentiodynamic electrochemical impedance spectroscopyPED - Photoelectron diffractionPEELS - parallel electron energy-loss spectroscopyPES - Photoelectron SpectroscopyPL - PhotoluminescencePorosimetry - PorosimetryPhase contrast microscopy - Phase contrast microscopyPIXE - Particle (or proton) induced X-ray spectroscopyPowder diffraction - Powder diffractionPTMS - Photothermal microspectroscopy- Q -QENS - Quasi-elastic neutron scattering- R -Raman - Raman spectroscopyRAXRS - Resonant anomalous X-ray scatteringRBS - Rutherford backscattering spectroscopyREM - Reflection electron microscopyRHEED - Reflection high energy electron diffractionRR spectroscopy - Resonance Raman spectroscopy- S -SAED - Selected area electron diffractionSAD - Selected area diffractionSAM - Scanning Auger microscopySANS - Small angle neutron scatteringSAXS - Small angle X-ray scatteringSCANIIR - Surface composition by analysis of neutral species and ion-impact radiation SCEM - Scanning confocal electron microscopySE - Spectroscopic ellipsometrySEC - Size exclusion chromatographySEIRA - Surface enhanced infrared absorption spectroscopySEM - Scanning electron microscopySERS - Surface enhanced Raman spectroscopySEXAFS - Surface extended X-ray absorption fine structureSICM - Scanning ion-conductance microscopySIMS - Secondary ion mass spectrometrySNMS - Sputtered neutral species mass spectroscopySNOM - Scanning near-field optical microscopySPECT - Single photon emission computed tomographySPM - Scanning probe microscopySRM-CE/MS - Selected-reaction-monitoring capillary-electrophoresis mass-spectrometry SSNMR - Solid-state nuclear magnetic resonanceStark spectroscopy - Stark spectroscopySTEM - Scanning transmission electron microscopySTM - Scanning tunneling microscopySTS - Scanning Tunneling Spectroscopy- T -TEM - Transmission electron microscopyTA T or TACT - Thermoacoustic tomography or thermoacoustic computed tomography (see also p hotoacoustic tomography - PA T)TEM - transmission electron microscope/microscopyTGA - Thermogravimetric analysisTIRFM - Total internal reflection fluorescence microscopyTMA - Thermomechanical analysisTOF-MS - Time-of-flight mass spectrometryTXRF - Total reflection X-ray fluorescence analysisTwo-photon excitation microscopy - Two-photon excitation microscopy- U -Ultrasound attenuation spectroscopy - Ultrasound attenuation spectroscopyUltrasonic testing - Ultrasonic testingUPS - UV-photoelectron spectroscopy- V -VEDIC - V ideo-enhanced differential interference contrast microscopyV oltammetry - V oltammetry- W -WAXS - Wide angle X-ray scatteringWDX or WDS - Wavelength dispersive X-ray spectroscopy- X -XAES - X-ray induced Auger electron spectroscopyXANES - XANES, synonymous with NEXAFS (Near edge X-ray absorption fine structure) XAS - X-ray absorption spectroscopyX-CTR - X-ray crystal truncation rod scatteringX-ray crystallography - X-ray crystallographyXDS - X-ray diffuse scatteringXPEEM - X-ray photoelectron emission microscopy XPS - X-ray photoelectron spectroscopyXR - X-ray reflectivityXRD - X-ray diffractionXRF - X-ray fluorescence analysisXSW - X-ray standing wave technique。

材料的表征方法(英语术语)

材料的表征方法(英语术语)

材料表征技术1. Elemental Analysis 元素分析Atomic absorption spectroscopy 原子吸收光谱Auger electron spectroscopy (AES) 俄歇电子能谱Electron probe microanalysis (EPMA) 电子探针微分析Electron spectroscopy for chemical analysis (ESCA) 化学分析电子能谱Energy dispersive spectroscopy (EDS) 能量色散谱Flame photometry 火焰光度法Wavelength dispersive spectroscopy (WDS)X-ray fluorescence X射线荧光2. Molecular and Solid State Analysis 分子与固态分析Chromatography [gas chromatography (GC), size exclusion chromatography (SEC)]色谱[气相色谱,体积排除色谱]Electron diffraction 电子衍射Electron microscopy [scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning TEM (STEM)] 电子显微镜Electron spin resonance (ESR) 电子自旋共振Infrared spectroscopy (IR) 红外光谱Mass spectrometry 质谱Mercury porosimetry 压汞法Mossbauer spectroscopy 穆斯堡尔谱Nuclear magnetic resonance (NMR) 核磁共振Neutron diffraction 中子衍射Optical microscopy 光学显微镜Optical rotatory dispersion (ORD) 旋光色散Raman spectroscopy 拉曼光谱Rutherford back scattering (RBS) 卢瑟福背散射Small angle x-ray scattering (SAXS) 小角X射线散射Thermal analysis [differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), differential thermal analysis (DTA) temperature desorption spectroscopy (TDS), thermomechanicalanalysis (TMA)] 热分析[差示扫描量热计法,热-重分析,微分热分析,升温脱附,热机械分析]UV spectroscopy 紫外光谱X-ray techniques [x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), x-ray emission,x-ray absorption] X射线技术[x射线光电子能谱,x射线衍射,x射线发射,x射线吸收]3. Surface Characterization Techniques 表面表征技术Electron energy loss spectroscopy (EELS) 电子能量损失谱Ellipsometry 椭圆偏振术Extended x-ray absorption fine structure (EXAFS) 扩展X射线吸收精细结构Helium (or atom) diffractionLateral (or frictional) force microscopy (LFM) 横向(摩擦)力显微镜Low-energy electron diffraction (LEED) 低能电子衍射Magnetic force microscopy (MFM) 磁力显微镜Near-edge x-ray adsorption fine structure (NEXAFS) 近边X射线吸收精细结构Near field scanning 近场扫描Reflection high-energy electron diffraction (RHEED) 反射高能电子衍射Scanning tunneling microscopy (STM) 扫描隧道显微镜Scanning force microscopy (SFM) 扫描力显微镜Secondary ion mass spectroscopy (SIMS) 二次离子质谱Surface enhanced raman spectroscopy (SERS) 表面增强拉曼光谱Surface extended x-ray adsorption fine structure (SEXAFS) 表面扩展X射线吸收精细结构Surface force apparatus 表面力仪器。

反射高能电子衍射

反射高能电子衍射

反射高能电子衍射Reflection high energy electron diffraction 反射高能电子衍射是高能电子衍射的一种工作模式。

它将能量为10~50keV的单能电子掠射(1°~3°)到晶体表面,在向前散射方向收集电子束,或将衍射束显示于荧光屏。

简介一幅反射高能衍射图只能给出倒易空间(见倒易点阵)某个二维截面,从衍射点之间的距离可确定相应的晶面间距。

旋转样品,可以在荧光屏上得到不同方位角的二维倒易截面,从而仍可获得表面结构的全部对称信息。

由于在晶体中电子散射截面远大于X 射线的散射截面,加之掠射角小,从而使反射高能衍射与低能电子衍射一样具有表面灵敏度(约10~40┱),但它不仅限于作单晶表面结构分析,也可用于多晶、孪晶、无定形表面及微粒样品的表面结构分析。

反射高能电子衍射得到广泛运用是与分子束外延技术发展有关。

它可用于原位观察外延膜生长情况,为改进生长条件提供依据。

与低能电子的情况有所不同,高能电子束与晶体相互作用中非弹性散射较弱,其强度分析的理论还处于探索之中装置最简单的电子衍射装置。

从阴极K发出的电子被加速后经过阳极A的光阑孔和透镜L到达试样S上,被试样衍射后在荧光屏或照相底板P上形成电子衍射图样。

由于物质(包括空气)对电子的吸收很强,故上述各部分均置于真空中。

电子的加速电压一般为数万伏至十万伏左右,称高能电子衍射。

为了研究表面结构,电子加速电压也可低达数千甚至数十伏,这种装置称低能电子衍射装置。

模式电子衍射可用于研究厚度小于0.2微米的薄膜结构,或大块试样的表面结构。

前一种情况称透射电子衍射,后一种称反射电子衍射。

作反射电子衍射时,电子束与试样表面的夹角很小,一般在1゜~2゜以内,称掠射角。

自从60年代以来,商品透射电子显微镜都具有电子衍射功能(见电子显微镜),而且可以利用试样后面的透镜,选择小至1微米的区域进行衍射观察,称为选区电子衍射,而在试样之后不用任何透镜的情形称高分辨电子衍射。

ELNES的原理及应用实例

ELNES的原理及应用实例

ELNES的原理及应用实例ELNES(Electron Energy Loss Near Edge Structure)是一种电子能损近边结构谱技术,用于研究材料的电子能级结构和原子组成。

与传统的电子能损谱(Electron Energy Loss Spectroscopy, EELS)相比,ELNES能够提供更高分辨率的能级信息,使研究者能够更准确地确定材料的成分和化学环境。

本文将介绍ELNES的原理及其在几个应用实例中的应用。

ELNES的原理基于电子的能量损失与材料的原子结构之间的相互关系。

当高能散射电子穿过材料时,其能量将损失,这种能量损失被称为能量散失。

通过测量电子的能量散失谱,我们可以了解材料中的原子组成和化学环境。

在ELNES中,研究者选取具有特定电子能级的原子,通过调制电子束的能量使其接近这个能级,然后测量能量散失谱,以研究材料中的原子。

1.晶体结构分析:ELNES可以用于研究晶体中的原子排列和结构。

通过比较实验ELNES谱和理论计算谱,研究者可以确定材料的晶体结构和原子位置。

例如,研究人员可以使用ELNES确定纳米材料中金属纳米粒子的晶体结构和原子排列,以了解其性质和应用。

2.化学成分分析:ELNES可以用于确定材料中元素的化学状态和相对含量。

通过测量不同元素的ELNES谱,研究人员可以确定材料中元素的氧化态、配位环境等信息。

例如,研究人员可以使用ELNES确定电池材料中锂离子的化学状态和分布,以研究其电池性能和循环寿命。

3.催化剂研究:ELNES可以用于研究催化剂的原子结构和化学反应机理。

通过测量催化剂表面原子的ELNES谱,研究人员可以观察到催化剂表面吸附物的化学键形成和断裂等过程,从而了解催化剂的活性和稳定性。

例如,研究人员可以使用ELNES研究汽车尾气净化催化剂中铂金属的氧化状态和表面吸附物的相互作用,以提高催化剂的效率和寿命。

4.生物材料研究:ELNES可以用于研究生物材料的元素分布和化学环境。

电子能谱仪在材料分析中的应用

电子能谱仪在材料分析中的应用

电子能谱仪在材料分析中的应用电子能谱仪(Electron Energy Analyzer)是一种广泛应用于材料科学和实验物理学领域的重要仪器。

它通过测量材料中电子能谱的特征来获得有关材料性质的信息。

本文将探讨电子能谱仪在材料分析中的应用,并介绍其原理和技术细节。

一、电子能谱仪的原理电子能谱仪基于电子的动能与能量的关系,通过测量材料中电子的能量来获取材料的化学成分、电子结构以及表面形貌等信息。

它主要由光源、入射系统、分析系统和检测系统等组成。

光源产生能量适中的电子束,并经过光学调节进入入射系统,入射系统将电子束聚焦并瞄准样品表面。

当电子束与样品表面相互作用时,部分电子会被样品吸收、散射或离开样品表面,这些电子的动能将会发生变化。

分析系统是电子能谱仪的核心部分,它通过磁场或电场对电子束进行能量选择和转向。

电子进入分析系统后,经过能量选择后的电子将被聚焦并投射到检测系统。

检测系统根据电子的能量将其转换为电信号,并通过放大和处理后送入数据采集系统。

二、电子能谱仪在化学分析中的应用1. 化学成分分析电子能谱仪可以通过测量样品中不同元素的特征能谱来确定其化学成分。

通过分析能谱中的峰位位置和强度,可以确定样品中元素的含量和相对比例。

2. 表面形貌分析电子能谱仪可以测量样品表面的电子能谱,从而获得关于样品表面形貌的信息。

通过分析电子的能量和角度分布,可以揭示样品表面的形貌特征,例如晶面结构和表面形貌的变化等。

3. 电子结构研究电子能谱仪可以通过测量不同能级的电子能谱来研究材料中的电子结构。

通过分析能谱的峰位位置、强度和形状等特征,可以揭示材料中的能带结构、能级分布以及电子态密度等信息。

4. 化学反应分析电子能谱仪可以通过测量在化学反应中产生的电子能谱来研究反应过程和物种之间的相互作用。

通过监测反应过程中电子能谱的变化,可以揭示反应物的转化情况、反应动力学和反应机制等信息。

三、电子能谱仪的发展趋势随着科学技术的不断发展,电子能谱仪也在不断更新和完善。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :c o n d -m a t /0611053v 1 [c o n d -m a t .m t r l -s c i ] 2 N o v 2006Analysis of Reflection Electron Energy Loss Spectra (REELS)for Determination of the Dielectric Function of Solids:Fe,Co,Ni.Wolfgang S.M.Werner ∗Institut f¨u r Allgemeine Physik,Vienna University of Technology,Wiedner Hauptstraße 8–10,A 1040Vienna,Austria (Dated:February 6,2008)Abstract A simple procedure is developed to simultaneously eliminate multiple scattering contributions from two reflection electron energy loss spectra (REELS)measured at different energies or for different experimental geometrical configurations.The procedure provides the differential inverse inelastic mean free path (DIIMFP)and the differential surface excitation probability (DSEP).The only required input parameters are the differential cross section for elastic scattering and a reasonable estimate for the inelastic mean free path (IMFP).No prior information on surface excitations is required for the deconvolution.The retrieved DIIMFP and DSEP can be used to determine the dielectric function of a solid by fitting the DSEP and DIIMFP to theory.Eventually,the optical data can be used to calculate the (differential and total)inelastic mean free path and the surface excitation probability.The procedure is applied to Fe,Co and Ni and the retrieved optical data as well as the inelastic mean free paths and surface excitation parameters derived from it are compared to values reported earlier in the literature.In all cases,reasonable agreement is found between the present data and the earlier results,supporting the validity of the procedure.PACS numbers:68.49.Jk,79.20.-m,79.60.-i1.INTRODUCTION.The response of a solid to an external electromagnetic perturbation is decribed by the dielectric functionε(ω,q),where ωand q are the energy and momentum transfered dur-ing the interaction.Knowledge of the dielectric function of a solid is important for many branches of physics.The dielectric function can be measured by probing a solid surface with elementary particles,e.g.by photons[1,2,3,4,5]or electrons[6].With the advent of density functional theory beyond the ground state[7],ab initio theoretical calculations of optical data have recently become available[8,9,10].From the experimental point of view,reflection electon energy loss experiments represent a particularly attractive method to probe the dielectric response of a solid,since the experi-ment is very simple.However,quantitative interpretation of the experimental results is not straightforward since inside the solid,the electrons experience intensive multiple scattering implying that experimental data need to be deconvoluted before information on the dielec-tric response of the solid can be extracted from them.In the past,the algorithm of Tougaard and Chorkendorff(hereafter designated by”TC”)[11]has been frequently used for this pur-pose.However,it has recently been shown[12,13]that the loss distribution retrieved by the TC-algorithm is not unique,i.e.,it constitutes a not very well defined mixture of so–called surface and volume electronic excitations of any scattering order,which makes quantitative interpretation and extraction of the dielectric function troublesome.An algorithm which is free of these deficiencies has been proposed recently by the present author(denoted as ”W”-algorithm hereafter)and was succesfully applied to several materials[8,9,12,13]. The W-algorithm is more involved than the TC-algorithm and needs evaluation of many terms for which the expansion coefficients are tedious and time consuming to obtain.In the present work,a simplification of the W-algorithm,(denoted by”SW”-algorithm)is devel-oped,following a suggestion made earlier in this connection by Vicanek[14]and succesfully tested using REELS spectra of Fe,Co and Ni.The resulting optical data and quantities derived from them such as the mean free path for inelastic electron scattering are in good agreement with data found in the literature,supporting the validity of the procedure.2.DECONVOLUTION OF REELS SPECTRA.A REELS spectrum is made up of electrons that have experienced surface(designated by the subscript”s”in the following)and bulk(subscript”b”)excitations a certain number of times.The number of electrons reaching the detector after participating in n s surface and n b bulk excitations is given by the partial intensities A nb n s.Since the occurence of surface excitations is localized to a depth region smaller than,or comparable to,the elastic mean free path,the partial intensities for surface and bulk scattering are uncorrelated to a good approximation[15]:A nb n s =A nb×A n s(1)The bulk partial intensities can be obtained most conveniently by means of a Monte Carlo calculation,by calculating the distribution of pathlengths Q(s)the electrons travel in the solid and using the formula[16]:A nb= Q(s)W n b(s)ds(2) where W n(s)is the stochastic process for multiple scattering:W n(s)=(sn!(3)andλi is the inelastic mean free path.The only physical quantity needed for the calculation of the pathlength distribution is the differential cross section for elastic scattering[17],which can be calculated ab initio for free atoms if solid state effects are weak for the considered application.The pathlength distribution for a reflection geometry is always much broader than the distribution W nb(s)for any value of n b,implying that the reduced partial intensitiesαnb =A nb/A nb=0depend only very weakly on the value of the inelastic mean free path.The surface partial intensities are also assumed to be governed by Poisson statistics. Since an electron’s trajectory through the surface scattering zone is rectilinear to a good approximation(i.e.the pathlength distribution strongly resembles a delta-function),the reduced partial intensities for surface scatteringαn s=A n s/A n s=0are given by the simple equation[12,13]:αn s= n s n s/n s!(4) where n s is the average number of surface excitations taking place during reflection,i.e. the incoming and outgoing surface crossing is combined in Eqn.(4)[12].Commonly,anexpression of the form:n s =a s E(1µo)(5) is adopted for average number of surface excitations[18]where a s is the so–called surface excitation parameter,E is the electron energy andµi=cosθi andµo=cosθo are the polar directions of surface crossing for the incoming and outgoing beam.Multiplying the number of electrons arriving in the detectorαnb n swith the energy dis-tribution after experiencing(n b,n s)collisions,the partial loss distributions,Γnb n s(T)=w(n b) b (T−T′)⊗w(n b)b(T),and summing over all scattering orders,the energy loss spectrumy(T)is obtained as[12]:y(T)=∞n s=0∞n b=0αnb n sw(n b)b(T−T′)⊗w(n s)s(T′)(6)Where T denotes the energy loss,the symbol”⊗”represents a convolution over the energyloss variable and the quantities w(n b)b and w(n s)sare the(n b−1)–fold and(n s−1)–fold self-convolution of the normalized energy loss distribution in a single bulk and surface excitation respectively,the so–called differential inverse inelastic mean free path(DIIMFP,w b(T))and differential surface excitation probability(DSEP,w s(T)).Note that the elastic peak needs to be removed from a REELS spectrum before analysis,implying thatα0,0=0[12].The subject of the present paper is the retrieval of the quantities w b(T)and w s(T) from experimental REELS spectra and determination of the dielectric function from these quantities.Recalling the convolution theorem,it is immediately obvious that in Fourier space,the spectrum is given by a bivariate power series in the variables w b(T)and w s(T). This implies that a unique solution of these quantities cannot be found by reverting the series Eqn.(6)since a single equation with two unknowns has no unique solution.However, when two loss spectra y1(T)and y2(T)with a different sequence of partial intensitiesαnb n s andβnb,n s,are measured,reversion of the bivariate power series becomes possible using the formulae[12,13]:w b(T)=∞p=0∞q=0u b p,q y(p)1(T−T′)⊗y(q)2(T′)w s(T)=∞p=0∞q=0u s p,q y(p)1(T−T′)⊗y(q)2(T′),(7)The above expression constitutes the W-algorithm for which the required coefficients u b p,q and u s p,q can be obtained as outlined in Refs.[12,13].The W-algorithm has been succesfully applied to REELS data of a large number of materials[12,13,19]and the dielectric function of several materials was succesfully extracted from the resulting DIIMFP and DSEP[8,9].However,this approach may be improved upon in two respects:first of all,convergence of the series Eqn.(7)is relatively slow,implying that many terms need to be calculated;secondly,calculation of the higher order coefficients u p,q is tedious and time consuming.The moderate convergence behaviour of the W-algorithm is illustrated in Figure1a that shows the various stages of the deconvolution.Thefirst collision order n indicated for the different curves implies that the second collision order has been taken into account up to n−1,so,for example,the curve labelled(3,0)is a superposition of the(1,0),(0,1),(1,1),(2,0),(2,1),(2,2)and(3,0)–th order cross-convolutions of the two experimental spectra.It is seen that more than6scattering orders need to be taken into account for the W-algorithm to converge over a loss range of about100eV.The improvements addressed above can be effected following a suggestion by Vicanek[14] who pointed out that the TC-algorithm(for the univariate case)can in fact be regarded as a lowest order rational fraction expansion(a so–called Pad´e approximation)of the power series expansion of the spectrum.Extension of the concept of the Pad´e approximation to multivariate power series,such as Eqn.(9)is straightforward[20].The simplified algorithm(designated by”SW”–algorithm hereafter)is obtained(in Fourier space,indicated by the(” ”)–symbol)by making the rational fraction ansatz:w=Nk=0N l=0a k,l y k1 y l2where the quantity Y k,l(T)is the(k,l)-th order cross convolution of the two REELS spectra:Y k,l(T)=y(k)1(T−T′)⊗y(l)2(T′)(10)Since w(T=0)≡0the integration on the right hand side of Eqn.(9)can always be carried out over the energy loss range for which the loss distribution is already known.For more details on the(trivial)numerical treatment of the Volterra integral equation of the second kind see,e.g.,Ref.[21].The performance of the SW-algorithm is illustrated in Figure1b,that shows the8–th order polynomial expansion approximation(Eqn.(7))as open circles.The solid curves la-belled(1)and(2)are thefirst and second order Pad´e approximation results.It is seen that the latter converges as good as the polynomial expansion over thefirst∼150eV.Even thefirst order approximation leads to reasonable agreement.However,at least the second order mixed term(one surface and one bulk excitation)is important to attain quantitative agreement.The reason for the good performance of a rational fraction approximation com-pared to the polynomial expansion is clear:for a polynomial expansion,for any value of the variables a certain power in the series will always be the dominating term and may become arbitrarily large.For a rational fraction expansion,a large value of the dominant term in the enumerator can always be balanced by an appropriately chosen coefficient of the power in question in the denominator.The second order SW-algorithm was applied REELS spectra of Ag,Al,Au,Be,Bi,C, Co,Fe,Ge,Mo,Mn,Ni,Pb,Pd,Pt,Si,Ta,Te,Ti,V,W and Zn)and was found to converge over the measured energy loss range of140eV.It can therefore be concluded that for an energy loss range of this order the second order SW-algorithm is sufficiently accurate. The main merit of thefirst order approximation is that the expansion coefficients can be given in a tractable analytical form(see the Appendix),providing detailed insight in the physical behaviour of the deconvolution.For example,it is seen in Eqn.(19)and(21) that the retrieved DIIMFP is completely independent of the value of the surface excitation parameter a s used for the deconvolution.On the other hand,the expansion coefficients for the surface loss probability are seen to scale linearly with a s.This can be seen by substituting Eqn.(1)in Eqn.(19)and(21)and using Eqn.(4)and Eqn.(5).Thus,no information on surface excitations whatsoever is needed as input to the procedure(except the functional from of the dependence of the surface excitation probability on the energyand surface crossing direction,such as Eqn.(5)).Furthermore,as pointed out above,the value of the inelastic mean free path will mainly affect the absolute value of the partialintensities,A nb ,while the reduced partial intensitiesαnbchange negligibly when the IMFPis varied by up to30%.Reasonably accurate knowledge of the shape and magnitude of the elastic scattering cross section is important,however,since the shape of the pathlength distribution depends on it.Near a deep minimum of the cross section this dependence may even be critical[16],giving rise to qualitatively different sequences of partial intensities.The higher order expansion coefficients also exhibit the scaling properties addressed above.Therefore,using a set of input parameters as discussed above,the normalized DI-IMFP is correctly returned by the procedure in absolute units,while the correct shape of the DSEP is also obtained,but the absolute value of the DSEP scales with the value of a s used in the procedure.Finally,it should be pointed out that by a suitable choice of the partial intensities(in particular lettingβnb n s→0,mimicking the use of a single REELS spectrum)Eqn.(9) reduces to the algorithms proposed by Vicanek[14]or Tougaard and Chorkendorff[11].3.RETRIEV AL OF OPTICAL DATA FROM THE SINGLE SCATTERING DIS-TRIBUTIONS.The procedure to extract the dielectric function of a solid from the DSEP and the DIIMFP has been outlined in Ref.[9]:The theoretical expressions for the DIIMFP and DSEP are fitted to the corresponding experimental results using a suitable model for the dielectric function.The differential inverse inelastic mean free path is related to the dielectric function ε(ω,q)of the solid via the well known formula[22]:W b(ω)=1ε(ω,q) dq 2E±For the DSEP,the expression by Tung and coworkers[18]is used:W s(ω,θ,E)=P+s(ω,θ,E)+P−s(ω,θ,E),(13) where the quantity P±s(ω,θ,E)is defined asP±s(ω,θ,E)=1q3I m(ε(ω,q)−1)2√√(ω2−ωi(q)2)2+ω2γ2iε2(ω,q)= i f iγiωHere the functionχ2is the least squares difference between theory and experiment,defined in the usual way and X b and X s are weight factors chosen as X b=1.0and X s=0.1,empha-sizing the DIIMFP in thefitting procedure.Thefit-parameters p b and p s are multiplicative scaling factors for the DIIMFP and the DSEP that compensate an eventual mismatch of the surface excitation parameter and IMFP used as ing the TPP-2M formula[24]to estimate the IMFP,the value of p b deviated from unity by less than5%for all cases studied, while the returned value of p s scales with the value of the surface excitation parameter a s, exactly as anticipated in the previous section.4.EXPERIMENTALThe procedure used to acquire the experimental data has been described in detail before [25].REELS data were taken for polycrystalline Fe,Co and Ni surfaces in the energy range between300and3400eV for normal incidence and an off-normal emission angle of 60◦,using a hemispherical analyzer operated in the constant-analyzer-energy mode giving a width of the elastic peak of0.7eV.Count rates in the elastic peaks were kept well below the saturation count rate of the channeltrons and a dead time correction was applied to the data.The sample was cleaned by means of sputtering with3keV Ar+ions.Sample cleanliness was monitored with Auger electron spectroscopy.For each material the optimum energy combination for the retrieval procedure of two loss spectra was determined by inspection of the partial intensities,choosing those energies for which on the one hand the determinant∆in Eqn.(20)is reasonably large,while,on the other hand,those energies were avoided for which the scattering geometry corresponds to a deep minimum in the elastic cross section.For these cases it is more difficult to obtain the realistic shape of the pathlength distribution since the elastic cross sections are not accurately known for such scattering angles and the true electron optical detector solid angle also plays a significant role there.In Figure2,the experimental spectra used in the present work are shown as noisy curves.For all selected energy combinations,the shape of the loss spectra is seen to be quite similar,but in all cases,a significant difference in the relative contribution of surface and bulk excitations is seen,as evidenced by the difference in spectral shape below∼20eV.Removal of the elastic peak was achieved byfitting the elastic peak to a combination of aGaussian and a Lorentzian peakshape.Subsequently,thefitted elastic peak was subtracted from the experimental data,they were divided by the area of the elastic peak,and the energy scale was converted to an energy-loss scale.Finally,the measured spectrum S(T)[in counts per channel]was converted to experimental yield y(T)[in reciprocal eV],corresponding to Equation(6),by division by the channel width∆E.Note that due to the dynamical range of a typical REELS spectrum measured with good energy resolution,a small misfit of the tail of the elastic peak can give erratic excursions in the loss spectra obtained in this way. This can be observed in Figure2for energy losses below∼5eV,where a negative excursion and a small shoulder right next to it are seen that are due to elimination of the elastic peak.The only way to cure this problem is to conduct the experiment with a better energy resolution,implying that the primary beam must be monochromatized.5.RESULTS.The DIIMFP and DSEP retrieved from the spectra displayed in Figure2with the second order SW–algorithm are presented in Figure3as open(DIIMFP)andfilled circles(DSEP). The solid lines represent the bestfit of the data to theory.It is seen that the DIIMFP can be perfectlyfitted by the employed theory,while the corresponding DSEP agrees reasonably with the experimental data,but significant deviations are nonetheless observed.This is believed to be attributable to the simplifications concerning the depth dependence of the surface excitation process made in the employed theory for surface excitations[18].The Drude–Lorentz parameters giving the bestfit between experiment and theory are given in Table1.The binding energy of the most loosely bound core electrons[26]are also indicated there and are in good agreement with the energies of the ionization edges observed in Figure3.A comparison of the real and imaginary part of the dielectric function derived from the REELS measurements with the data given in Palik’s book[1,2]is presented in Figure4and 5.Reasonable agreement between these two data sets is observed for all cases for energies 5eV.The error in the present data can become excessively large below5eV due to problems with the elimination of the elastic peak from the spectra.The error bars in these graphs are obtained[8]by assuming that the retrieved DIIMFP predominantly determines ε2implying that the uncertainty inε2is of the order of the uncertainty in the retrievedDIIMFP.The rules of error propagation are then used to estimate the uncertainty inε1. As can be seen the uncertainty inε1is rather large below20eV.This is a fundamental characteristic of the derivation of optical data from absorption measurements,that mainly sampleε2.Within the estimated uncertainty,the two data sets agree satisfactorily,both for the real as well as the imaginary part ofε.The surface(upper panels)and bulk(lower panels)loss functions of Palik’s data and the present results are compared in Figure6.For Fe and Ni,the data for the bulk loss function used by Tanuma,Powell and Penn[24]is also shown for comparison.The general trend observed in these results is that for energies above∼15eV,the present data show more detailed structure in the loss function,while for lower energies,the earlier data seem to be more realistic.This is again attributable to the limited energy resolution used in the present study and the resulting problem with the elimination of the elastic peak.To subject the present optical data to the usual sum–rule checks,the bulk loss function was extended above80eV by Palik’s data.The results for the perfect screening(or”ps”)sum rule and the Thomas-Reiche-Kuhn(or”f”)sum rule are compared with the corresponding results based on Palik’s and Tanuma’s loss functions in Table2.The ps-sum rule seems to be the most important for the present study,since it emphasizes low energies,while the main contribution to the f-sum rule comes from the core electrons which are not fully included in the present measurements.Except for Ni,the ps-sum rule check for the REELS data is in better agreement with the expected value of1.000than for the two other sets of optical data.The f-sum rule shows deviations of the expected value of atomic electrons of the same order of magnitude for all data sets.Figure7shows the IMFP for the studied materials over the energy range between50and 5000eV as thick solid line.For comparison,results using the other two sets of optical data are also shown as dashed(Palik)and chain dashed(Tanuma)curves.For the calculation of the IMFP of all three sets of optical data the software employed by the authors of Ref.[24] was used[27].The results predicted by the TPP-2M-formula are indicated by the dotted line.The open circles represent the results of elastic peak electron spectroscopy(EPES) measurements reported earlier[25,28].The deviations of the IMFP values based on Palik’s data set and the present ones are most prominent for Co,which is caused by the lower value of Palik’s data for the loss function in the region between20and50eV.For Fe and Ni, the mutual agreement between the different IMFP values is satisfactory,except for energiesbelow100eV,where the semiempirical TPP-2M formula predicts values for Co and Ni that are slightly lower than the other results.The EPES data differ from the other data sets in that the experimental elastic peak intensities are interpreted using only the elastic scattering cross section as input to the evaluation procedure[25,29],while the other calculations all are based on optical data and dielectric response theory.The two approaches are thus in a way fundamentally different.Nonetheless,the agreement between the EPES data and the IMFP values derived from the dielectric function is reasonable,at least within the experimental scatter of the EPES data.As afinal result,Figure8shows the surface excitation probability extracted from the REELS spectra as open circles.This quantity was determined by using the present optical data to calculate the normalized DIIMFP and DSEP and byfitting the experimental spec-trum to theory via Eqn.(6)using n s and the bulk partial intensities asfit parameters.Examples of suchfits are shown in Figure2as thick solid lines.Thesefits are generally better than in previous work,where Palik’s optica data were used for the same purpose[33]. The contribution of electrons that have experienced one bulk,one surface and two surface excitations is also indicated in thesefigures.The solid line in Figure8is afit of the data for the surface excitation probability to Eqn.(5),the dotted line represents afit to another functional from of the surface excitation probability that is commonly used[30]:n s =1Eµi +1+1Eµo+1,(18)the dashed and chain-dashed line are results by Chen[31]and Kwei et al[32]respectively. The quality of thesefits is also improved compared to earlier work,in that the values of the surface excitation probability n s exhibit significantly less scatter than earlier[33].Theresulting values of the surface excitation parameters a s and a∗s are given in Table3.The present results for Fe are in excellent agreement with the value of a s=2.51,reported by Chen(dashed line in Figure8),while they are also in close agreement with the results quoted by Kwei and coworkers[32].The quality of thefit of the data to Eqn.(5)is generally slightly better than thefit to Eqn.(18),at least for Co and Ni,although it is still difficult on the basis of the present data to decide between the two functional forms for the SEP,Eqn.(5) and Eqn.(18).For this purpose,analysis of REELS experiments at higher energies would be required.6.SUMMARY AND CONCLUSIONS.An earlier proposed procedure[12,13]for the simultaneous deconvolution of two REELS spectra to provide the energy loss distribution in a single surface and volume electronic excitation is simplified using a Pad´e approximation and applied to experimental data of polycrystalline Fe,Co and Ni samples.It is shown that a second order rational fraction approximation converges better over an energy loss range of about150eV than an8-th order polynomial expansion approximation,allowing one to conclude that the second order SW-algorithm can be safely used for practical purposes.Analysis of the expansion coeffi-cients provide guidelines on the choice of the optimal experimental parameters to derive the DIIMFP and DSEP from REELS spectra and show,moreover,that no prior information on surface excitations is needed to perform the deconvolution.The retrieved DIIMFP and DSEP werefitted to the corresponding theoretical expressions giving the optical data of the studied solids in terms of a set of Drude-Lindhard parameters.Agreement between the resulting optical data as well as the IMFP derived from them with values based on optical data reported earlier is quite good,supporting the validity of the procedure.The values for the surface excitation probability retrieved from the data using the optical constants derived in this work are believed to be more reliable than the values reported earlier[33] and indicate that the energy and angular dependence of the surface excitation probability are described by Eqn.(5)rather than by Eqn.(18).The values for the surface excitation parameter are in reasonable agreement with theoretical values.7.ACKNOWLEDGMENTThe author is grateful to Dr.S.Tanuma for making his optical data and his computer code for calculation of the IMFP available for the present comparison.Financial support of the present work by the Austrian Science Foundation FWF through Project No.P15938-N02 is gratefully acknowledged8.APPENDIX:FIRST AND SECOND ORDER PAD´E RATIONAL FRACTION EXPANSION COEFFICIENTS.The explicit expressions for thefirst order bulk expansion coefficients in Eqn.(9)in termsof the partial intensitiesαnb n s andβnb n sof two experimental REELS spectra are given by:a b00=0a b10=β01/∆a b01=−α01/∆b b00=1b b10=1β01b b01=1α01 (19)where the determinant∆is given by∆=(α10β01−α01β10)(20) The surface expansion coefficients read:a s00=0a s10=−β10/∆a s01=α10/∆b s00=1b s10=1β10b s01=1α10 (21)The expressions for the second order expansion coefficients are somewhat too lengthy to reproduce here.They can be easily calculated numerically though,byfirst establishing the polynomial expansion coefficients u b pq and u s pq,as described in Refs.[12,13]up to third order (p+q≤3).The coefficients in the denominator of the rational fraction expansion are thenfound by solution of the homogeneous system of equations:0=b000=u30+b10u20+b20u100=u21+b10u11+b01u20+b11u10+b20u100=u12+b10u02+b01u11+b11u01+b02u100=u03+b01u02+b02u010=u22+b10u12+b01u21+b11u11+b20u02+b02u20.(22) Finally,the enumerator coefficients are determined by the inhomogeneous system:a00=u00=0a10=u10a01=u01a11=u11+b10u01+b01u10a20=u20+b10u10a02=u02+b01u01.(23)。

相关文档
最新文档